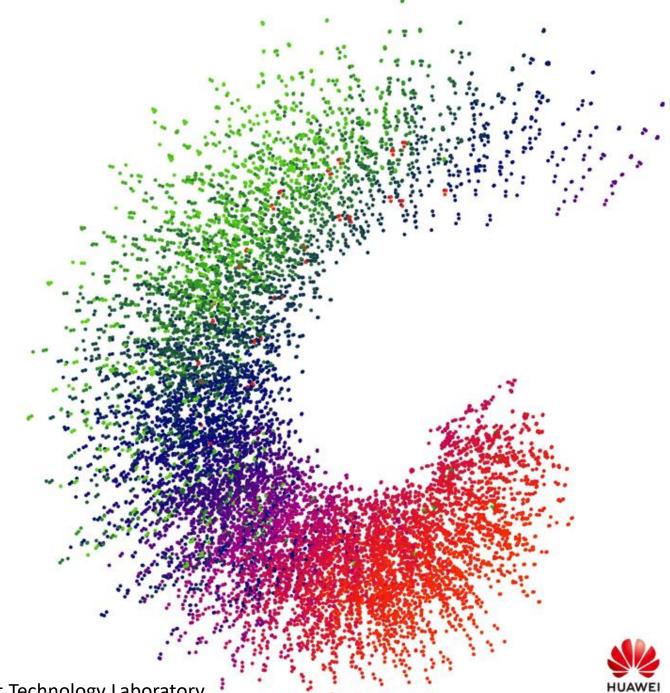


IFIP Networking e-Paris, June 2020

Dario Rossi Chief Expert, Network AI Director, DataCom^{*} Paris Lab <u>dario.rossi@huawei.com</u>



(*) Data Communication Network Algorithm & Measurement Technology Laboratory

Absence of information

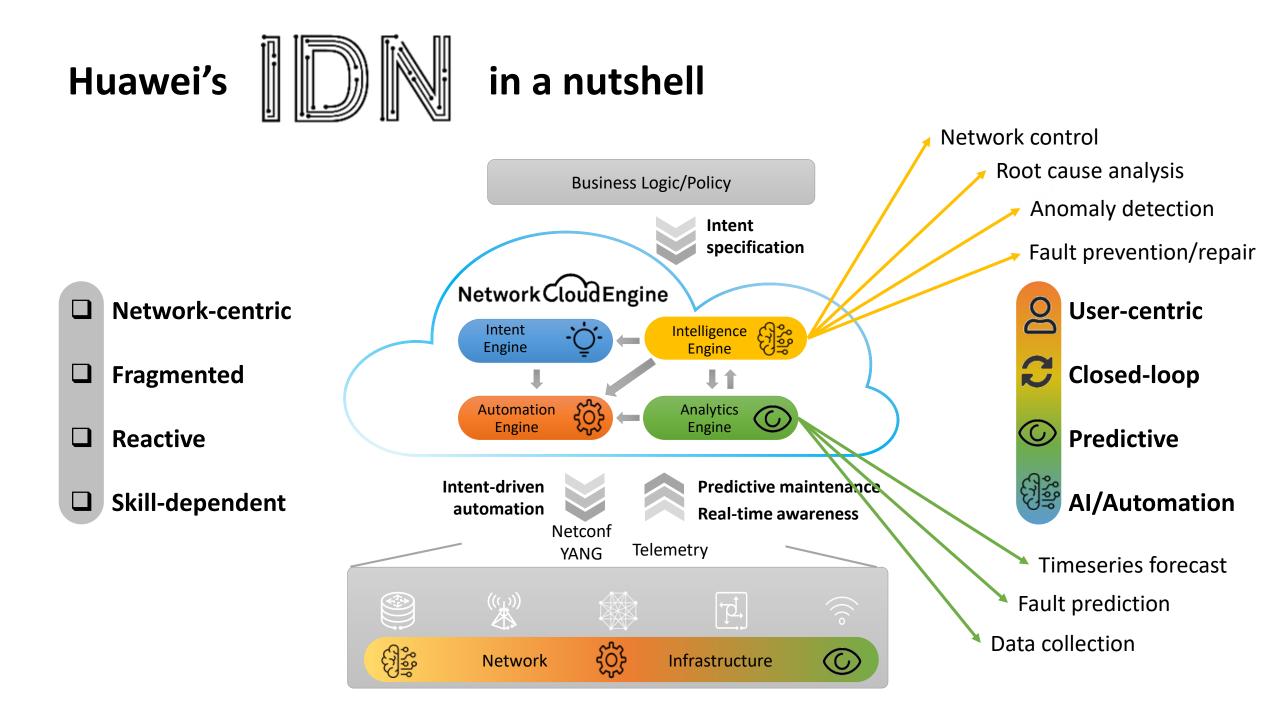
Encryption operational obscurity

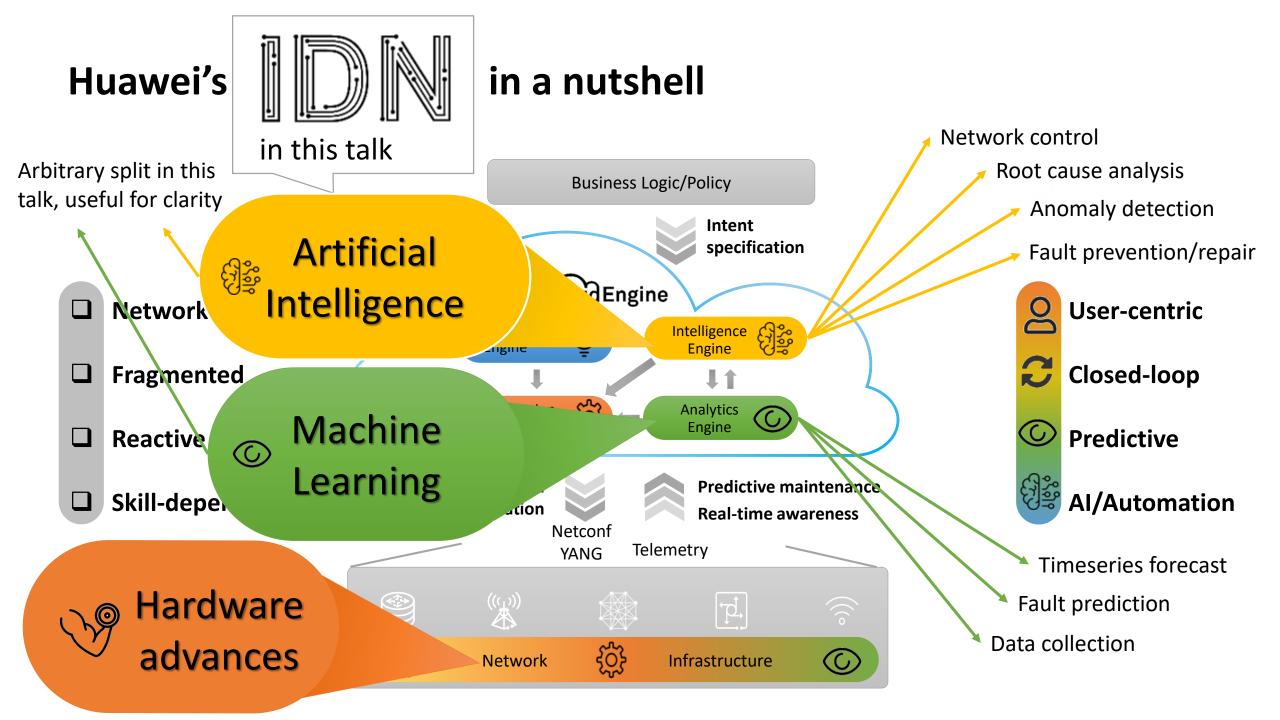
Excess of information

Data deluge operational overload

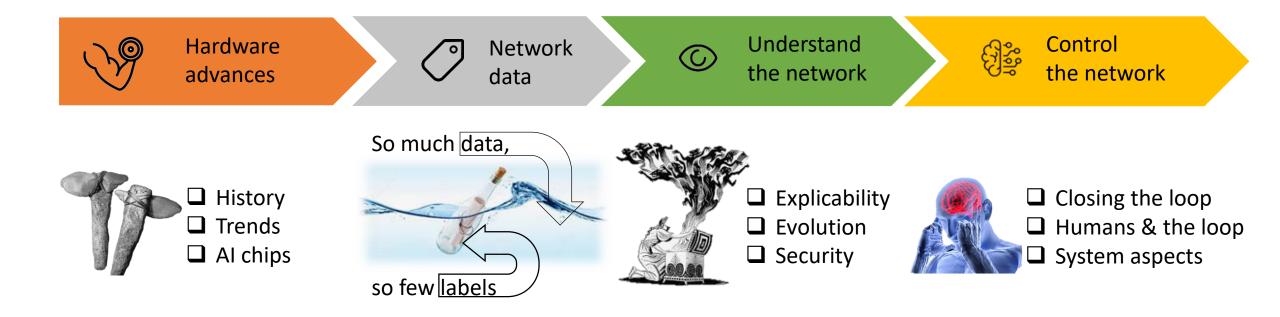
Tackle operational obscurity & operational overload

Ascend Unified AI chip architecture

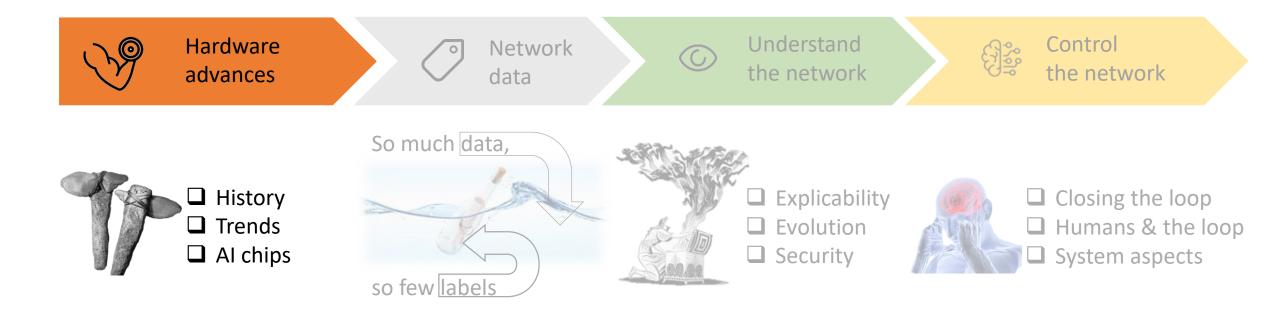




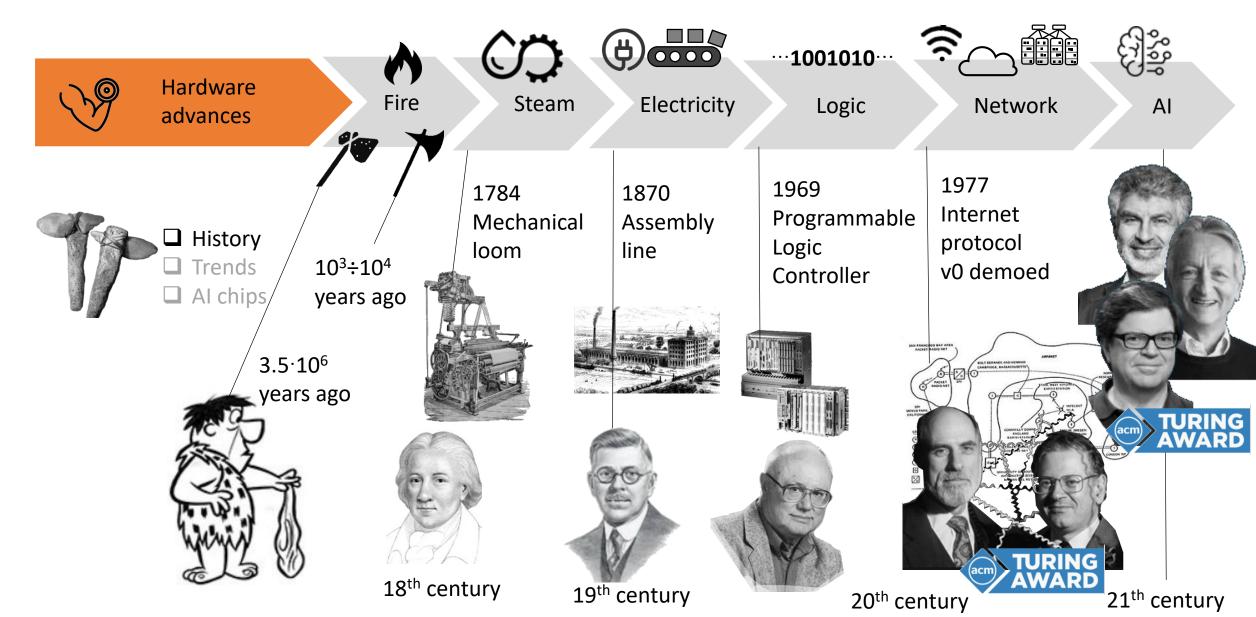
Agenda



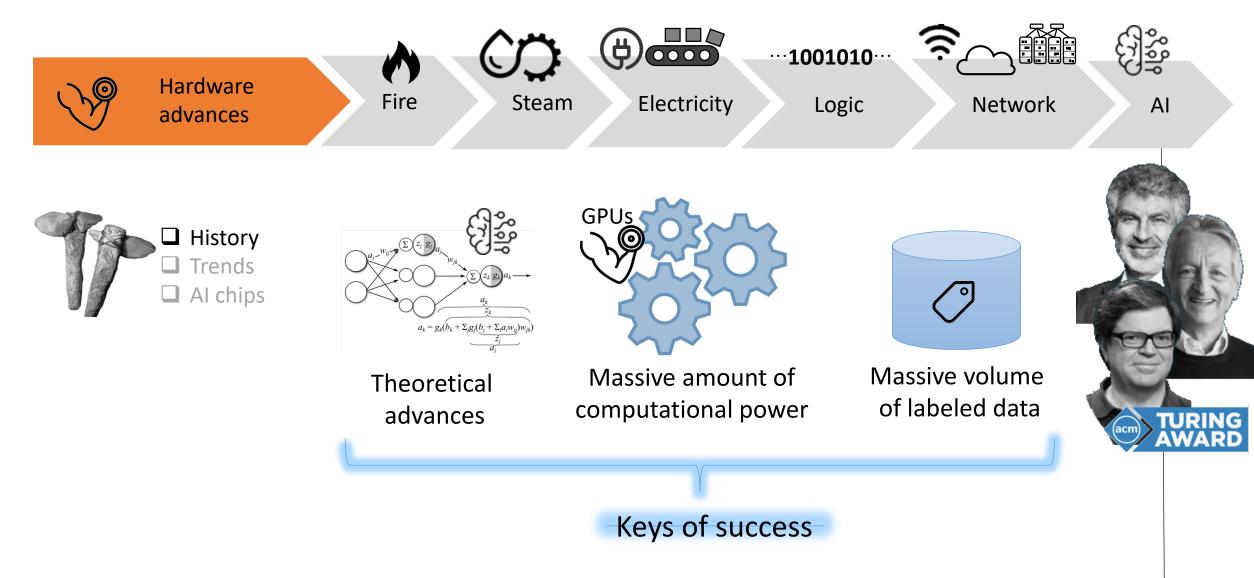
Agenda



Hardware advances



Hardware advances, but not only



21th century

Deep neural networks trend

Number of neurons (logarithmic scale)

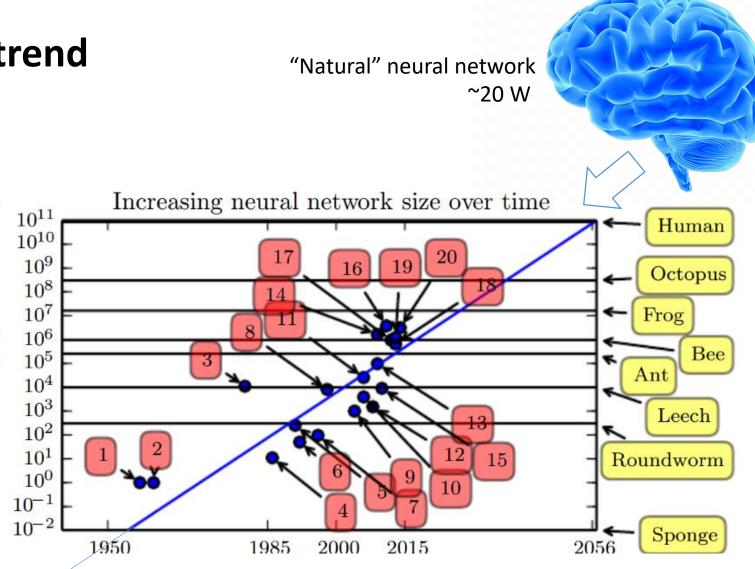
Hardware

advances

History

Trends

AI chips

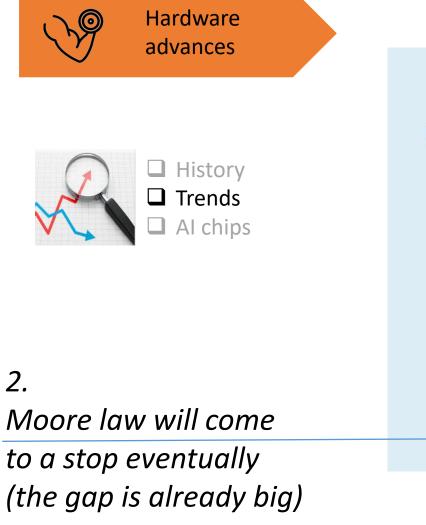


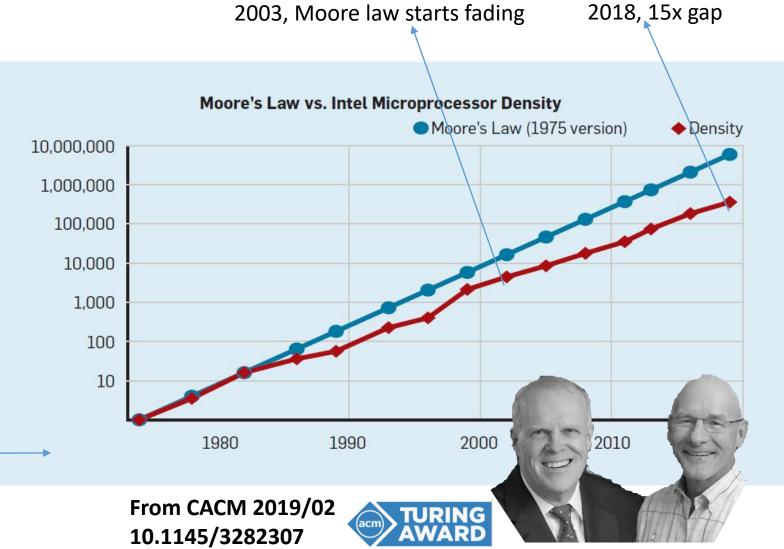
1.

Numbers of neurons increases faster than the number of transistors

Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep learning, MIT Press <u>https://deeplearningbook.org</u>

Hardware advances for general purpose computing





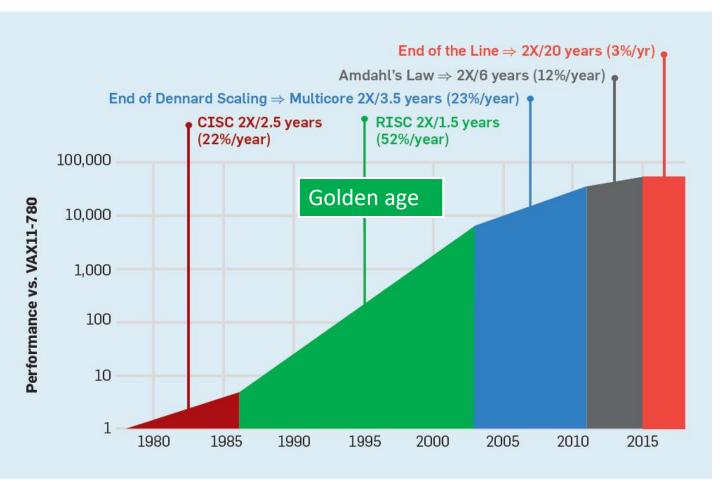
Hardware advances for general purpose computing

advances
advances

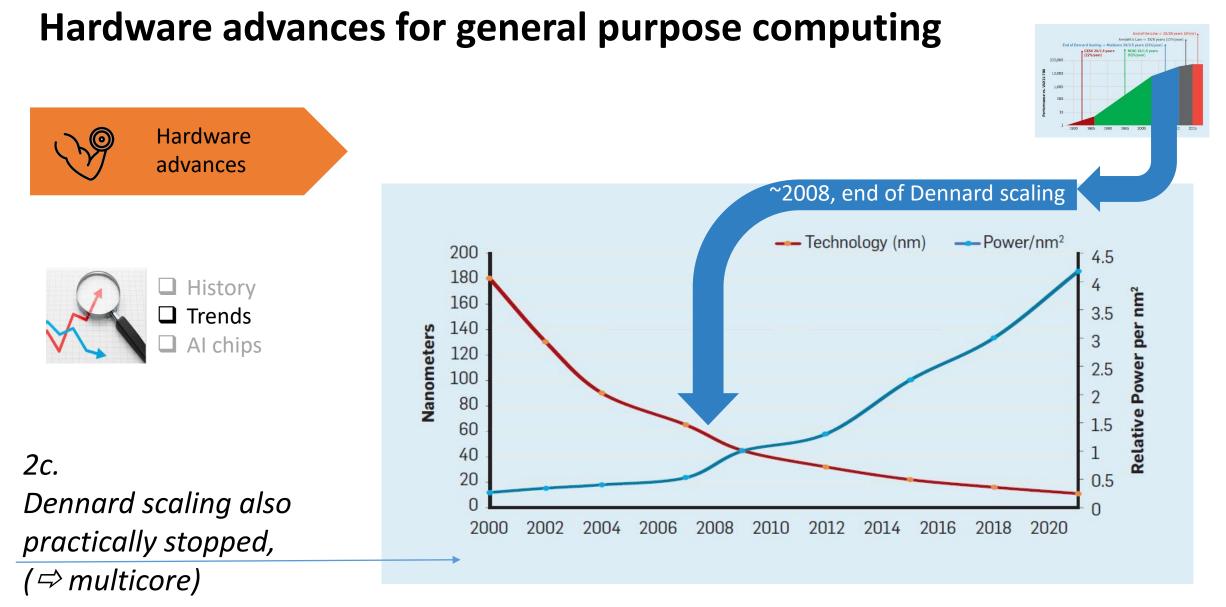
Hardware

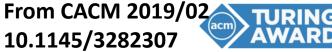
Al chips

2b. Computing performance increase is slowing down (it's not just Moore law...)



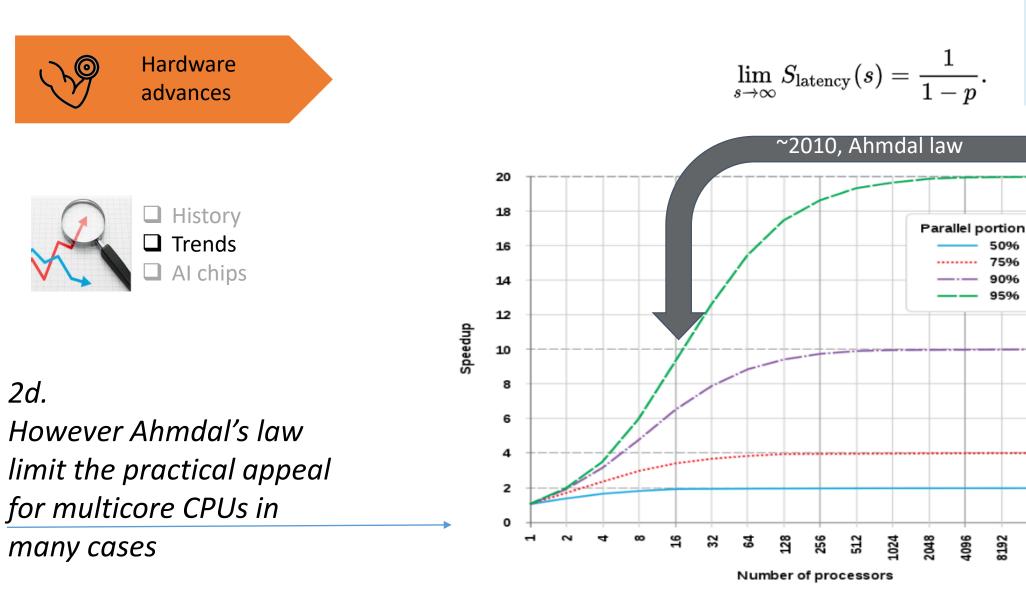
From CACM 2019/02 10.1145/3282307





Hardware advances for general purpose computing

2d.



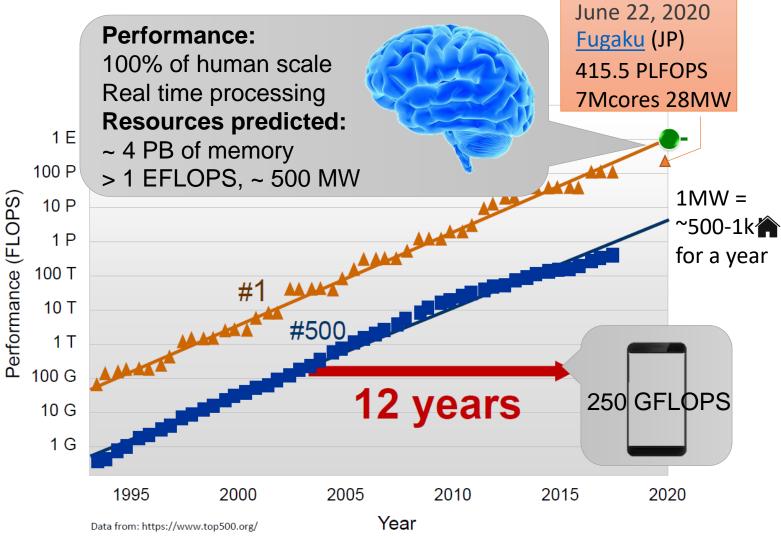
32768

16384

65536

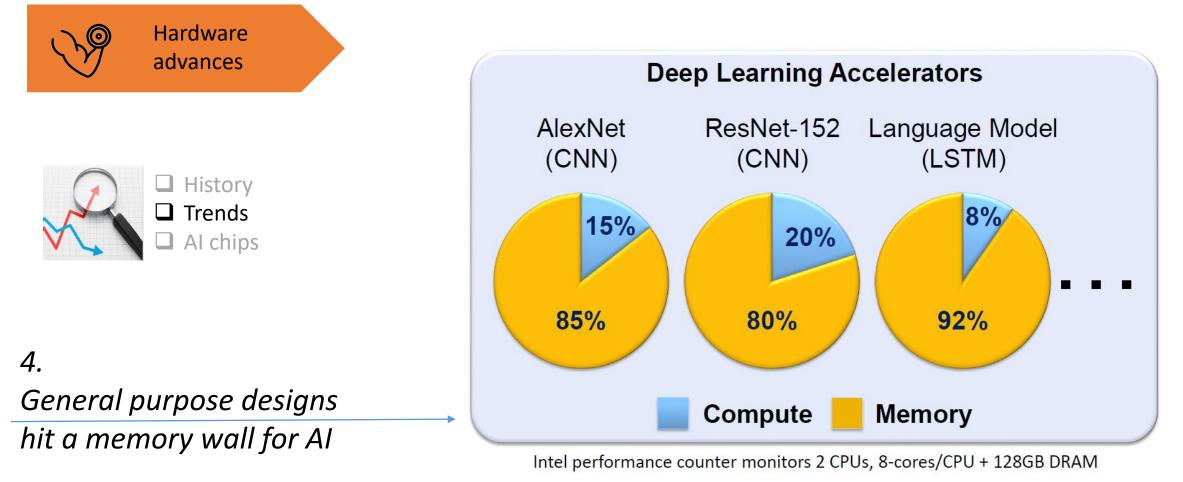
Hardware power consumption ?

Hardware advances **History** Trends AI chips 3. General purpose designs hitting a power wall



Courtesy H.S. Philip Wong (黃漢森), Stanford & TSMC

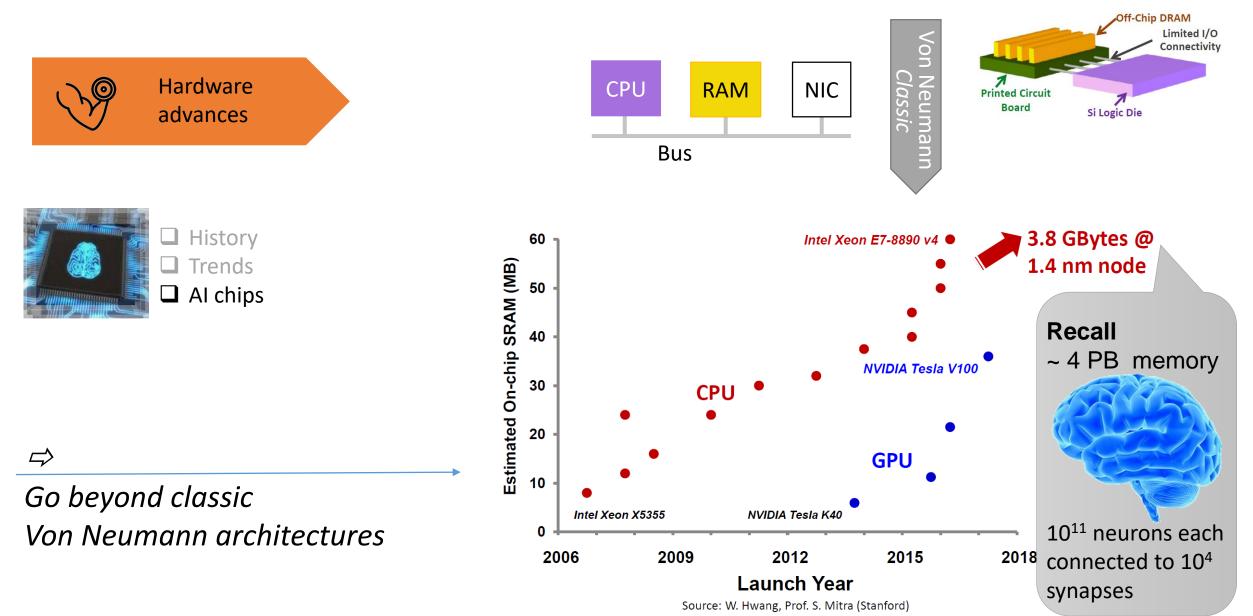
Hardware bottleneck for AI processing ?



Source: S. Mitra (Stanford)

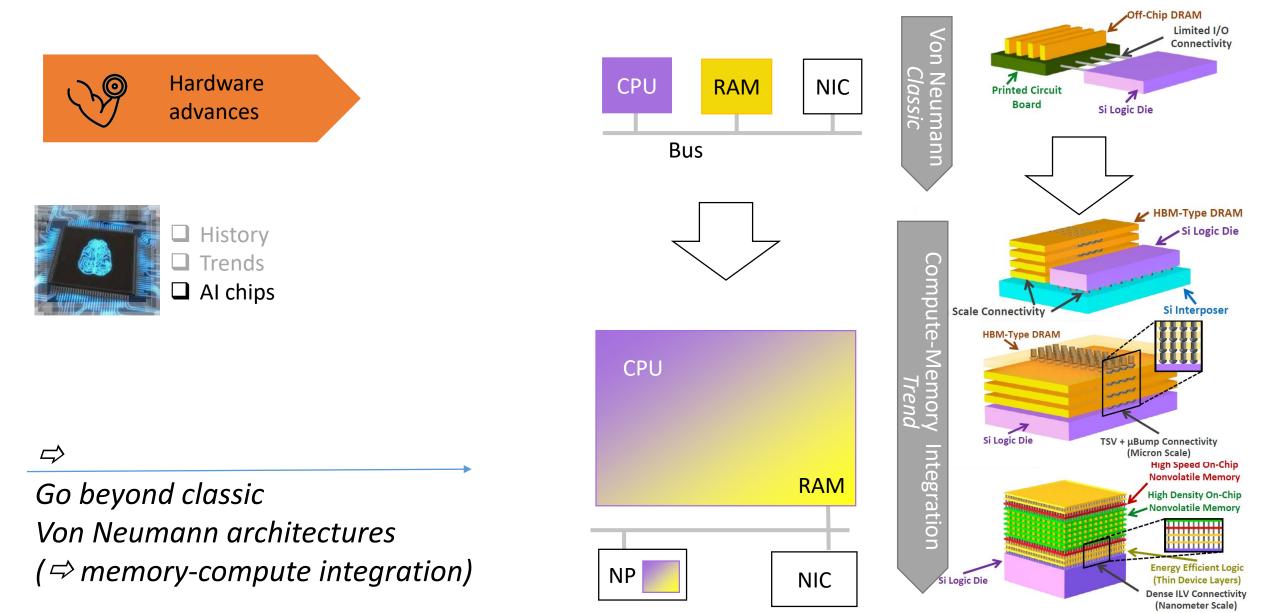
H.S. Philip Wong (黃漢森), Stanford & TSMC

Hardware design trends

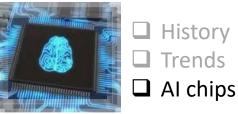


H.S. Philip Wong (黃漢森), Stanford & TSMC

Hardware design trends



\mathbf{x}	Hardware	
V)	advances	



 \Box

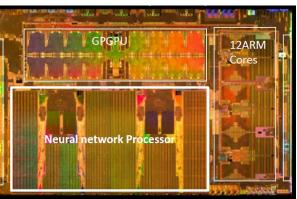
Huawei Ascend Ascend 910 Google TPU v3.0 **CoWoS Module**

Superior processing power that equals to 100 CPUs

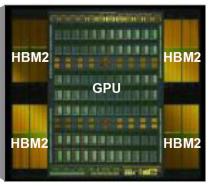
NVIDIA

Volta

Tesla FSD



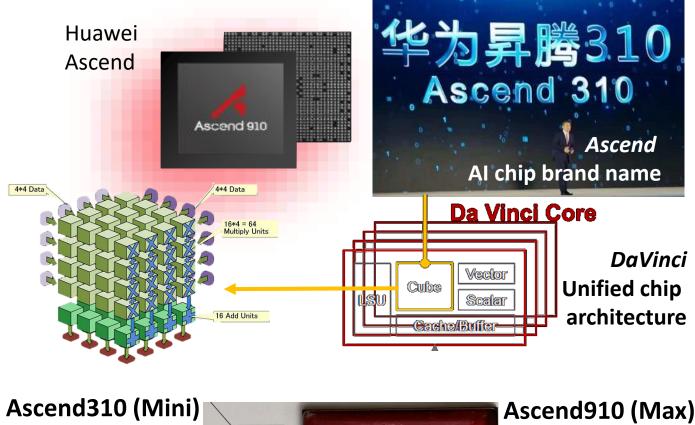
Heterogeneous Integration: GPU + High Bandwidth Memory (HBM2)



Go beyond classic Von Neumann architectures (\Rightarrow design tailored for CNNs)

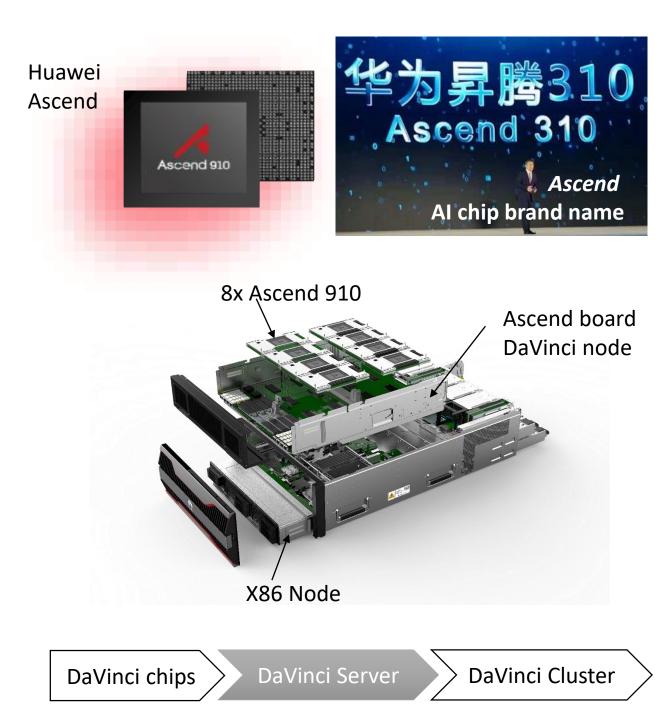
 $\, \rightleftharpoons \,$

Go beyond classic Von Neumann architectures (⇔ flexible design, edge intelligence)



SP.	Hardware	
	advances	

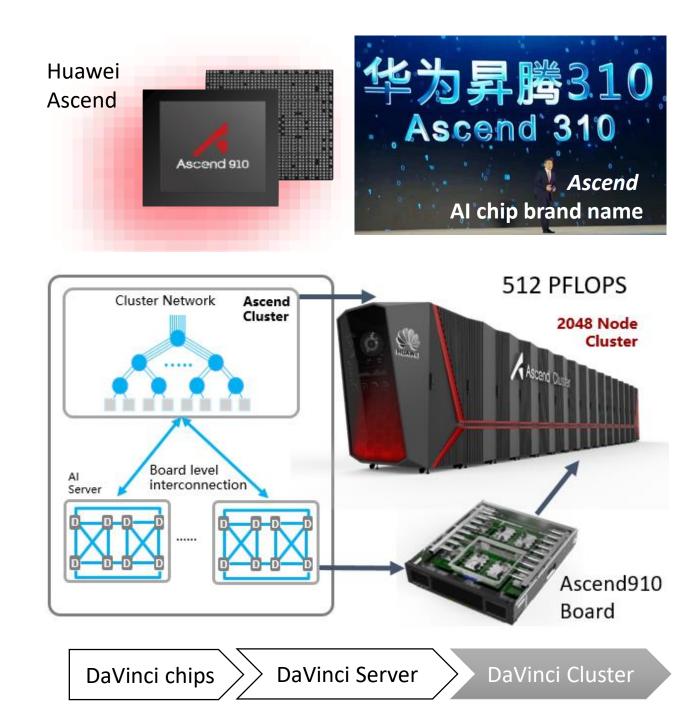
Go beyond classic Von Neumann architectures (⇔ flexible design, cloud)



- Contraction of the contraction	Hardware
	advances

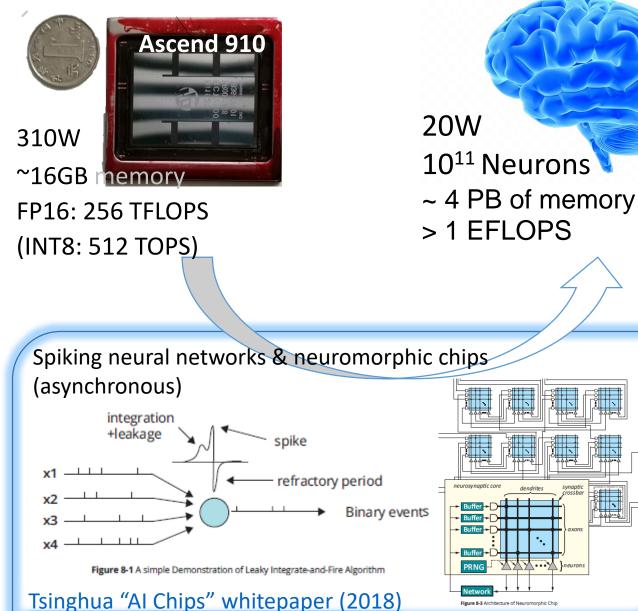
 \Rightarrow

Go beyond classic Von Neumann architectures (⇔ flexible design, hyperscale)



History Trends Al chips

"Artificial neural networks" (synchronous)



"Natural neural networks" (asynchronous)

igure 8-3 Arch

Hardware is key, but software needed to exploit it!

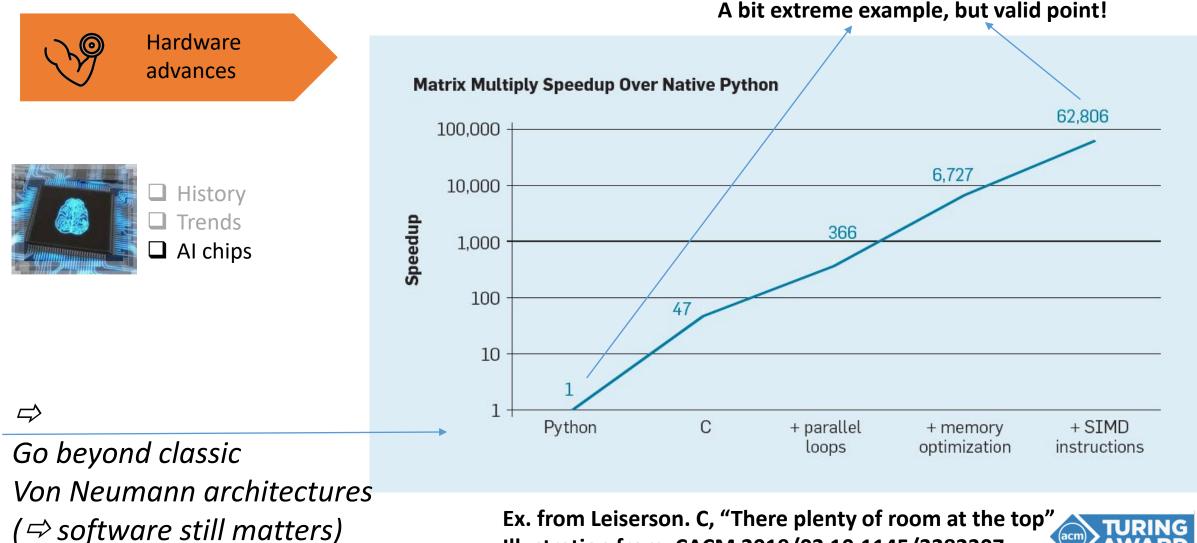
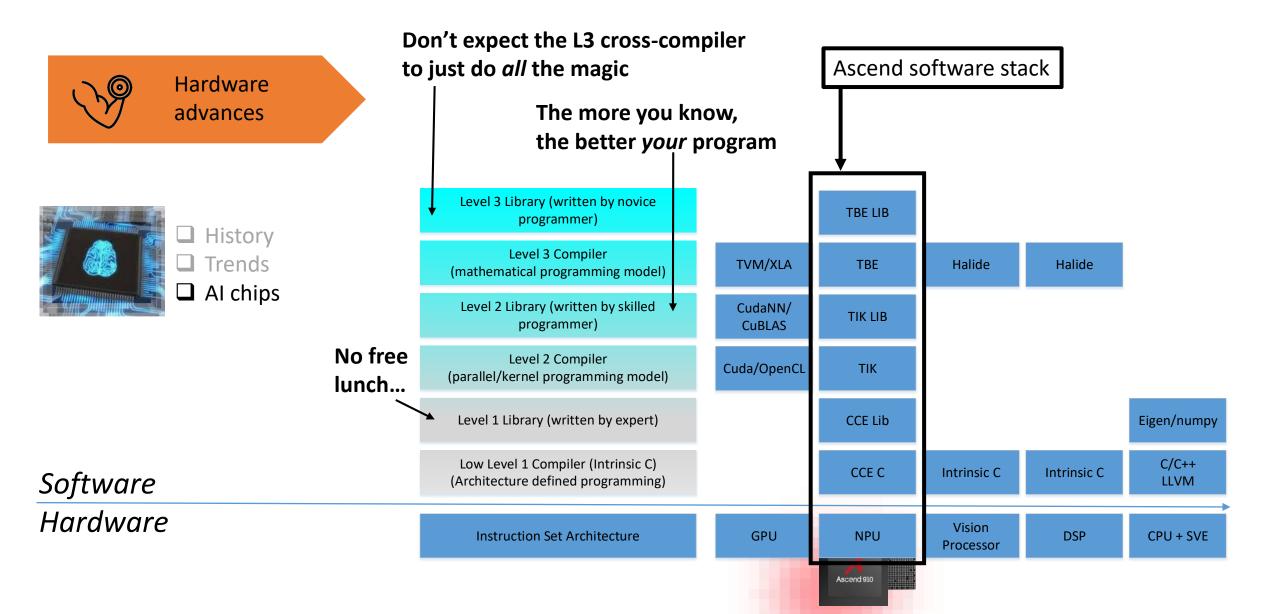


Illustration from CACM 2019/02 10.1145/3282307

Hardware is key, but software needed to exploit it!



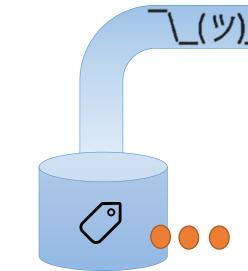
The long and winding road

GI TP a_{k} $a_{k} = g_{k}(b_{k} + \Sigma_{j}g_{j}(b_{j} + \Sigma_{k}a_{i}w_{ij})w_{jk})$ a_{j}

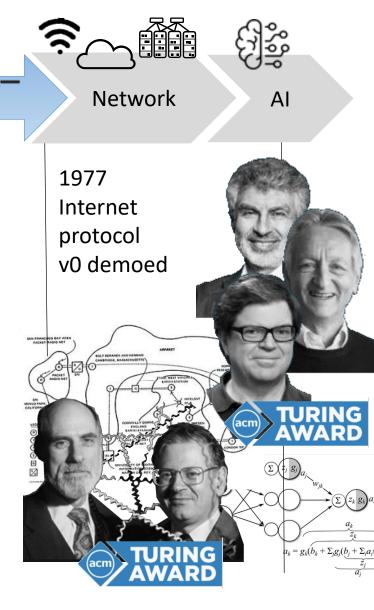
Theoretical advances

Massive amount of computational power

Keys of success

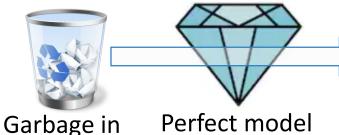


Massive volume of labeled data



The long and winding road

Data preparation & management essential for AI in products

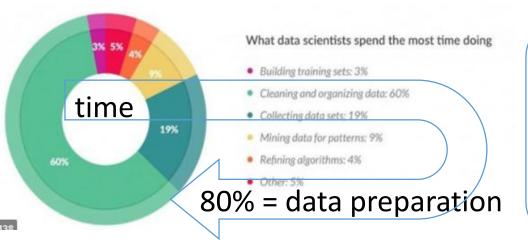


Garbage out

"Data is a key asset for AI system"

Andrew Ng (co-founder of Google Brain and former Vice President and Chief Scientist at Baidu)

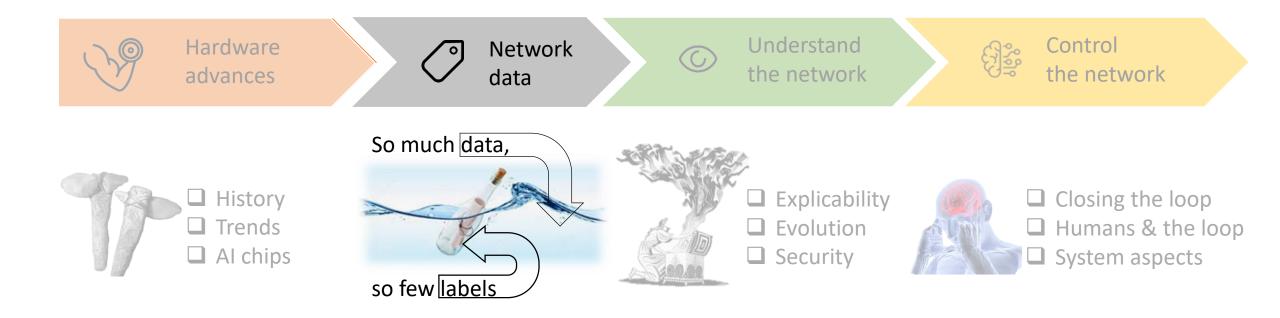
Data management



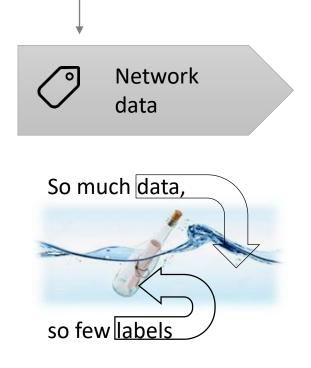
"Amount of time on Algorithm / Data : PHD = 90% / 10% Tesla = 20% / 80% "

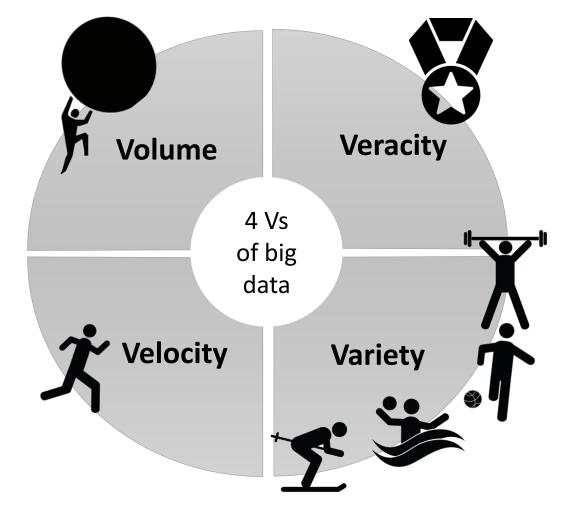
Andrej Karpathy (director of Artificial Intelligence & Autopilot Vision at Tesla)

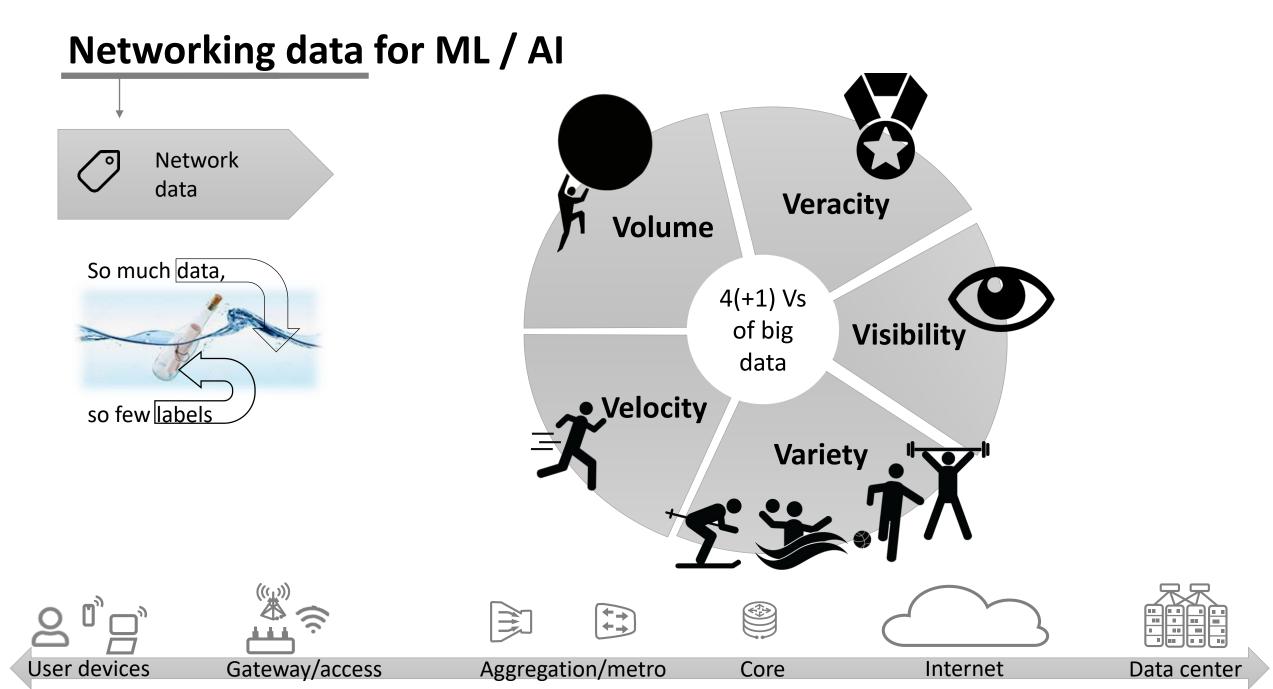
Agenda

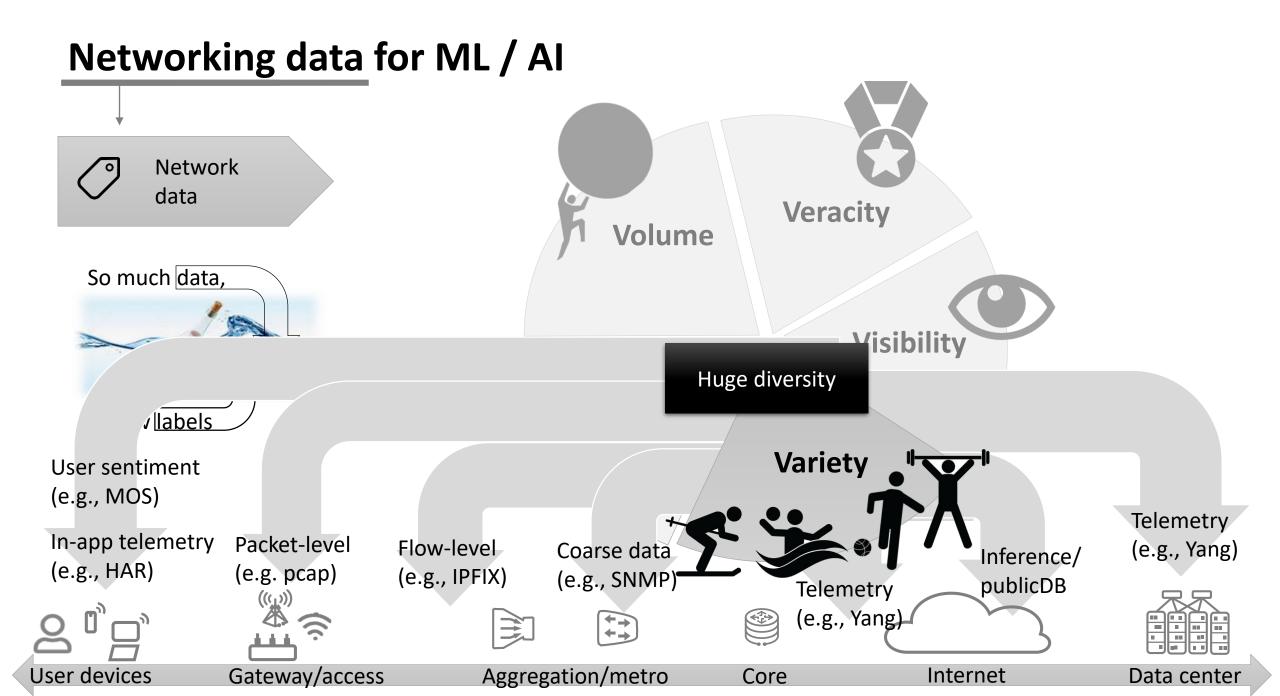


Networking data for ML / AI



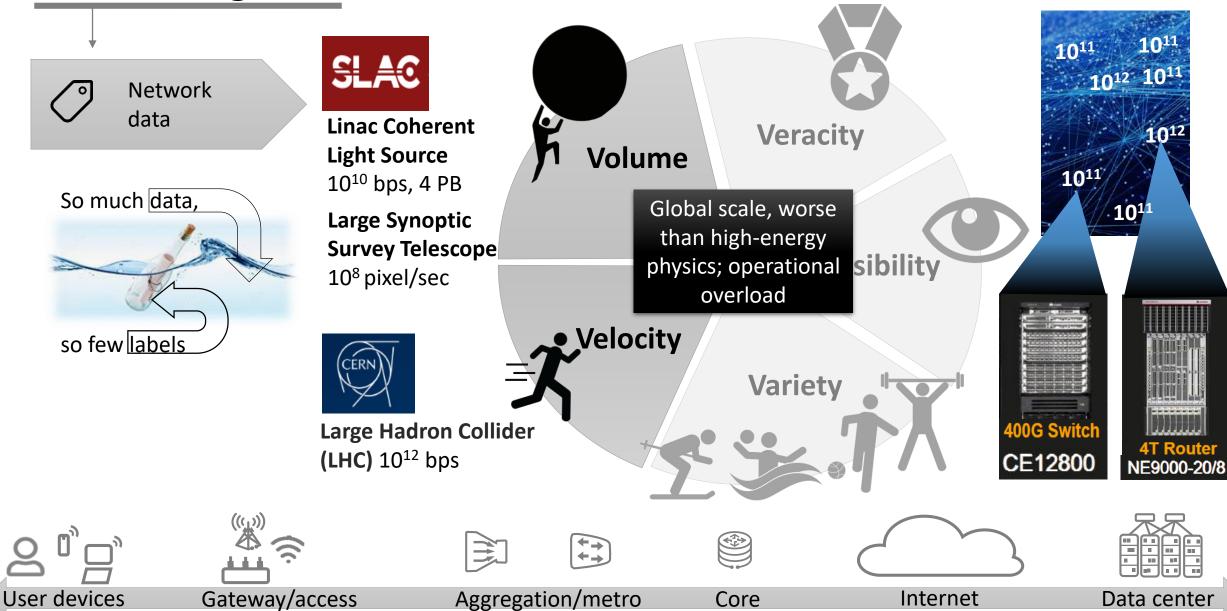


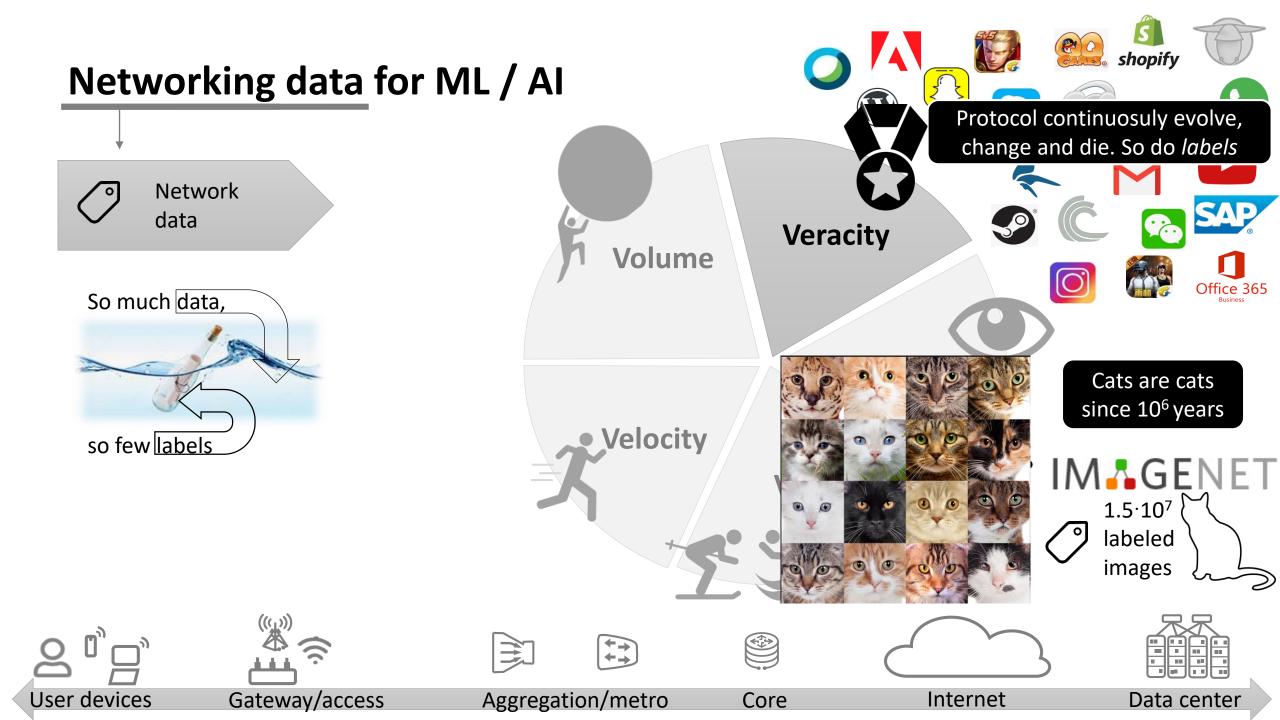


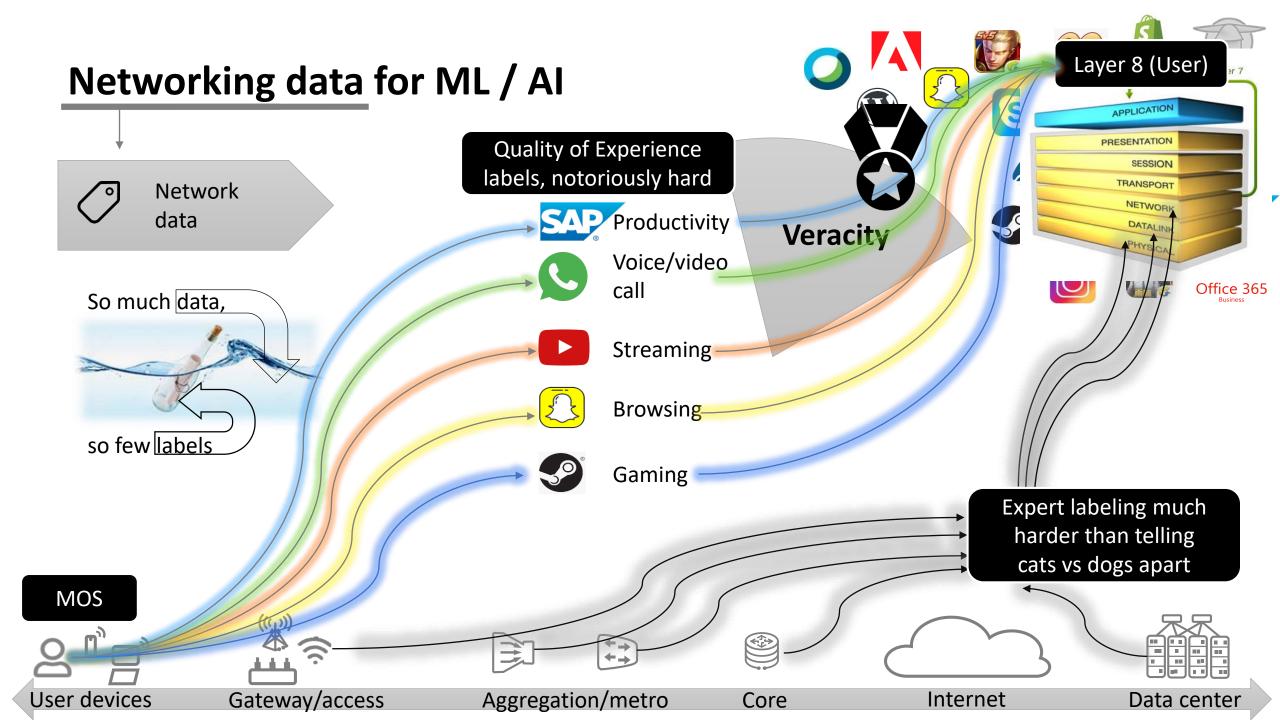


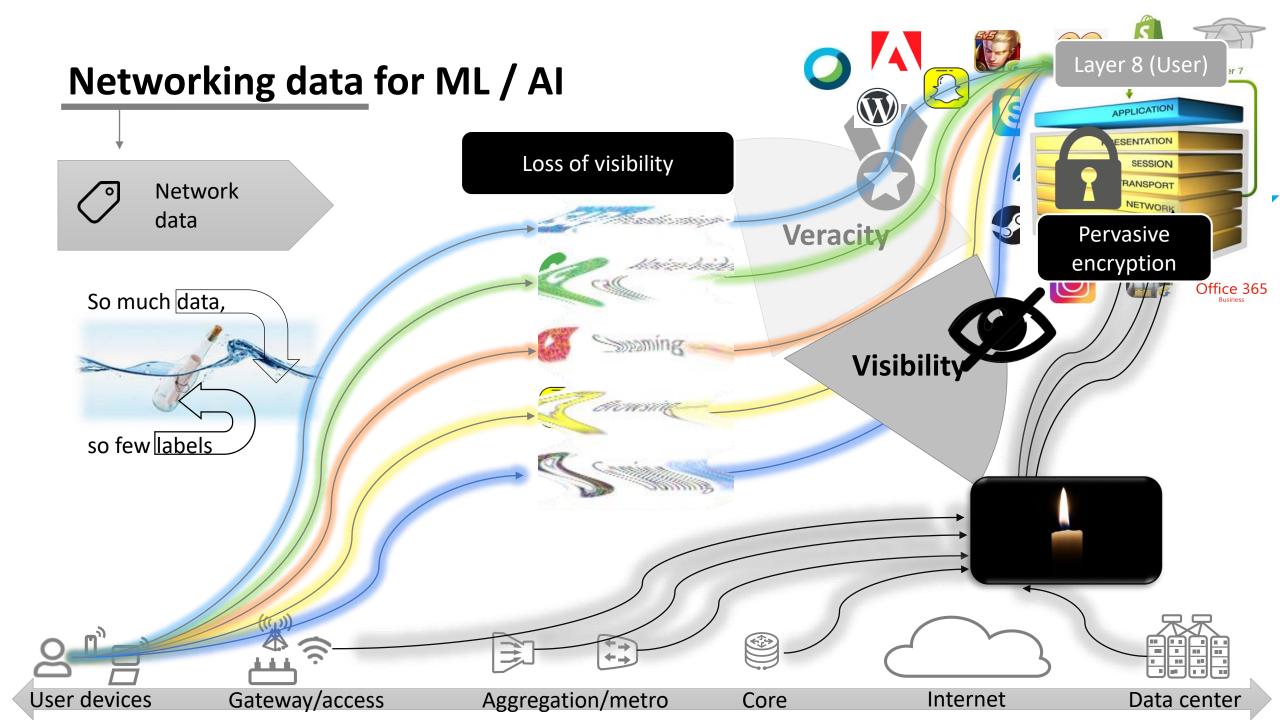
https://www6.slac.stanford.edu/research/scientific-computing https://home.cern/resources/faqs/facts-and-figures-about-lhc

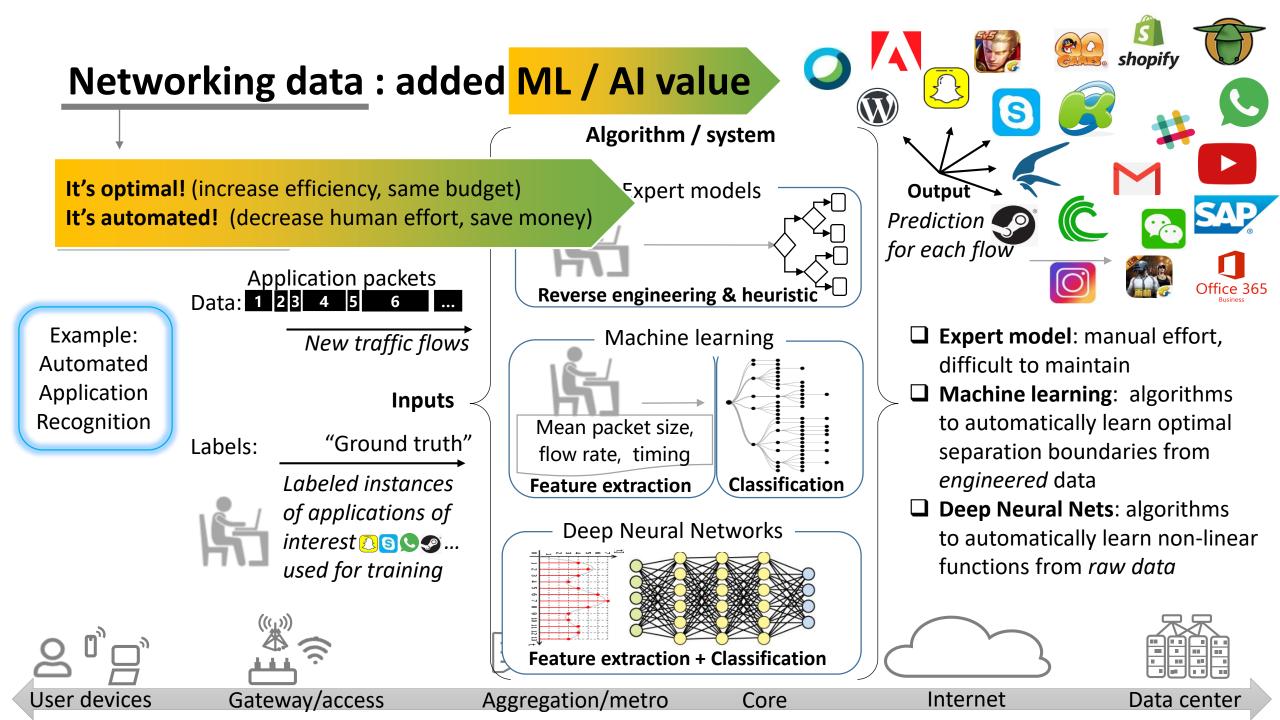
Networking data for ML / AI



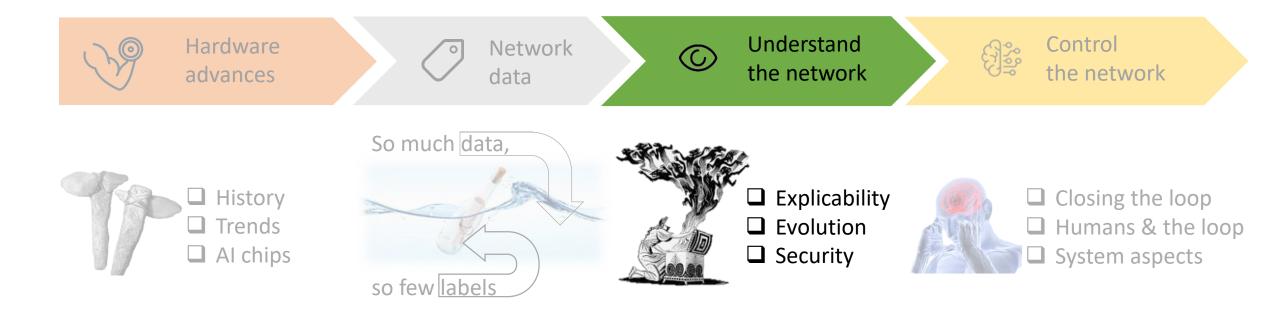








Agenda



Care about interpretability, not just performance as a black-box

Understand the network Some jobs will be lost, but humans operators will remain even with self-driving networks

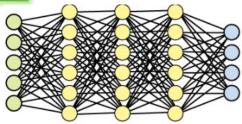
Explicability

Evolution Security

User devices

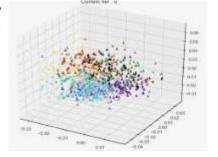
Several techniques inherently as efficient as obscure

- Convolutional Neural Networks
 - → weights of densely connected neurons?
- Support Vector Machines
 - → representative examples of each class?



Often difficult to explain results to a *domain expert*

- Dimensionality reduction (PCA / tSNE)
 - → very compact, but how to interpret?
- Outlier detection
 - → along which of the many dimension?



Gateway/access

Aggregation/metro

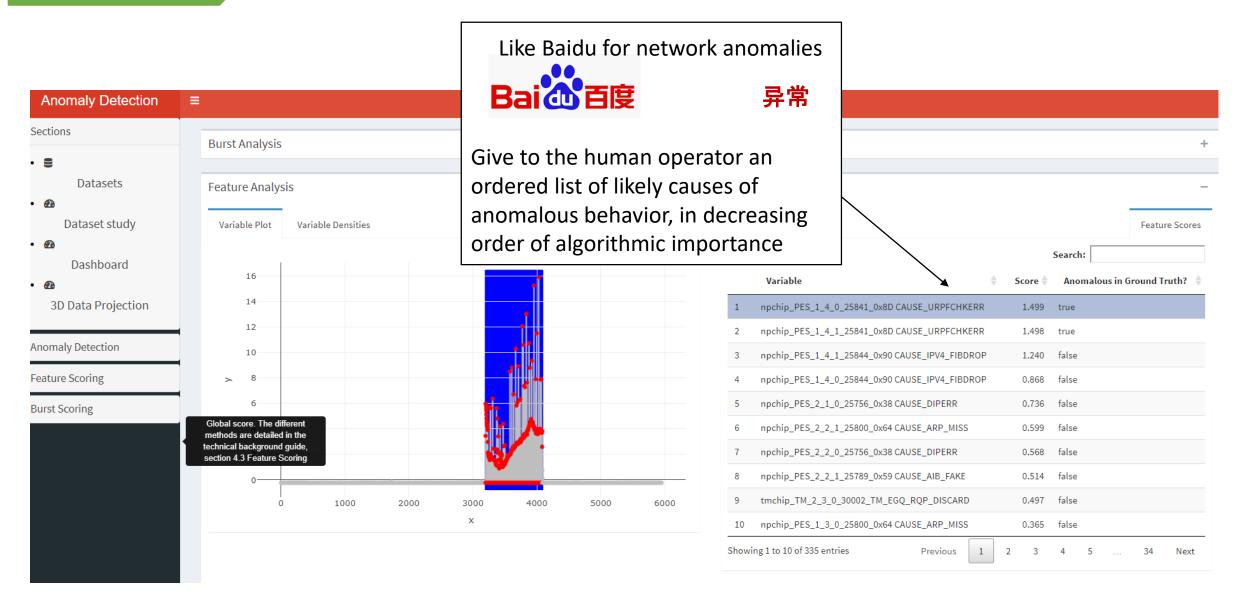
Core

Internet

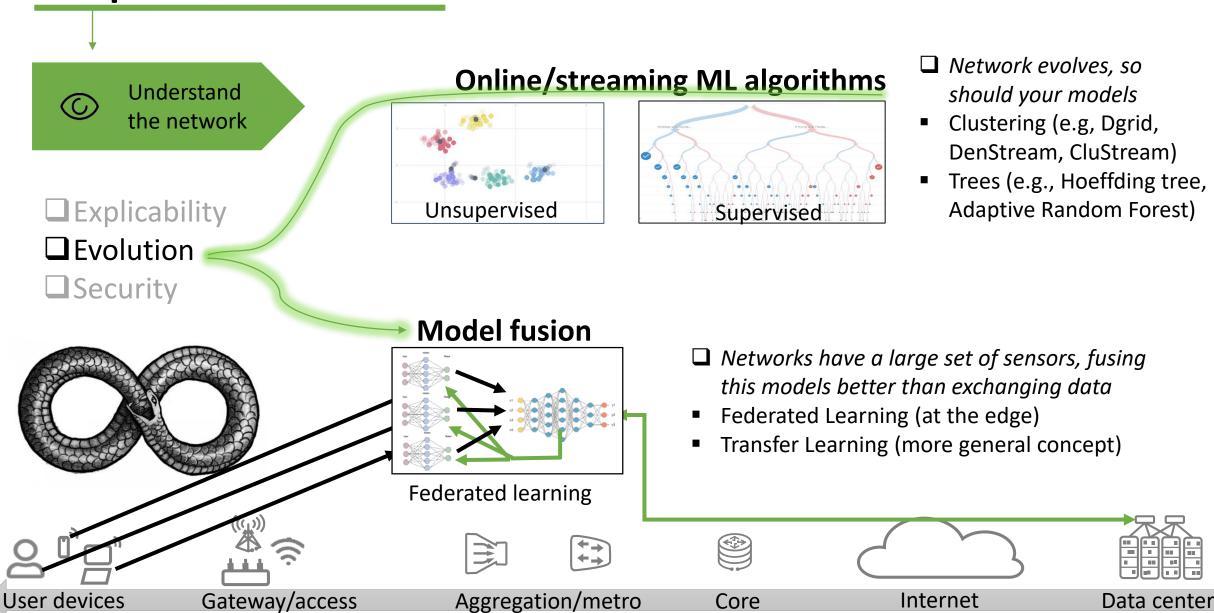
Data center

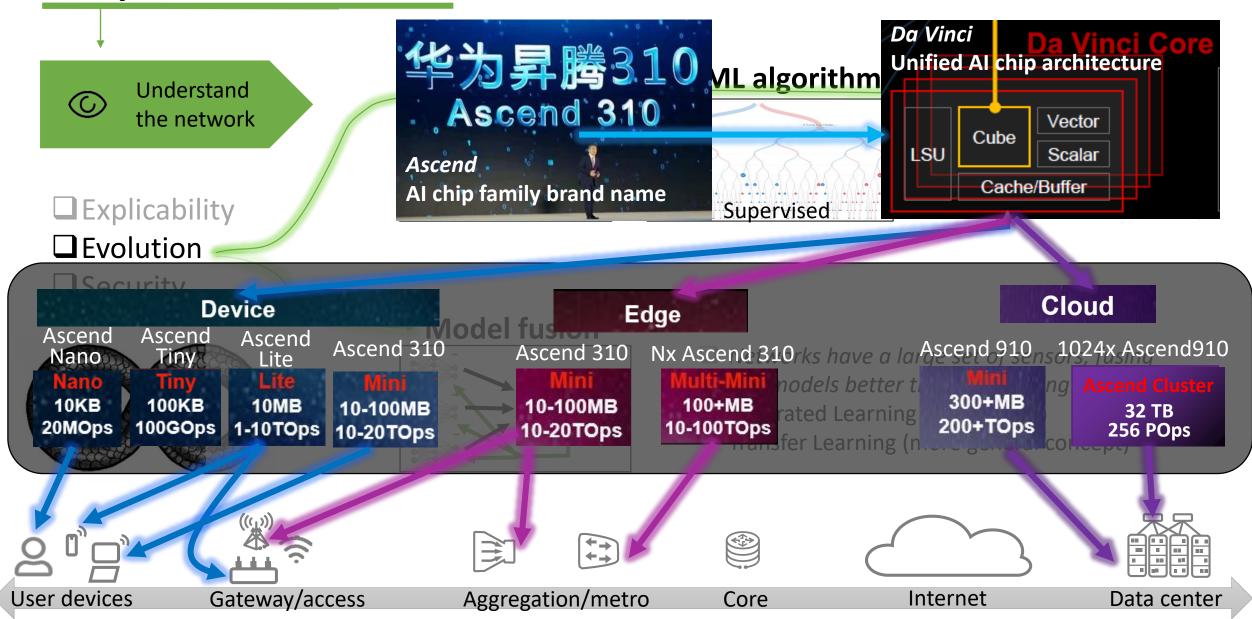
Human-readable anomaly detection

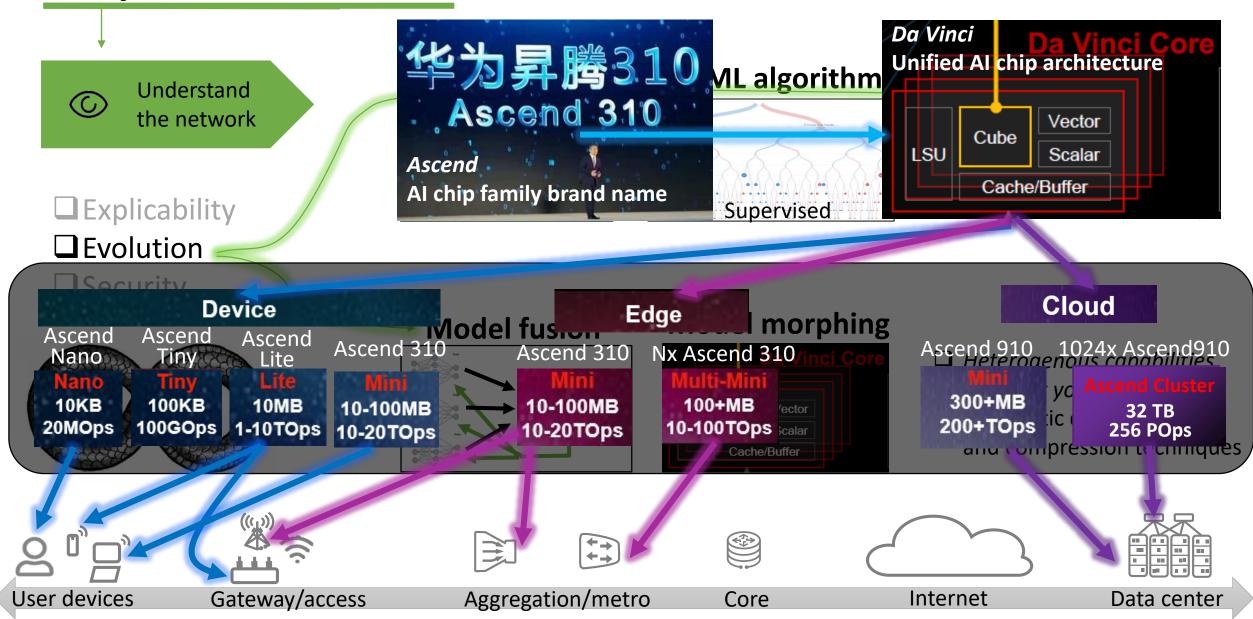
Example #1



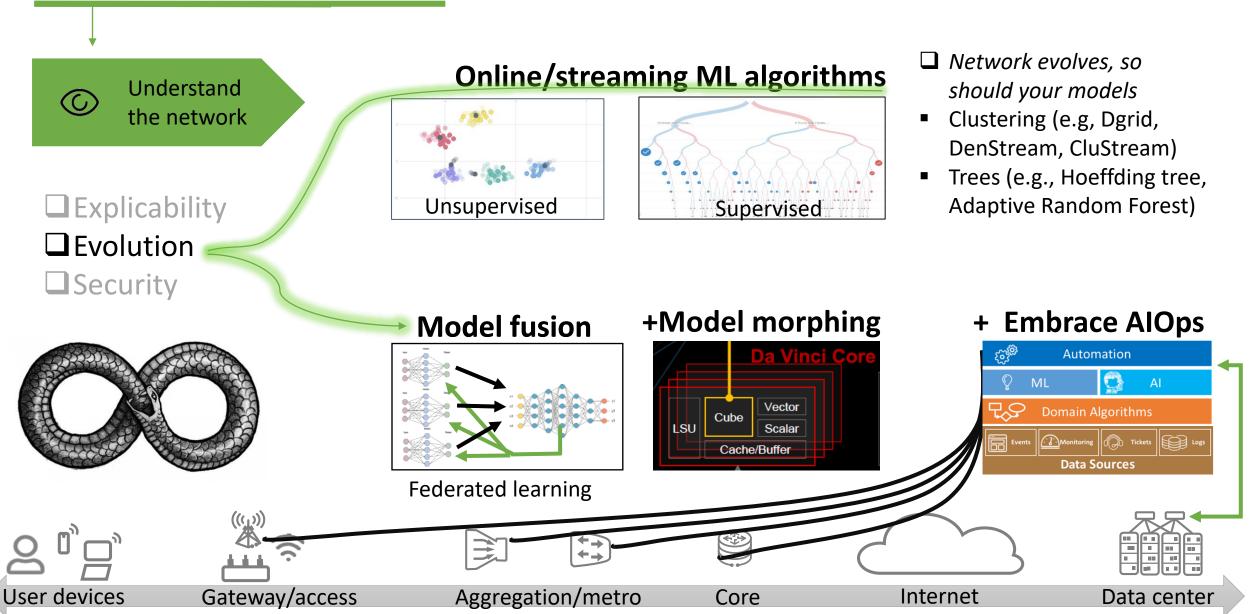
[INFOCOM'20] J.M.Navarro et al. <u>HURRA! Human-Readable Router Anomaly Detection</u> IEEE Infocom, Demo session



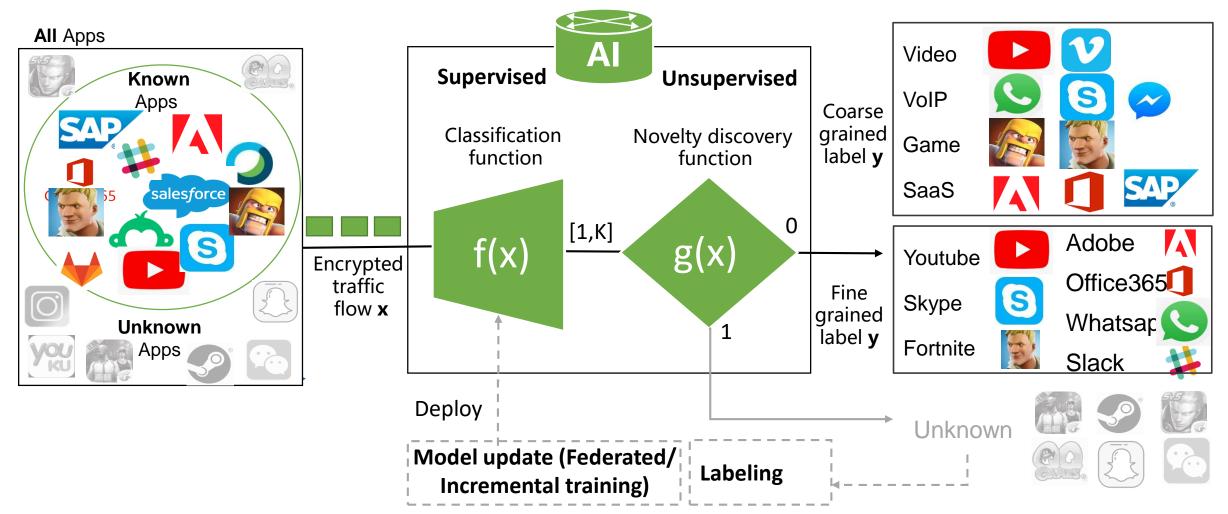




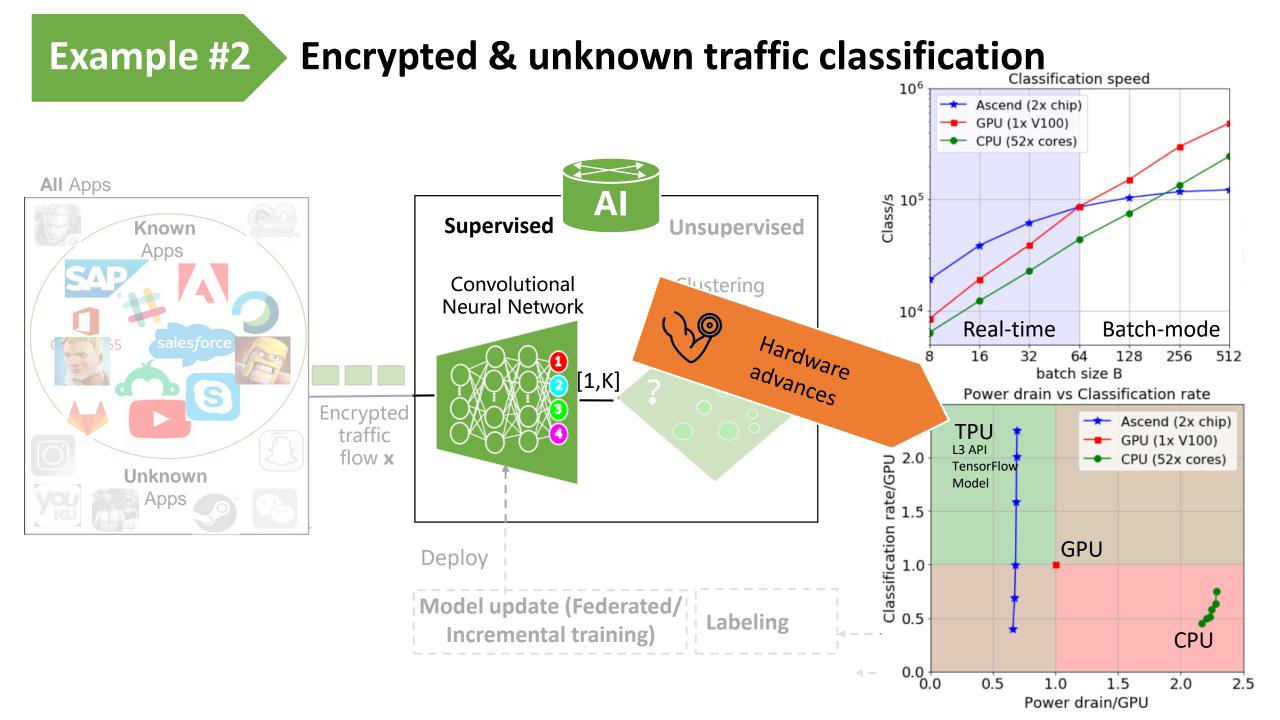
In ML, the journey matters more than the destination



Example #2 Encrypted & unknown traffic classification



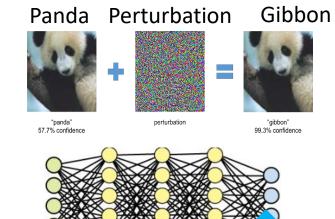
[IJCAI'20] L. Yang et al. <u>Heterogeneous Data-Aware Federated Learning</u>, International Joint Conference on Artificial Intelligence, FL workshop [INFOCOM'20] C. Beliard et al. <u>Opening the Deep Pandora Box: Explainable Traffic Classification</u> IEEE Infocom, Demo session

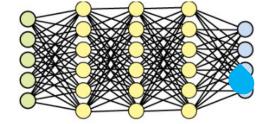


Gateway/access

Core

Just as network protocols, ML can (& will) be hacked





Internet

Data center

Understand the network

Explicability

Evolution

Security

User devices

 \mathbf{C}

ML Evasion

- Can happen locally, when a model is deployed
- **E.g.**, Adversary circumvents/alters traffic classification results by purposely altering its own features

Adversarial ML

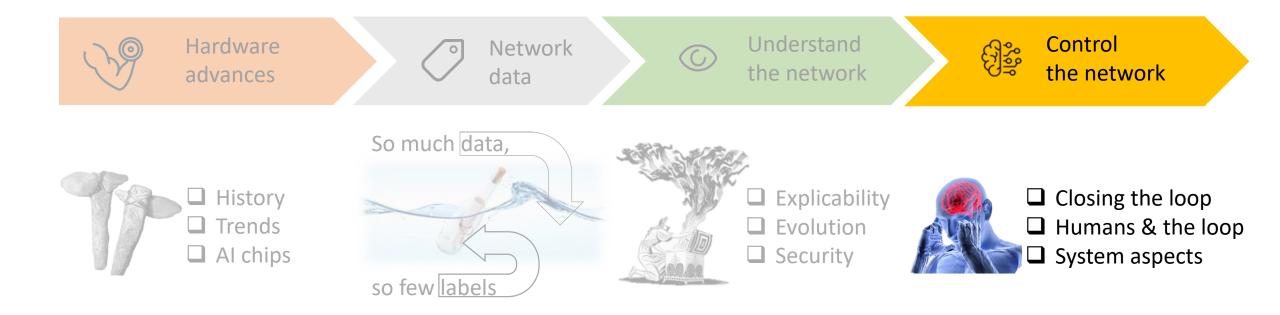
- Can happen for streaming techniques, during the learning phase
- Adversary alters the ML training process by purposedly mislabeling data, affects all systems

Leak of sensitive information

E.g, adversary extracts information from shared/accessible ML models

Aggregation/metro

Agenda

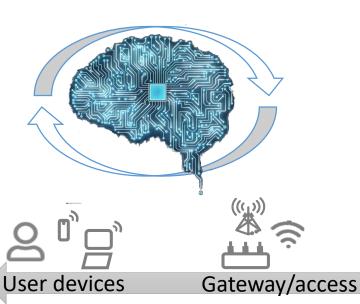


AI-powered networks

When closing the loop, mind the gap!

Control the network

Closing the loop Humans & the loop System aspects



Games (Go state space ~ 10¹⁰⁰)

- AlphaGo (10,000s of human amateur and professional games, 3 days training, 1920 CPUs, 280 GPUs, elo rating 3.16)
- AlphaGo Zero (simply plays against itself, 4 TPUs, 40 days to beat AlphaGo, achieving elo rating 5.16)/AlphaZero/MuZero
- □ Portability? Add one row 回 to the board !! Add a player !?

Networks (state space \mathbb{R}^N , with N>>100)

- Portability is essential: you cannot sell an AI product that will make performance *worse* for over a month !
- Results coupled with delay of telemetry, and delay to actuate actions in the controller
- Convergence speed matters ! for any techniques (Reinforcement learning, Deep reinforcement learning, Stochastic optimization, etc.)

Core

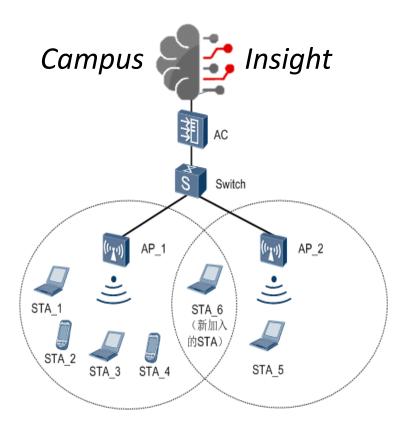
	2	\mathbb{Z}	\overline{X})
				Ē
t				Ŀ

Aggregation/metro

Internet

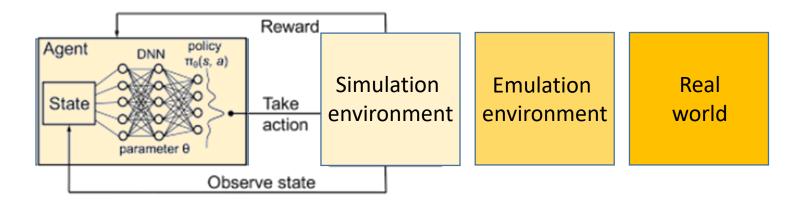
Data center

Example #3 WLAN traffic optimization



(Deep) reinforcement learning

Reward= f(T, Δ , QoE, I, RSSI, ...)

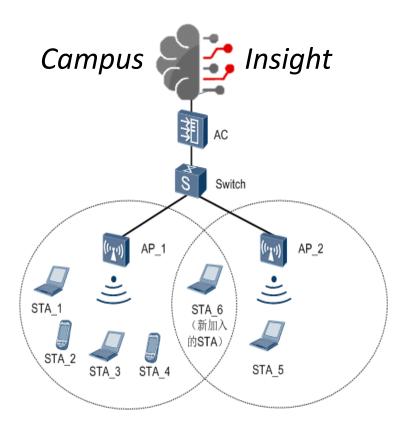


Speedup state exploration

Combine multiple environments

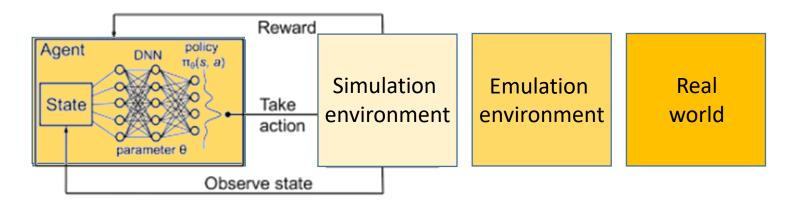
Simulation Emulation Real world

Example #3 WLAN traffic optimization



(Deep) reinforcement learning

Reward= f(T, Δ , QoE, I, RSSI, ...)

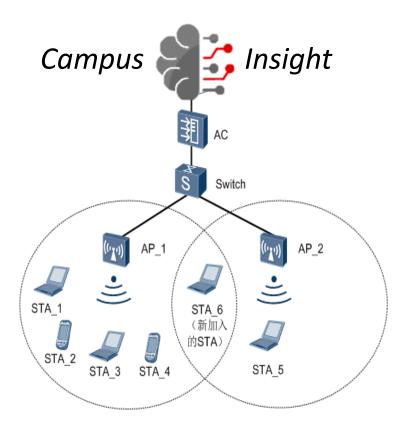


Speedup state exploration

Combine multiple environments

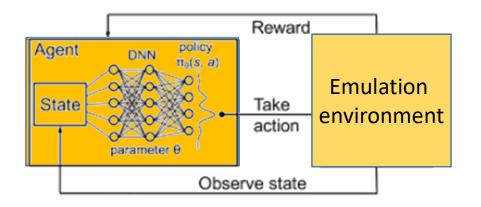
Simulation Emulation Real world

Example #3 WLAN traffic optimization



(Deep) reinforcement learning

Reward= f(T, Δ , QoE, I, RSSI, ...)



Real world

Speedup state exploration

Combine multiple environments

Simulation Emulation Real world

AI-powered networks

Keep humans in the (slow) loop, facilitate their interaction with AI

User devices

Control the network

Closing the loop Humans & the loop System aspects

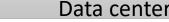
QoE driven network management

In most cases, users in the end-to-end loop
 Must avoid humans in the fast loop (else it breaks the autonomic paradigm)

Useful to keep humans in the *slow* loop (e.g. involve end-users to ensure AI controlled networks works better than before!)

Human-resilient Al

In most cases, human operators will not have a clue (or anyway will not be experts) of AI technologies
AI should be resilient in spite of poor/adversarial training, bad calibration, overfitting, unfairness, ...
Artificial intelligence must use techniques to be robust and survive in spite of human stupidity....

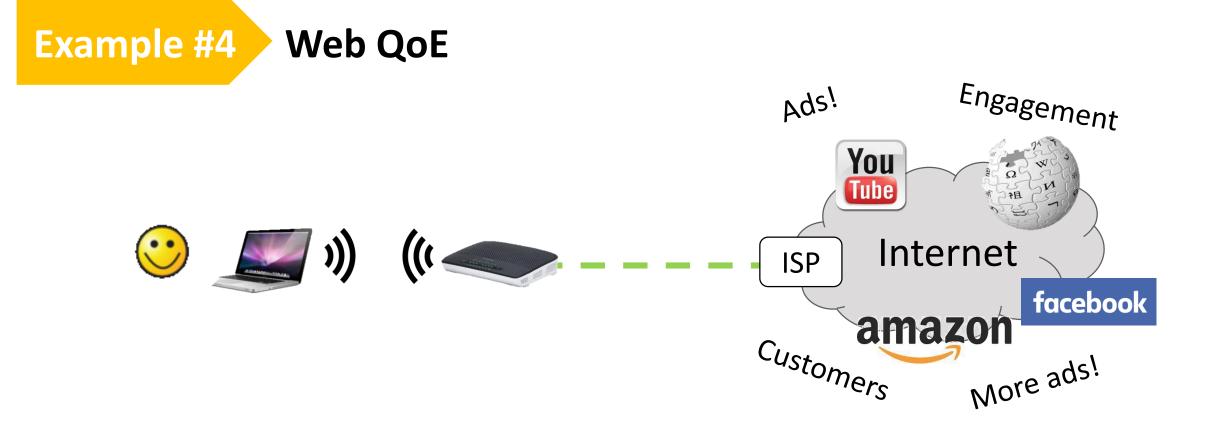


Gateway/access

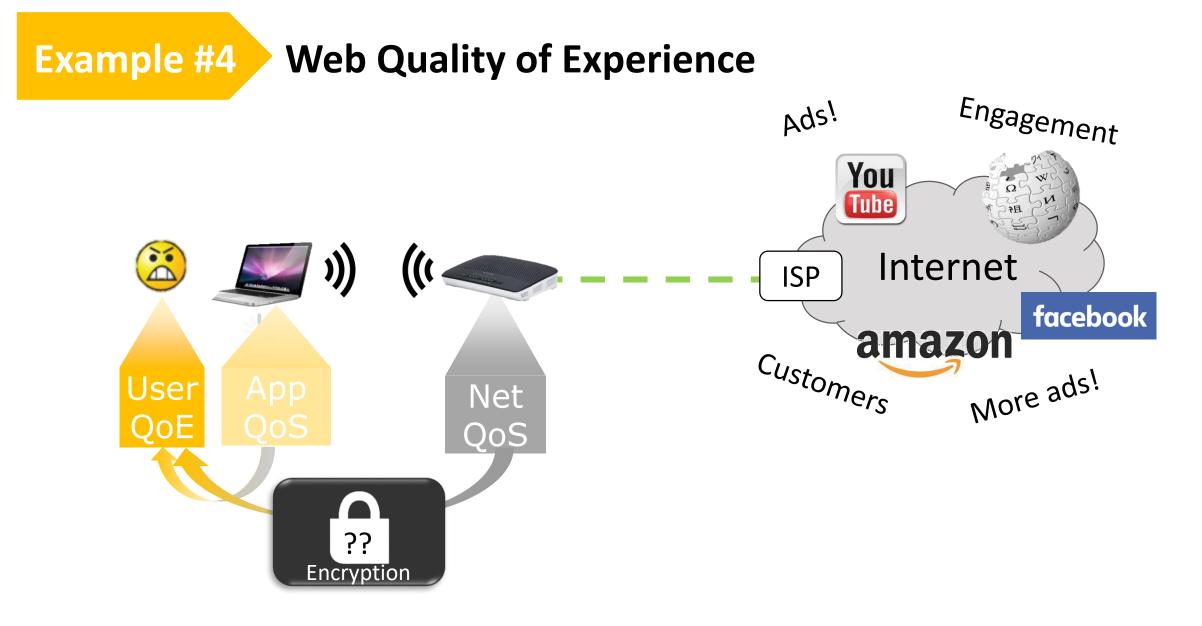
Aggregation/metro

Core

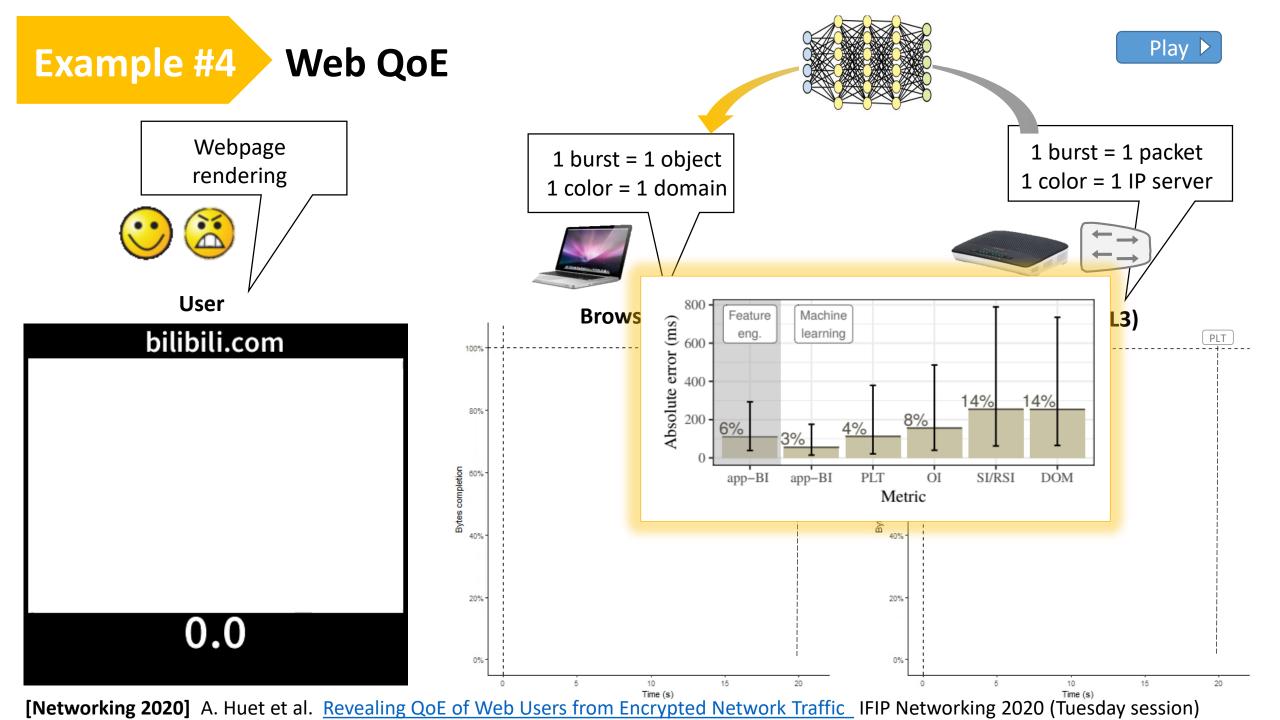
Internet

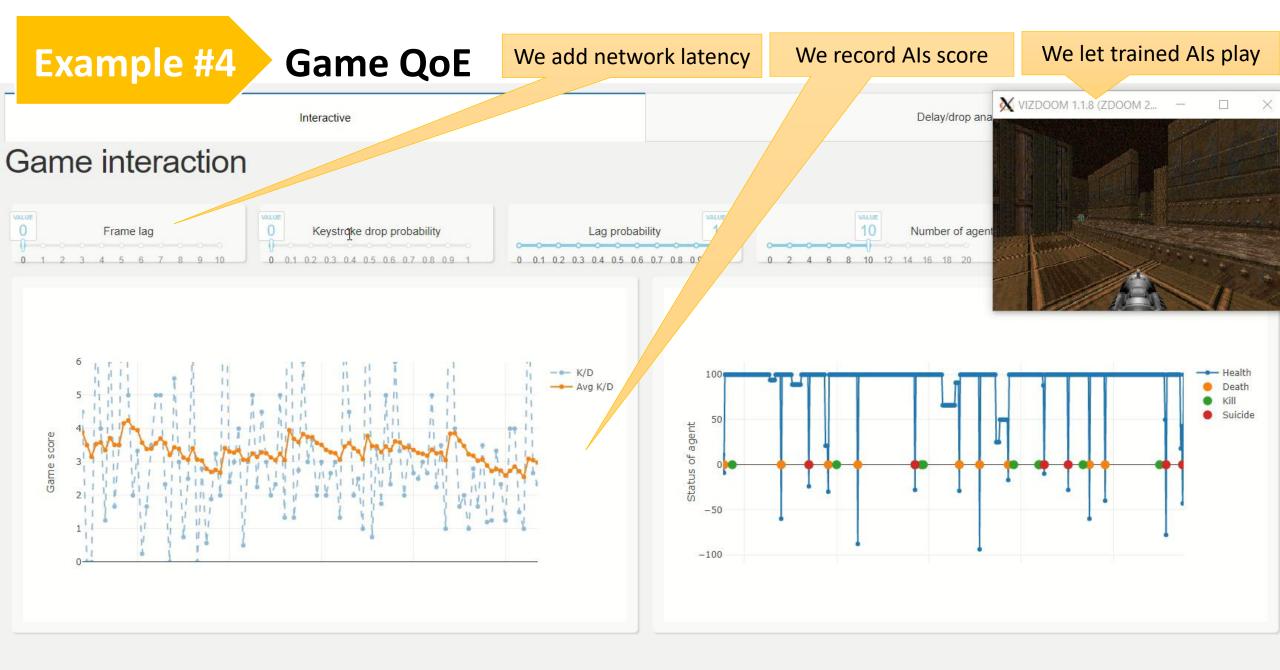


Offering Good user QoE is a common goal



Detecting/preventing user Q²⁸E degradation is important!





[INFOCOM'20] G. Sviridov et al., Removing human players from the loop: AI-assisted assessment of Gaming QoE IEEE INFOCOM Workshop + Demo

AI-powered networks

Statistical approach not a silver bullet. AI resource allocation !

User devices

Control the network

Closing the loop □ Humans & the loop **System aspects**

Gateway/access

Need for deterministic algorithms

- □ Machine learning is not a *silver bullet*:
 - ML accuracy 99.9% (dream model)
 - 100,000 configuration lines = 100 errors
 - Ops, the problem just got a worse nightmare
- Autonomus configuration must use formal models for rigorous and deterministic guarantees

AI-resource allocation

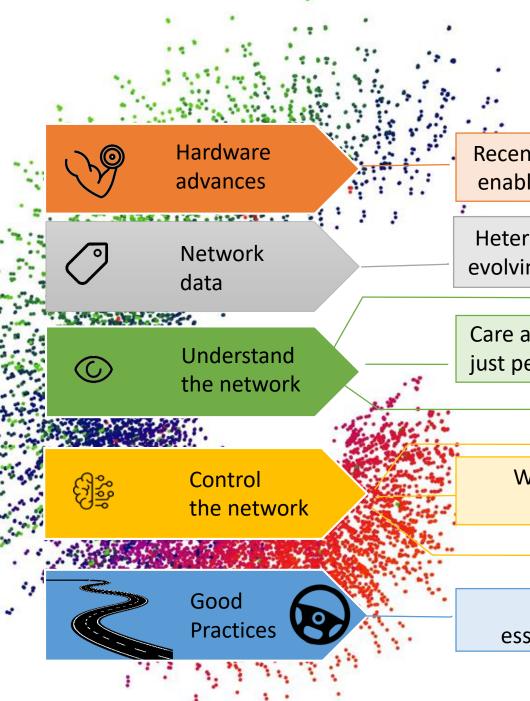
Aggregation/metro

Al powered chips extend the NFV resource allocation problem to a new dimension: the chip memory/processing resources! □ New tradeoff: chip memory/operations vs bandwidth □ New problems: how to split the in-network processing?

Core

Data center

Internet



Recent hardware advances true enablers of "edge intelligence"

Heterogeneous, asynchronous, evolving unlabeled massive data

Care about interpretability, not just performance as a black-box

When closing the loop, mind the gap!

IO data pipeline essential for AI in products

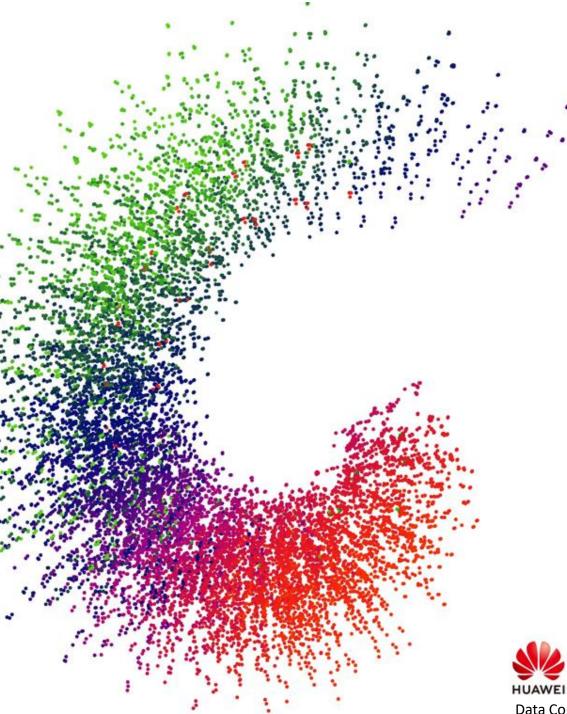
Takeway messages

In ML, the journey matters more than the destination

Just as network protocols, ML can (& will) be hacked

Keep humans in the (slow) loop, facilitate interaction with AI

Statistical approach not a silver bullet. Al resource allocation !



Dario Rossi dario.rossi@huawei.com https://nonsns.github.io Chief Expert, Network AI Director, DataCom Paris Lab

Thanks

Data Communication Network Algorithm and Measurement Technology Laboratory