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Abstract—The tremendous achievements of Artificial Intel-
ligence (AI) in computer vision, natural language processing,
games and robotics, has extended the reach of the AI hype to
other fields: in telecommunication networks, the long term vision
is to let AI fully manage, and autonomously drive, all aspects
of network operation. In this industry vision paper, we discuss
challenges and opportunities of Autonomous Driving Network
(ADN) driven by AI technologies. To understand how AI can be
successfully landed in current and future networks, we start by
outlining challenges that are specific to the networking domain,
putting them in perspective with advances that AI has achieved in
other fields. We then present a system view, clarifying how AI can
be fitted in the network architecture. We finally discuss current
achievements as well as future promises of AI in networks,
mentioning roadmap to avoid bumps in the road that leads to
true large-scale deployment of AI technologies in networks.

I. THE NEW GOLD

THE last decade has witnessed significant advances in
several fields where Artificial Intelligence (AI) has been

applied to – from image recognition, to natural language
processing and gaming to name a few examples. Such achieve-
ments are due to the fortunate confluence of several necessary
ingredients: namely, (i) exceptional theoretical advances in
the last 50 years, coupled to the availability of (ii) massive
volumes of data, and equivalently (iii) massive computing
capabilities. These achievements have gained significant press
attention, fueling the hype on AI techniques, and its expected
benefits. As a result, every technology sector joined this new
“Gold rush”, including the networking field, where AI is
envisioned on the long-run to fully manage, and autonomously
drive, all aspects of network operation [1].

At the same time, a significant fraction of AI projects are
difficult to transfer1 beyond the initial proof-of-concept. The
difficulty in successfully landing AI is overtly recognized
lately, and is technically rooted in either the lack of some
of the above ingredients, difficulty in integration, or other
non-technical aspects (such as company-level management
aspects including culture or talent [3] that we will not directly
discuss here). As “not all gold that glitters,” it is necessary
to understand what type of problems AI can solve, and how
AI solutions can be fit in the overall system: this is necessary,
in order for AI to really make the difference in a specific
technology field, such as the networking domain considered
in this paper, before the next AI winter.

1As Gartner put it [2], in 2020 “80% of AI projects will remain alchemy,
run by wizards whose talents will not scale in the organization”

A decade ago, Marc Andreessen was rightly anticipating
that “software is eating the world”: in the last decade, evo-
lution toward software enabled networking world to escape
ossification [4], and Artificial Intelligence (AI) software shows
the very same appetite for the next decade. Owing to growing
success of all-IP (2000-2010) and cloud-native (2010-2020)
networking technologies, IP-enabled communications are now
spanning a very large (and still growing) set of vertical sectors
and markets. To manage such a plethora of heterogeneous
services evolving at a fast pace, the network operation and
management (O&M) community has started turning its atten-
tion to AI, for relieving and assisting human operation for
diverse tasks (e.g., ranging from configuration, to dynamic re-
source management, troubleshooting and quality assessment).
In a field where a significant fraction of the operations are still
involving human intervention, and where such intervention are
also responsible for a significant fraction of the errors, AI
seems an appealing means to immediately automate part of
these manual tasks (e.g., from configuration, to fine-grained
resource management at very fast timescale, troubleshooting
guidance and quality forecast) and later reach fully automated
and error-free (or at least self-healing) operations.

Clearly, the evolution of the network O&M to a fully
autonomous driving network (ADN), cannot be done overnight
due to technical challenges, adoption barriers and legal aspects
(e.g., liability). Pragmatically, our vision is thus for AI to
replace human hands in the fast loop, but not fully supplant
humans which is essential to keep in the slow loop. Taking
the viewpoint of an equipment vendor, this paper illustrates
the current status of network AI, enriching the narrative
with examples of research results and successful deployments,
and lays out the necessary steps for reaching higher level
of autonomicity and intelligence in computer networks. We
instead disregard technology aspects, that are well covered by
a complementary industrial viewpoint in [5], and methodolog-
ical aspects, for which we refer the reader to [6]–[9].

The rest of this paper is organized as follows. Sec. II briefly
introduces AI, and Sec. III overviews AI challenges on the
network domain, putting them in perspective against other
fields where AI has been successful. Sec. IV then introduces
the key aspect of the Autonomous Driving Network (ADN),
examine its architectural, hardware and software needs with
a focus on AI-related aspects. Finally, Sec. V overviews
illustrative examples of how AI can be successfully landed
in current networks, while Sec. VI discusses open and future
challenges on the path towards the ADN.
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II. WHAT IS AI, AND WHY IT MATTERS ?

As AI has recently become an abused term, and given that
the very same definition of AI is constantly redefined2, we
briefly introduce it here what we consider to be the set of AI
techniques that will constitute ADN’s basic building blocks.

A. Brief history of AI & ML

As visually depicted in the top part of Fig.1, the history of
AI & ML can be traced traced back to Alang Turing’s work
in the early 1950s with the basis of Neural Networks (NN),
as well as the terms Artificial Intelligence (AI) and Machine
Learning (ML) introduced during that decade3. Clearly, AI/ML
techniques have evolved significantly since then: as for many
scientific fields, their evolution has been shaped by “hype”
cycles, where peaks of attention and spending sprees (known
as “AI springs”) were followed by periods of disengagement
and funding cuts (known as “AI winters”, in the late 70s and
late 80s). While the network community pioneered the use
of AI as early as in the 70s [12], many of the now popular
branches of AI, such as Deep Learning (DL) and Data Mining
were introduced in the last AI spring4.

B. Crude taxonomy of AI & ML

As AI is again reaching very high hype levels, it is a valid
question to ask which AI techniques, and to what extent, can
be successfully landed in the network field before the next
“ice age” of AI. In the context of this paper, we are not
interested in establishing a rigorous taxonomy of AI & ML
techniques. Still, given that these terms have been abused up
to being the target of popular jokes [14], it is useful for clarity
(and simplicity) to refer to a (crude) taxonomy reported in the
bottom of Fig. 1. For the scope of this paper, we restrain the
focus to techniques that belong to the data-driven branch of
AI that is also known as ML. By abuse of language, we will
use the two acronyms interchangeably in the following.

From a very high level, the purpose of ML can be either
to (i) make effective use of existing knowledge, or (ii) gather
structured understanding on unknown phenomena, as well as
(iii) learn to achieve a goal. Roughly, these purposes directly
map to three branches of ML that are respectively known as (i)
supervised, (ii) unsupervised and (iii) reinforcement learning
– though blending among categories is possible (e.g., semi-
supervised or self-supervised learning). While a more detailed
and comprehensive taxonomy is out of scope, examples of
relevant techniques for each branch are provided in the bottom
of Fig. 1. Oversimplifying, many (though not all) of the ML
techniques are principled and efficient way to solve complex

2Due to the well known “AI effect”, as soon as AI successfully solves a
(narrow) problem, the problem is no longer considered a part of (general) AI.

3AI was first mentioned in the 1955 Dartmouth Summer Research project
co-led by John McCarthy; the basic building blocks of NN, i.e., the Perceptron,
was introduced in 1957 [10]; ML was first mentioned in 1959 by Arthur
Samuel related to a computer program learning to play checkers [11]

4Deep learning (DL) was first mentioned in 1986 by Rina Dechter and
Knowledge discovery in databases (KDD) in 1989 by Gregory Piatetsky-
Shapiro; interestingly, it is not until the early 2000 that DL was used in
association with NN, while the first breakthrough of Deep Neural Networks
(DNN) in the field of computer vision [13] had to wait another decade.

Fig. 1. Brief history and crude taxonomy of AI.

optimization problems, offering solutions that are well suited
for the data at hand (i.e., fit well), but are also amenable
to generalization (i.e., avoid overfitting). This constitute part
of the reasons of ML success in several fields, and makes it
practically appealing for the network domain too.

C. Example of AI success

The most recently hyped examples of success in the current
“AI spring” pertain to areas such as computer vision, game-
playing and natural language processing.

Image recognition attracted significant attention not only as
being among the first key success of Convolutional Neural
Networks (CNN) [13], but also e.g., in reason of the power-
ful Generative Adversarial Networks (GAN) [15] underneath
the (in)famous DeepFakes technologies [16]. In the game-
playing context, Deep Reinforcement Learning (DRL) has
been instrumental in achieving super-human playing abilities,
with e.g., Google’s AlphaGo [17] beating the go board game
world champion Lee Sedol, or OpenAI Five [18] winning
the online computer-game DOTA2 tournament. In natural
language processing, self-supervised neural embedding (e.g.,
word2vec [19]) and few-shot transformer technologies [20]
such as OpenAI GPT3 [21] have gained significant traction
lately.

As we illustrate in Sec.V, communications and computer
networks are one among the numerous other domain of
applications (biology, medical field, robotics) that is currently
exploring the use of AI techniques in many aspects of its
operation.
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III. LANDING AI ON NETWORKS

To replicate AI success in other fields, it is necessary to
first understand their root cause: we thus start by dissecting
AI successes, to draw informed conclusions for the ADN.

A. Roots of AI success.

Without willing to undermine the significance of AI
achievements, we remark that recent advances have equally
benefited from: (i) ground-breaking advances in ML theoretic
research, (ii) the availability of large corpora of (labeled) data
to fed ML models with, and (iii) the availability of software
platforms that efficiently exploit hardware acceleration. Two
observations are worth sharing: on the one hand, whereas the
latest wave of AI success essentially involve DNN technolo-
gies, this is clearly not the first time that AI accomplishes
similar prowess; on the other hand, this AI spring may be the
first time at which time is ripe for advances in all (i), (ii) and
(iii) aspects. Aside from the above technical aspects, success
also depends on (iv) business considerations.

Theory. The latest AI spring yielded to numerous theoretic
advances. The most visible ones, in reason of their recent hype,
involve theoretic advances of Deep Neural Networks [22],
for which Y. Bengio, Y. LeCun and G. Hinton were recently
distinguished with the 2018 ACM Turing award. Other equally
important advances include such as the ensembling of several
“weak” classifiers – that become widely known after the
popular Netflix-prize [23]. Ensembles are now state of the
art for many supervised [24], [25] and unsupervised [26]
tasks. Similarly, advances in causal reasoning capabilities [27]
for which J. Pearl has been credited the 2011 ACM Turing
award, are perhaps less known to the broad public, but equally
relevant. Finally, more prospective advances (e.g., spiking
neural networks [28]) are under way, but are in still early
stage of development so they can be expected to have a deeper
impact on longer time horizon.

Hardware and software. Ultimately, theoretical advances
are distilled in algorithms, for which hardware and software
engines running them are equally important. From a hardware
viewpoint, DNN have benefited from the emergence and
commoditization of hardware acceleration such as Graphic
Processing Units (GPUs). A further evolution is the emer-
gence of domain-specific architectures (DSA), that are well
discussed by J. L. Hennesey and D. Patterson, in their 2017
ACM Turing award inaugural lecture [29]: Tab. I reports
examples of DSAs for NN acceleration. Worth mentioning
are advances on binary [30] and xor [31] neural networks,
as well as neuromorphic processors [32] for spiking networks
acceleration, of interest on a longer time horizon. The avail-
ability of software stacks able to efficiently leverage the above
hardware in a seamless manner, jointly providing a unified and
complete environment is key to to lower bootstrap cost of AI
in any field, as well as to facilitate transfer. Popular stacks
include Google TensorFlow [33], Huawei MindSpore [34],
Telsa Pytorch [35] for neural network, and Scikit-learn [36],
for general workflows. These stacks offer the ability to rapidly

TABLE I
GENERIC CPU, GPU VS DOMAIN-SPECIFIC HARDWARE ACCELERATORS

Vendor Product Target Processing Power
[TOPS] [TFLOPS] [W]

ARM Cortex A72 [37] Edge CPU n.a. 0.03 0.75
Google Coral.AI [38] Edge DSA 4 n.a. 2
Huawei Ascend310 [39] Edge DSA 22 11 8

Intel Xeon 8280 [40] Cloud CPU n.a. ≈ 2 205
NVIDIA P100 [41] Cloud GPU n.a. 5-21 250
Google TPUv3 [42] Cloud DSA n.a. 420 ≈ 300
Huawei Ascend910 [43] Cloud DSA 640 320 310

prototype in high-level language, with Python commonplace
now in the scientific workflow, and have optimized backends
seamlessly supporting hardware acceleration – significantly
lowering the entering barrier with respect to the more scattered
situation of just less than a decade ago.

Data (and environment). The third key of success has been
the availability of large datasets (or controlled environments).
For instance, MNIST [44], CIFAR [45] or ImageNet [46],
that overall comprise tens of millions of images for tens
of thousands of classes, have been instrumental to fuel ad-
vances in image recognition [13]. Similarly, recently hyped
advances [21] in NLP relied on hundred billions of text tokens
corpus such as Common Crawl [47]. Even in lesser mass-
mediatized fields such as computational biology, it is fairly
well recognized that astonishing advances [48] would not have
been possible without 50 years of expert-driven labeling work
on protein unfolding. In the reinforcement learning branch
of AI, one or more agents interact with an environment to
learn a successful strategy, by enforcing actions that alter
environmental responses. In this playground, OpenAI Five [18]
learned by playing over 10,000 years worth of games against
itself and AlphaGo-Zero [17] was trained with 29 million
games of self-play during 40 days using 4 TPUs. Clearly, the
ability to super-scale the exploration of the action space in
a faster-than-real-time yet realistic-enough environment has
been crucial to achieve such results.

Business (and beyond). Concurring in the ultimate success
of a technology are also non-technical aspects, which are at
least worth mentioning. For instance, for AI to be successful,
it needs to solve an open (or otherwise unsolvable) problem,
or solve it in a (significantly) more cost-effective way. By
rephrasing Hockam razor, we may consider that if simpler
solutions are available yielding good enough results at a
fraction of the cost, then the simpler solution will be adopted
(e.g., as it happened for the winner solution of the Netflix prize
[23], that was finally not deployed). Organizational aspects
are complementary and equally relevant: these include, the
availability of AI profiles (data scientist, data engineers), and
the culture of the enterprise (e.g., the amount of effort in
collecting, sanitizing and treasuring the data). These aspects,
which we will not discuss these aspects in this paper for space
limit, are surveyed e.g., in [49], [50].
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B. Replicating AI success in Networking domain

We now re-examine the same categories from a networking
perspective and more particularly from an “AI for networks”
angle5, i.e., discussing how AI can improve network Operation
& Management (O&M).

Theory. Fortunately, the greatest inventions6 of our time has
democratized access to knowledge: as such, all AI advances
can be readily used in the network field. Clearly, whereas many
of these recently hyped success involve DL technologies, it ap-
pears evident that also any of the lesser-hyper AI technologies
reported in Fig.1 is still worth considering from the viewpoint
of an AI-fueled autonomous driving network. Purposely, we
later (cfr. Sec.V) report on successful network O&M applica-
tion using AI techniques spanning all AI branches.

Hardware and software. The set of hardware accelerator
and software stacks just introduced for the general AI case,
undoubtedly facilitates development and execution of AI work-
flow for network as well. At the same time, whereas Cloud-
native workflow can expect to find GPUs or high-end TPUs
of Tab.I, many of the network operations will need to be
carried out without having access to cloud resources. Similarly,
whereas the factor form and their power drain of some TPU
chipsets (eg. Ascend310 or Coral.AI) are small, however this
does increase Capex (for the new chip) and Opex (higher
computational cost, albeit small, for the new AI feature). As
such, whereas SmartNICs equipped with such powerful AI
accelerators start to appear [51], it is difficult to predict yet
how much they will be widespread. As such, a safer bet is to
also consider an AI workflow that can exploit AI acceleration
if available, but that otherwise should be lean enough to run
on standard CPUs (e.g., as for the case of ARM, using in this
case software acceleration libraries such as armNN [52], that
can seamlessly support Cortex-A CPUs and Mali GPUs).

Additionally, to optimize communication between CPU and
the GPU/TPU boards/chipsets, GPU and TPUs are designed
for batch processing, with furthermore relatively large batch
size of several thousands elements – which is in contrast
with the needs of typical network workflow. Indeed, while
networks stack employ batch processing for packet-level op-
eration [53], the size of batches is one to two orders of
magnitude smaller. Additionally, in typical networking use-
cases, most AI processing should happen instantaneously, i.e.,
with batch size equal to 1. Considering for instance per-flow
decisions, it appear inconvenient to batch AI processing across
multiple flows: e.g., waiting for the arrival of several flows due
to batching would require buffering traffic, couple decisions
and delay application of AI-driven policies. Fortunately, the
emergence of stacks such as TensorFlow-Lite (TFL) [54], or

5We point out that, in reason of AI success, an equally important viewpoint
that research has considered is “networks for AI”, i.e., how networking
techniques can make AI workflow more efficient, where AI becomes thus a
networked application – which we instead disregard due to space constraints.

6The foundation of the TCP/IP architectural principles of the Internet is
traced back to mid 70s, for which V. Cerf and B. Kahn were credited with
an ACM Turing award in 2004. Similarly, the foundation of Internet’s most
successful application, i.e., the World Wide Web, is traced back in the late
80s, for which T. Berners-Lee was an ACM Turing award in 2017.

more recently TensorFlow-Lite micro (TFLM) [55], makes
it easier to run proof-of-concept AI models on constrained
devices and CPUs that are pervasive in network equipment.
Shortly, we argue that due to the KISS principle, AI solutions
that are excessively computationally costly are not going to
be successfully landed in networks – an aspect worth further
attention that we thus consider in the following discussion.

Data (and environment). Unconstrained access to high qual-
ity data, which is key for accurate models with good general-
ization capabilities, is a known problem across all AI domains
of applications [56], and networking is not an exception.
Interaction with an environment in a closed learning loop
further exacerbates the problem.

Considering data for the sake of simplicity, in terms of
volume and velocity, it is sufficient to recall that the data rate
of a single ToR switch is higher than the high-volume physics
collected by Stanfords’ Large Synoptic Survey Telescope [57]
or CERN’s Large Hadron Collider (LHC) [58]. Additionally,
if the widely popular Moore law postulated a exponential
growth in the computing capacity, the lesser known but equally
important Gilder law observes that “Bandwidth grows at least
three times faster than the compute power”, i.e., making the
matter worse than in other fields. In terms of variety, network
data is extremely scattered, multi-modal, heterogeneous, more
than what typically happens in domains such as image or
natural language processing. Therefore, a standard and homo-
geneous data representation would significantly facilitate AI
application in network. Furthermore, such heterogeneity make
AI generalization capabilities of paramount importance.

Finally, in terms of veracity, it appears evident that whereas
other fields have crowdsourced, amassed and shared large
datasets, the networking field is lagging far behind. This is
due legal/business constraints on data sharing on the one
hand (see Sec.VI-A), and on the intrinsic difficulty of the
labeling task on the other hand. For instance, for image or
NLP use-cases industries are either crowdsourcing labeling to
the whole population of Web users (e.g., where every day
an estimated 500 years of manpower [59] is used to solve
CAPTCHA puzzles to identify buses, cars and pedestrian
in images, for training the future generation of self-driving
vehicles), or directly recruiting human labor (e.g., speech
recognition for digital personal assistants employs significant
amount of human labor [60] at all steps, including to sanitize,
verify and validate transcriptions). Conversely, labeling of,
e.g., network anomalies, or identification of their root cause,
or encrypted application traffic, is significantly more difficult
to crowdsource as it requires skilled workers, which makes
labeling cost higher.

On the one hand, we remark that a number of techniques and
good practices can help with data-related (e.g., few-shot [61]
or active [62] learning techniques both help reducing the num-
ber of labels) and environment-related (pre-train models for
transfer learning and fine-tuning in the real-environment [63])
problems. On the other hand, we stress that AI solutions
that are unable to seamlessly generalize are not going to be
successfully landed in networks either – a second aspect worth
considering.
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Business (and beyond). There are numerous non-technical
reasons that can affect the ability to transfer AI success to
the network domain: [49] identifies for instance the relevance
of the business case as the paramount problem for transi-
tioning from research to successful deployment. While this
paper mostly focuses on AI from a technical viewpoint, first
discussing how AI fits in the network architecture (Sec.IV) and
next introducing examples of AI usage in current networks
(Sec.V), we will also devote space to discuss legal aspects
(Sec.VI-B) and human interaction (Sec.VI-C).

IV. ANATOMY OF AN AUTONOMOUS DRIVING NETWORK

While the specific domain of application of AI in networks
are very diverse (e.g., from fiber/WiFi/5G/6G access, from
campus to WAN and data-center networks to name a few)
we can identify commonalities across all these different en-
vironment. Indeed, while the resources to manage and the
goal of their management differ across the environments, we
argue that the underlying family of AI algorithms to empower
the current and future generation of networks and protocols
are similar, can be fit in a single unified architecture. Our
aim in this paper is not to present fully-fledged architectural
details, which is the goals of standardization fora7. Rather,
this sections aims at introducing the “DNA of the ADN”, i.e.,
the broad architectural principles and the key hardware and
software building blocks of the autonomous driving network.

A. Three-tiered Network AI Architecture

The ADN comprises several physical elements, arranged
from a logical point of view in a three-tiered architecture: this
stem from the fact that spatial properties of the network, and
the time constraints for its management, require a distributed
and hierarchical organization of the AI functions. Spatio-
temporal aspects are reflected in the synoptic illustrated in
Fig. 2: the lowest tier is represented by fast and local AI
decisions, whereas online AI actions requiring a network-wide
knowledge fit the middle tier, and finally offline AI tasks
with global multi-network significance fit the top tier. Open
APIs are necessary for northbound interfaces, to interoperate
with third party cloud platforms and AI software stacks: the
top two levels of the architecture are also instrumental into
automatically converting “intent” into configuration actions.
Open APIs are also needed for southbound interfaces, to
accommodate third party devices: the bottom levels of the ar-
chitecture interact by upstreaming measurement from devices,
as well as downstreaming configuration actions, in a closed
ADN control loop.

Device AI. Local decisions that have to be taken in near-
real time are delegated close to or onboard of devices (e.g.,
Huawei’s Net/Air/HiSec Engines [67]–[69]). For instance, aug-
mented “visibility” tasks that require per-packet or per-flow
decisions (scheduling, shaping, application identification, QoE

7Relevant fora are e.g., ETSI Experiential Network Intelligence [64], ETSI
Zero-Touch [65] and IRTF Computing in the Network (COIN) [66].

Fig. 2. Network AI architecture: three-tiered logical structure to fit different AI
tasks from fast and local (device), to interactive and network-level (fog/cloud),
to offline and global (cloud). The tiers interact in two kinds of closed loops
for O&M and AI operations (cfr. Sec. IV-B)..

estimation, anomaly detection) can be run at the edge. Devices
(e.g., WLAN AP or datacenter switches) can take autonomous
decisions (e.g., auto-configuration and tuning) based on their
local knowledge. Such tasks might benefit from low-power
hardware acceleration chipsets for AI tasks (recall Tab.I) or
just be equipped with standard CPU and benefit from software
acceleration, so that bespoke and highly-specific AI software
stacks are expected to be the norm.

Further, non-technical considerations can favor in-device
processing (e.g., business-sensitive or privacy-related for
GDPR compliance) to keep data local to CPE vs processing
data remotely. Other considerations, related to hardware avail-
ability or processing vs bandwidth cost (e.g., deploying many
weak in-device accelerators vs fewer fog-accelerators or even
fewer but more powerful cloud devices) can also affect the
suitability of local vs remote processing for specific tasks.

Online fog/cloud AI. Decisions that require network-level
knowledge, and that do not have strict sub-second latency
requirements, such as for controller and analyzer tasks, can
be offloaded to the fog/cloud (such as Huawei’s iMaster
NCE/MAE [70], [71] for the fixed/mobile network segments
respectively). Controller actions can complement (or substi-
tute) the one taken by devices, such as adding a slower
centralized intelligence (e.g., taken by a single WLAN AP
controller) on top of fast distributed decisions (e.g., taken by
several WLAN APs). Analysis tasks can provide a broader
knowledge than that locally accessible, by e.g., correlating
anomalous events at network scale for troubleshooting.

From a hardware viewpoint, fog/cloud resources amortize
Capex investments related to hardware acceleration, so that
GPU and TPU should be expected to be more easily avail-
able whereas from a software perspective, code can leverage
common and popular AI stacks. Controllers can access multi-
vendor devices using cross-vendor southbound APIs (e.g.,
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NetConf/Yang) to both upstream model-driven telemetry to
feed AI decisions, as well as downstream automated con-
figuration decisions to devices. From a business viewpoint,
the fog/cloud AI can be offered as a service, which tradeoffs
Capex investments for higher bandwidth usage.

Offline cloud AI. Knowledge that goes beyond the operation
and management of a single network, or that span a large
timescale, is better fit for offline storage and processing in the
cloud (such as Huawei’s iMaster NAIE [72]). This includes for
instance model catalog management, model training services,
transfer learning, federated learning, model health tracking,
etc. These actions are instrumental for the good operation
of network AI models, but are infrequent or anyway hardly
need to be performed in a dynamic and interactive fashion
(e.g., even if models are updated daily, data collection can
be continuous, while training can be done nightly). As the
offline AI cloud itself can become a bottleneck, research on
the complementary “network for AI” viewpoint of this paper
tackles the optimization of AI workloads from a network
system perspective (see for instance [73], [74] and references
therein).

From a hardware viewpoint, these AI tasks can leverage a
large fleet of cloud resources, spanning several type of AI
accelerators. From a software viewpoint, the offline cloud
can offer managed services (e.g., Huawei’s ModelArts [75])
but remains open and compatible with alternatives stacks
(e.g., Amazon SageMaker [76]) and model marketplaces (e.g.,
Acumos [77]), further supporting open-source development
through open APIs.

B. Network AI and autonomy levels

With reference to autonomous driving vehicles, the industry
identifies several levels of increased autonomy, from driver as-
sisted (L1) to partial (L2), conditional (L3), high (L4) and full
(L5) automation. A similar categorization has then be extended
to the context of network automation: the goal of the ADN
is to transition toward increasingly autonomous loops, where
frequent human intervention (e.g., for technical necessity) is
gradually substituted with sporadic human supervision (e.g.,
for legal aspects).

In the path that leads to a fully autonomous network, we
can identify and map the needed AI and ML techniques to
reach a given level. In simple terms, we differentiate between
techniques that need to be applied in open-loop at that can
greatly assist in augmenting the knowledge about the network
operation (L2-3), as well as techniques applied in closed-
loop to increasingly actuate or learn from the network (L4-5).
We now briefly describe these simplified categories from the
complementary viewpoints of O&M and AI loops illustrated
in Fig. 2.

O&M loop. An important aspect is to consider if the
AI-enabled O&M building block is working on open-vs
closed-loop mode from a networking perspective. Super-
vised/unsupervised AI techniques are fit for open-loop O&M
tasks such as application identification, traffic and quality

forecast, imputation for missing data, compressed/enhanced
telemetry, fault and anomaly detection etc. It should be clear
that such techniques mainly needs data to be fueled (and
possibly labels for supervised learning) and can be either
operated in open-loop (sufficient for L2-3) or closed-loop
AI modes (necessary at L4-5). These building blocks are fit
for application on devices (or at the edge, depending on the
timeliness vs computation requirements), although some tasks
require the cloud processing power (for training or big data
analytics).

Closed-loop O&M can leverage AI techniques for several
tasks, ranging from resource allocation, configuration adap-
tation, fault prevention and repair. O&M loop can be fully
distributed, or have a termination point in the fog/cloud, where
centralized decisions can complement distributed decision. As
learning directly from the real deployment can be hazardous
(performance during a cold-start learning phases will be bad),
it is desirable to pre-train in an actionable controlled environ-
ment (e.g., simulator, emulator) before further refine learning
(e.g., digital twins, real network). AI techniques for closed-
loop O&M are intrinsically operated in closed-loop AI mode,
although the O&M loop can be closed in different network
architectural points (i.e., device/edge/fog/cloud) depending on
the specifics constraints of the application use-case (e.g.,
latency, telemetry, timescale, processing power, legal aspects,
etc).

AI loop. We refer to open-loop AI to models do not evolve
(e.g., inference of a trained supervised model for regression,
classification or actuation) or intelligence that does not trigger
further analytic (e.g., periodic batch-mode data mining over
a data-lake). Open-loop AI may take part in the device
(e.g., inference) or the cloud (e.g., transfer learning, federated
learning). Open-loop AI techniques are necessary for L2-3
network automation, and will be instrumental also for L4-5.

Conversely, we refer to closed-loop AI as to the fact of
altering the AI models themselves: we point out that this
can happen with any of the supervised (e.g., incrementally
training a model due to behavior drift of existing classes or
appearance of new classes), unsupervised (e.g., stream-mode
algorithms that alter existing models at any new sample) and
reinforcement (e.g., continuous exploration phase throughout
the whole lifetime of a reinforcement learning, or bandit
models) learning classes. Closed-loop AI techniques will be
necessary to reach L4-5 network automation.

C. Network AI Software

Ultimately, the ADN network is executing AI function
which are implemented as software instructions. As any
software, AI models need to be designed, maintained and
upgraded: even for the simplest L2 O&M task, closed-loop
management of AI software is key to successful deployment,
which we briefly discuss.

AIOps Software Lifecycle. AI software has a peculiar life-
cycle, termed AIOps by Gartner, as a particularization of the
BizDevOps cycle to take into account specific characteristics
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Fig. 3. Network AI software management: main actors in the BizDevOps
agile loop, with special focus on the AIOps roles and interactions (illustration
adapted from [78]).

of AI-software development. In a nutshell, DevOps is an agile
methodology that combines software development (Dev) and
IT operations (Ops), to shorten the systems development life
cycle by providing continuous delivery, possibly further inte-
grating Business (Biz) aspects. Complementary to the Dev and
Ops engineering teams in classic IT and O&M scenarios, AI
development requires additional skillsets, which are identified
in the Data Engineering and Data Scientist roles respectively,
as illustrated in Fig. 3 (further emerging roles are discussed
in Sec.VI-A).

AI Software in the ADN. Taking supervised case as an
example and with reference to Fig.3, data scientists leverage
data gathered by data engineers for model design (e.g., choos-
ing the appropriate ML/AI family, properly train by avoiding
overfitting and biases, hyperparameter tuning, etc.). As data
science skills may not accessible to all companies, to lower
the startup costs, a recent trend is to automate part of the data
scientists ML task. Alternatively, the existence of open APIs
makes it possible for the emergence of AI marketplaces (e.g.,
Acumos [77]), that can offer readily trained models, which
may lessen the need of data scientists for the most common
tasks. With respect to the three-tiered network architecture
early illustrated in Fig.2, models gathered by any of the above
means can be deployed in edge devices or online flog/cloud
(depending on capabilities of the devices).

After models are properly trained and tested, they are de-
ployed by Ops engineer in production system. Data engineers
then help monitor data from deployed DL models: tracking of
model data is then used to adapt, align and define the priorities
(BizDevOps loop) or to simply alert on necessary updates to
the model (DevOps loop) for the next Dev phase. As early
outlined, due to data drift, or environmental changes, deployed
models may no longer be fit to the environment in which
they are deployed, and shall need retraining. In the three-
tiered ADN architecture, the offline AI cloud is responsible for
tasks such as data lake storage and model catalog management,

including model training and maintenance (eg., pruning to fit
devices with constrained capabilities, or adaptation in case of
unsupported operators on a device, etc.).

V. CURRENT ACHIEVEMENTS OF NETWORK AI

We now make practical examples of AI-assisted network
O&M, that we map over the ADN architecture and illustrate
at a glance in Fig.4, ranging from (a) forecast, to (b) traffic
management, (c) troubleshooting and (d) auto-tuning. While
not exhaustively covering the set of network applications and
machine learning techniques8, the selected set of examples
fully span the whole set of supervised, unsupervised, semi-
supervised and reinforcement learning branches overviewed
in Sec.II, in furthermore open and closed loop modes for both
AI and O&M viewpoints.

In this vision paper, we prefer to keep discussion at a
qualitative level: we thus avoid embedding quantitative results
that are already published elsewhere, to which we rather point
the reader to. Additionally, we provide insights from the real
problems that AI can find in deployment, that the academic
community may not be exposed in their day-to-day work, and
is thus less sensitive to: in particular, in each use case we
comment AI results under the angles of its (i) generalization
capabilities and (ii) benefits vs cost tradeoff, that Sec. III-B
outlined being of key importance for successful transition from
research to products.

A. Efficiently handling the known (L1 to L2)

Supervised ML techniques, such as regression and classi-
fication, are apt at tackling well-specified problems in open-
loop O&M settings, to increase visibility about network traffic
or distill useful knowledge and information from raw data. In
this section, we outline both success and limits for two specific
examples of application of each techniques.

Regression (e.g., QoS/QoE estimation). Regression tech-
niques are fit for forecasting, e.g., future traffic demand or
user behavior, or for learning complex relationships, such as
relating network Quality of Service (QoS) indicator to user
Quality of Experience (QoE) as exemplified in Fig. 4-(a).
In this latter context, a large body of literature employed
ML techniques, to e.g., learn QoS indicators such as latency
distribution [79], [80] from topology, traffic matrix and routing
information, or learn QoE indicators for specific applications
such as Web [81], [82], video [83], [84] or games [85].

AI is desirable in this case, as it can leverage massive
volume of data9 (e.g., automatically collected network [79],
[80] or application [82]–[85] QoS/QoE indicators) without
incurring high labeling cost (unless human opinion is explicitly
factored in, as in [81]). On the one hand, work such as [79]–
[85] proves that data-driven models provide accurate solutions,

8For instance, we plan to address the use of natural language processing
techniques for the purpose of network configuration in a separate article.

9It may be relevant for readers interested in the Web QoE specific use-
case, that we made several datasets, collected in cooperation with and Orange
Labs [86], [87] and Wikipedia [88] publicly available.
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Fig. 4. Synoptic of selected examples in current achievements of AI-assisted networking use cases of: (a) QoS/QoE forecast, (b) traffic management, (c)
troubleshooting and (d) auto-tuning.

at both packet or flow-levels. On the other hand, generalization
capabilities and cost bares additional discussion.

As far as generalization is concerned, it is clear that models
are tested on a subset of the whole set of applications, games,
Webpages, terminals and network conditions. However, real
products will be exposed to such diversity: thus, particular
attention is needed to stress-test model capabilities beyond the
classic techniques (e.g., k-fold cross validation). For instance,
as done in [82] for the case of Web QoE, it is useful to
systematically analyze model bias induced by training data,
and provide guidance for extending data corpus to reduce such
via incremental training at higher autonomy levels (L3 and
beyond).

Additionally, the academic community often strives to in-
crease accuracy of the proposed solution, irrespective of its
computational cost. Yet, as diminishing return has to be
expected beyond a given accuracy, solutions that explicitly
allow to tradeoff (slight) accuracy loss for (significant) com-
putational savings are to be preferred [82]: the first role of AI
researchers is, after all, to judge whether AI is the right tool
for the problem at hand – i.e., to avoid all problems seems
nails once you have an (AI) hammer.

Classification (e.g., Traffic management). Traffic manage-
ment of Fig. 4-(b) is another relevant example where open-loop
AI techniques are helpful: traffic prioritization needs coarse-
grained traffic category labels, while policing may additional
require fine-grained application labels.

In this context, AI is clearly beneficial since encryption
is mandating to phase out Deep Packet Inspection (DPI) for
behavioral classifiers, with satisfactory accuracy performance
often in excess of 95% [89], [90]. Labeled data is in this
case well known to be harder to gather and share [91],
although the process can be automated to some extent [92].
As the application coverage of publicly available datasets,
is smaller than commercial grade needs, the question about
generalization capabilities is manifest: public datasets gener-
ally comprise 10-50 classes whereas commercial grade ones

[90] include 2000+ labels, with the top-200 classes covering
about 95% of the traffic volume. To cope with this mismatch
between data accessible to academic vs relevance for industrial
needs, we are currently in the process of releasing a highly-
anonymized version of our commercial-grade dataset [90] as
part of Huawei Rapid Analytics & Model Prototyping (RAMP)
data challenges [93].

As for the complexity is concerned, we observe that system
researchers [94]–[97] consider extremely simple models (with
just 21 neurons [96] or 50 neurons [97] overall), whereas AI
researchers train excessively big models (state of the art mod-
els compared in [89] employ in excess of hundreds-thousands
neurons per-class). Awareness of commercial-grade challenges
and constraints helps landing commercial-grade models out
of the lab, by explicitly parsimonious AI-model design (less
than hundred thousands neurons for all 200 classes [90])
and optimized implementation (e.g., using domain specific
accelerator and languages [98], [99]).

B. Taming the the unknown (L2 to L3)

As Jean Piaget famously said, “Intelligence is not what you
know, but what you do when you don’t know”. With this
regard, supervised models are however inherently limited, as
they are e.g., unable to guess QoE or labels of completely new
applications. Awareness of supervised AI limits is the first step
to move up in the autonomy level.

Anomaly detection (e.g., troubleshooting). Troubleshooting
of Fig.4-(c) is an example use-case where supervised tech-
niques are not be a good fit. First, as networks strive to operate
at very high reliability (i.e., 5-nines), anomalies are rare events
(so by definition only very few examples might be available
for training). Second, heterogeneity on the collected data and
across different networks environments make generalization
even harder (and thus unsupervised techniques appealing).

Clearly, the use of lightweight unsupervised algo-
rithms [100], [101] or self-supervised neural network [102],
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[103] guarantees generalization by design: given the time-
varying multi-variate nature of KPI data, both batch-
mode [100] (e.g., for periodic analysis) and stream-
mode [101], [103] (e.g., for continuous analysis and trigger)
algorithms can be leveraged, with stream-mode preferable due
to the nature of the application. However, no single anomaly
detection algorithm can fully solve the entire end-to-end
troubleshooting pipeline [104], which includes further steps
such anomaly aggregation across multiple devices (requiring
network visibility and thus a better fit for the private O&M
cloud). This algorithmic split across device/cloud gives the
opportunity to fine-tune algorithmic results with, e.g., semi-
supervised XAI [105] or causal RCA [27] approaches, to
ameliorate accuracy by exploiting previous information that
might be available only for anomalies that occur more often
(and that can benefit for global-level knowledge in the cross-
network AI cloud).

Along the complexity angle, unless DL models (such
as recurrent LSTM [?] or VAE [103]) are used for the
anomaly detection task, unsupervised techniques are generally
lightweight. Yet, it is important to observe that the relative
complexity among unsupervised algorithm still spans several
orders of magnitude [101], [106], and that devices may be
equipped with low computational power (recall Tab.I). Partic-
ularly, as telemetry bandwidth is a more stringent bottleneck in
this case, algorithms have to consequently be deployed on edge
devices for local execution (so that only part of the telemetry
is then pushed to online cloud for network-level analysis and
visibility), for which saving CPU cycles for similar algorithmic
performance is still highly relevant.

Out-of-distribution detection (e.g., traffic management).
Supervised technologies remains a good fit for some use-cases,
as for instance in the early introduced traffic management of
Fig.4-(b): yet, models have a limited knowledge, as they are
likely trained with only a fraction of the existing applications.
Applications that have never been presented to the model at
training are called “out of distribution” (OOD) in AI terms, or
“zero-day” (0D) in O&M terms: when presented with OO/0D
instances, any supervised model would misclassify them as
one of the known classes it has been presented during training.
The ability to detect OO/0D samples illustrated in Fig.4-(b)
sits as an intermediate step [78], between open loop (L1/L2,
train once and deploy forever) and closed loop operation
(L4/L5, to continuously train and deploy models).

By design, complementing supervised models with OO/0D
capabilities increase their generality. Both the AI and the
O&M communities have come up with general [107] or use-
case specific ways [108] to deal with the problem. We point
out that for DL architectures, we have contributed a very
effective gradient-based technique [90] that does not require
architectural changes and works on unmodified models.

At the same time, it is worth reminding that this OO/0D
additional feature comes at additional cost: in particular,
while the gradient-based technique is faster than feed-forward
computation, some of the techniques we experimented with
are significantly slower than the DL inference itself [90], and
as such are not practical, or need to be used sparingly [78].

Furthermore, whereas OO/0D is useful in solving part of su-
pervised models limits, further effort is needed to assist [109],
[110] and explain [111] automated labeling of OO/0D traffic,
which is a needed step to further close the learning loop (in
which case few-shots [61] and class-incremental [112] learning
techniques will be necessary, since few OO/0D samples will
be initially available).

C. Learning to learn (L4 and beyond)
Higher levels of automation imply the use of closed-loop AI

techniques in closed-loop O&M settings. As Einstein famously
said, “The true sign of intelligence is not knowledge but
imagination”, and to achieve automation at L4 and beyond,
the ability to continuously and efficiently learn is key.

Reinforcement learning (e.g., auto-tuning). A classic exam-
ple of closed-loop O&M is represented by automating resource
usage and control, with either centralized fog/cloud agents
(as in the WLAN use-case exemplified in the right part of
Fig. 4-d), or distributed agents on devices (as in DCN case
shown in the left part of Fig.4-d). Note that the choice of
distributed vs centralized intelligence may depend on timescale
(e.g., DCN) or other consideration (e.g., WLAN Campus
AP controller vs individual home APs), thus the examples
of Fig.4-(d) are not meant to exhaustively cover all valid
possibilities.

In this context, AI agents are employed to reach an objective
related to QoS (reducing flow completion time in DCN [63],
improving signal quality in WLAN [113], [114]) or QoE (e.g.
of videos [115] and games [116]). To attain such goal, agents
receive a reward as a result their action (e.g., setting threshold
for ECN marking [63], WLAN channel [113] or power [114]
configurations, CDN node selection [115], or relative priority
of game traffic [116]). In all these disparate cases cases, AI is
used to guide the exploration of an otherwise very large state
space: e.g., from simpler Stochastic Bandits used in [115], to
more complex Deep Reinforcement Learning (DRL) in [63],
[113], or Transformers in [114].

Generalization capabilities are important yet hard to ensure,
as the environment in which an agent has been trained may
differ significantly from the environment where it is deployed.
As a rule of thumb, frequent actions give more opportunities
to learn: e.g., ECN threshold setting happens on a DCN RTT
timescale [63], whereas CDN node selection happens on a per-
session basis [115] and WLAN AP configuration on a hourly
basis [113]. Additionally, even though algorithms may account
for online learning [63], [115], they need to be seeded with
an offline training phase [63], [113]. In this offline phase,
algorithms are trained with trace-driven approaches [63] or
via simulation [113] for hot-start: the more realistic the offline
training environment, and the more diverse the environmental
conditions explored, the better generalization capabilities can
be expected in the real deployment.

In terms of computational complexity, inference is fortu-
nately faster than training, which is expected to be compu-
tationally costly. Additionally, in the case of offline training
phase, often the bottleneck is represented by the cost of simu-
lating the environment at each action step (even for DRL [113]
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and transformer [114] architectures), so that parallel execution
is appealing.

Lifelong learning (e.g., automate model design and update).
Finally, a complementary viewpoint that encompasses all use-
cases illustrated in Fig.4 and is necessary to reach higher
automation level is represented by closed-loop AI techniques.
In ML what matters is the journey, not the destination: thus
successful ADN deployments need to embrace the idea that
any model will need to continuously evolve. We illustrate here
a number of reasons with the traffic management example of
Fig.4-(b) for simplicity.

Techniques under the so called “lifelong learning” [117]
umbrella are key for generalization. First, as new zero-day ap-
plication will keep appear and old applications will be forgot-
ten, there is need for incremental [112] and decremental [118]
learning. As existing applications will drift [119], continu-
ous learning will not necessarily only focus on adding new
classes, but to update existing ones. As application behavior
differ in heterogeneous environment, federated learning [120]–
[122] will additionally be needed for privacy or business-
sensitive constraints. Lifelong model changes bring significant
challenges in terms of learning due to the opposite curses of
“catastrophic forgetting” (of previously learned information)
vs “intransigence” (to learn new one). Meta-learning can help
finding a general representation that assist solving the above
problems [117], but as early illustrated, data science skills may
not be available at all steps in an organization. As a result,
any closed-loop AI technique to automate the data science
workflow (e.g., to automatically search for the fittest neural
architecture [123] that is easily in/decrementally updated) is
relevant in the quest for robust and lifelong generalization of
AI models for the ADN.

VI. FUTURE CHALLENGES FOR NETWORK AI

While the previous section has shown that AI techniques
can be profitably used to solve real problems and transferred
to real products, however much remains to be done before
highly autonomous L5 O&M operations can be attained by
the ADN: this section discusses several challenges that need
to be solved along the way.

A. Dirty data

First, it is well accepted that there is no AI without data [56]
– so a few points are worth stressing concerning data access,
representation and goverance.

Data access. While, as earlier introduced, networking data
is more fragmented and heterogeneous than, natural language
or images, it is true that the community-wide effort to share
dataset equivalents to image [46] or natural language [47] lags
far behind. Challenges [93], [124], [125] are a partial answer
to this problem, but the community should recognize the
need to federate data collection efforts, as opposite to scatter
them along many tiny challenges. Eventually, complementary
to marketplaces for AI models [77], the emergence of data
marketplaces [126], clearly abiding to local and international

laws as discussed next, is an interesting opportunity to cope
with this problem.

Data representation. Access to data only solves part of the
problem, since is commonly accepted that 50-80% of AI
scientist work is spent on data preparation [127], and indeed
“lack of data or data quality issues” is the first technical10

bottleneck to AI adoption, as identified by respondents (5%
of which are from the telecommunication and networking
industry) to the Oreilly radar survey [49]. Whereas some
amount of human assistance to AI models is needed, our goal
is not to enslave human labor to reach AI success AI [59],
[60], or at least to consciously use as little human help as
possible.

On the one hand, the AI community has come up with a
number of best practices and techniques to cope with data
quality [128] or lack of labels (via active-learning [62], self-
attention [129], few-shot [61] or self-supervision [130]). On
the other hand, data in network is intrinsically highly di-
mensional, topologically complex (several time-varying multi-
layer logical graphs), heterogeneous and multi-modal (logs,
packets, timeseries, configuration, etc.) and misses a single,
unified and universally accepted representation, which remains
an open problem.

Data governance. Finally, unless data, and meta-data are
treasured at (or beyond) the level of first-class citizen for
network AI, then much of the AI effort will likely end up being
in the 80% of failing projects [2]. The complexity of meta-data
management and of properly granting access to data, calls for
a more systematic approach to data governance [131]: e.g.,
by the introduction of data stewards, beyond the roles of data
owner, data engineer and data scientist. Data stewards should
govern the access to data, on behalf of data owners and using
the process developed by data engineers, in compliance with
regulation aspects.

B. AI Regulation

Second, AI will not be successful if it’s not legally compli-
ant. As the regulation ecosystem is fragmented as it differ from
country to country11 and additionally evolves over time12, we
briefly review the expected impact on data and AI models.

Impact on data. First, we observe that networking O&M area
is intrinsecally less sensitive with respect to other industries
that treats biometric, physiological or medical data (at the
highest risk level for AI Act). Still, even though most content
is end-to-end encrypted [136], it is useful reminding that even
IP addresses are personal data according to GDPR, and have
to be processed accordingly. While some use-cases may raise

10After the top-3 reasons (“company culture”, the “difficulty in identify
business use cases”, and the “lack of data scientists roles”) which are of
non-technical nature.

11For instance, EU General Data Protection Regulation (GDPR) [132], or
the more complex maze of laws across US states [133].

12As for the new proposal for a regulatory framework on Artificial Intelli-
gence (AIAct) [134] launched Apr 2021 in EU, or the the Personal Information
Protection Law (PIPL) [135] introduced in Nov 2021 in China
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limited risk, however this is not going to be the general case: as
such, lawful compliance of AI data processing should come as
a fundamental architectural feature, and not as an afterthought.

For instance, e.g., security protection from intruders may
process IP addresses of attackers received by Darknets [137],
but may also include part of so called “backscatter” [138]
traffic from compromised machines owned by unconscious
citizens/companies. As of now, it is safer when data is not
shared and stays under same-country (or same-regulation)
boundaries: however evolving and heterogeneous regulation
between countries can clearly become a headache for AI
researchers, and slow down AI adoption for global companies.
The early introduced data steward role should additionally be
coupled with a legal expert role, clearly mapping data to a
specific risk category depending on its processing. Data should
also be tainted, so that crossing legal borders should be either
lawful or impossible by design in the architecture.

Impact on models. In addition to having an impact on
data sharing, regulation impacts algorithms even when data
is not shared: as, for instance, in the case of federated
learning [120]. Whereas loads of work ensure privacy of that
federated learning process [139], however attacks [140] are
still possible that yield to serious privacy leaks – with possible
legal consequences, when clients participating in the learning
span across multiple countries and regulations.

Moving one step further, the “right to be forgotten” for
privacy or business reasons raise the need for decremental
learning, which have recently enjoyed a number of proposal
for Support Vector [118], Random Forest [141] or Neural Net-
works [142]. However, as pointed out in [143] these algorithms
are not immune to attacks, so that machine unlearning can
have counterproductive effects on privacy. Further, whereas
probabilistic [144] may be enough from a scientist point
of view, it would strikes us as odd if this was considered
acceptable from a legal standpoint. The lack of clear guidelines
and definition can slow-down adoption, for which non-trivial
discussion between lawyers and scientists seems in order.

C. eXplainable AI

Third, AI will not be successful if it’s not trusted. In the path
to L5 ADN, AI should free humans from the burden of the fast
loop (that calls for automation), and facilitating the interaction
with them in a slow loop (that calls for explainability).
In a sense, AI should smoothly transition from day-to-day
technical supervision (i.e., as if AI is a junior colleague that
needs coaching) to less and less frequent supervision (i.e., AI
becomes a senior respected colleague).

Fairness and generalization. Trust can be gained only if
AI can provide, in addition to good performance, also clear
explanation of the decision process. In other fields where
ethical matters are prominent, fairness issues in AI models
is well known and debated [145]. Part of the lack of fairness
is knowingly rooted in class imbalance in the data used in the
first place [146], for which countermeasures exist. If in the
networking field unfairness is less likely to have life-changing

decisions, the existence of such bias can still severely affect
the model generalization capabilities. Finally, it has recently
been shown that models can be accurate but for the wrong
reasons [147], which can rapidly undermine the trust that
AI technologies have gained so far. Trust between humans
and machines [148], [149] depends on understandability and
directability (how easy one can assert, control or influence
when something goes wrong): techniques to improve AI
explainability [150] are therefore a key element in the future
ADN.

Faithfulness and accountability. Additionally, whereas most
of AI decisions in network O&M will not have dramatic life-
changing impacts, such decisions should be accountable from
a business and possibly legal (as per previously discussed
regulation) perspectives. On the one hand, probabilistic [144]
or post-hoc explanation of surrogate models [151], [152] may
be sufficient for business-level accountability. On the other
hand, proving law compliance at a forensic level may require
faithfulness, a key XAI property defined as correctly reflecting
the system process for generating the output [153]. This pushes
to embed explainability directly in the model, as recent work
started advocating [154], [155]. We finally point out that while
XAI may come with a cost (e.g., additional computation, or
accuracy loss), this seems to be a necessary price to pay in
light of the above issues.

D. Green AI
Fourth, AI revolution will not happen if it’s not cost-

effective. Interestingly, we observe that the “Green network-
ing” [156] predates by over a decade the corresponding “Green
AI” wave [157]. We examine here the complementary aspects
of green AI from system and algorithmic perspectives.

Green system. As earlier indicated, Gilder law forecasts
that bandwidth scaling rate exceeds Moore law. Additionally,
OpenAI estimated [158] that the amount of compute used in
the largest AI training runs in the last decade has increased
exponentially, again faster than Moore law. As such, the carbon
impact of AI [159], [160] has rightly come under scrutiny
(along with blockhain).

With the example of the traffic management use case early
introduced in Sec.V-A, we observe that commercial-grade
models can run on DSA (e.g., Ascend310 TPU) supports
100Gbps inference rate with a power drain of 7W. However,
we additionally point out that complementary techniques that
avoids AI computation altogether (such as approximate-key-
caching [161]) can further bring multiplicative speedups with-
out compromising accuracy. In other technological fields, the
awareness of fuel efficiency (for cars) or energy efficiency
(for electrical appliances and even light bulbs) is strictly
regulated and mandatorily exposed – we believe that the same
awareness should be extended to the AI sub-components of
any networked system, by explicitly measuring metrics such
as task/Joule or accuracy/Watt.

Green models. Fortunately on the other hand, the AI commu-
nity has worked toward improving algorithmic efficiency – so
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that, e.g., the number of floating point operations required to
train a classifier to AlexNet-level performance on ImageNet
has significantly decreased in the last decade [162].

Always with reference to the traffic management use case
of Sec.V-A, recently introduced architectural innovations such
as inverted residual as in MobileNet [163] and point-wise
convolution as in ShuffleNet [164], significantly reduce model
complexity and are amenable to be run on ARM even without
any DSA acceleration13. At the same time, AI model design is
still an art, so that automated ML (autoML) techniques such
as Neural Architecture Search (NAS) [165] are appealing to
assist AI model design. However, NAS is guided by an indirect
measure of computation complexity (i.e., FLOPs). Therefore,
further research is needed to explicitly include in the NAS loop
more direct metrics, such as speed or energy consumption, to
perform an ecology of models design space (as well as making
the NAS process itself more energy efficient).

E. AI-Native functions and architecture

Finally, we need to point out that the ADN architecture
illustrated and exemplified in this paper is a natural evolution
of the current cloud-native network architecture. In other
words, exactly as it happened for IP networks, where QoS, mo-
bility, and security features have been added as afterthoughts
to the original architecture, the same it is now happening
for AI technologies. We point out that we are not reviving
here the debate of clean-slate vs evolutionary approach [166]
to network technology (r)evolution. Neither our goal is to
anticipate the success of such changes [167], though we point
out that time is ripe in terms of software stack and hardware
support, which are known to have a disproportionate impact
on technological success [168].

Rather, we believe that this constitute an opportunity for
the network community to rethink the design of an AI-
Native architecture, by holistically integrating AI in the whole
network landscape, as opposite to just delegate specific tasks
to AI islands. In other words, we believe that the future
AI-Native architecture should allow to expose, combine and
orchestrate explainable AI functions, “wired” to data in a
way that respects regulation, overall bringing improvements
on network operation at a lower energy footprint.
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[120] J. Konečnỳ et al., “Federated learning: Strategies for improving com-
munication efficiency,” arXiv:1610.05492, 2016.

[121] L. Yang et al., “Heterogeneous data-aware federated learning,” in IJCAI
Workshop on Federated Learning, 2020.

[122] https://www.hwtelcloud.com/products/fed.
[123] T. Elsken et al., “Neural architecture search: A survey,” The Journal

of Machine Learning Research, vol. 20, no. 1, pp. 1997–2017, 2019.
[124] https://www.itu.int/en/ITU-T/AI/challenge/2020/.
[125] https://challenge.aiforgood.itu.int/.
[126] X.-Y. Li et al., “Can china lead the development of data trading and

sharing markets?” Commun. of the ACM, vol. 61, no. 11, 2018.
[127] https://www.nytimes.com/2014/08/18/technology/

for-big-data-scientists-hurdle-to-insights-is-janitor-work.html.
[128] W. Kim et al., “A taxonomy of dirty data,” Data mining and knowledge

discovery, vol. 7, no. 1, pp. 81–99, 2003.
[129] A. Vaswani et al., “Attention is all you need,” in NIPS, 2017.
[130] C. Doersch et al., “Multi-task self-supervised visual learning,” in IEEE

ICCV, 2017, pp. 2051–2060.
[131] R. Abraham et al., “Data governance: A conceptual framework, struc-

tured review, and research agenda,” International Journal of Informa-
tion Management, vol. 49, pp. 424–438, 2019.

[132] https://en.wikipedia.org/wiki/General Data Protection Regulation.



14

[133] https://www.endpointprotector.com/blog/
eu-vs-us-how-do-their-data-protection-regulations-square-off/.

[134] https://www.europarl.europa.eu/thinktank/en/document/EPRS
BRI(2021)698792.

[135] https://en.wikipedia.org/wiki/Personal Information Protection Law
of the People’s Republic of China.

[136] A. P. Felt et al., “Measuring HTTPS adoption on the Web,” in USENIX
Security Symposium, 2017, pp. 1323–1338.

[137] L. Gioacchini et al., “Darkvec: Automatic analysis of darknet traffic
with word embeddings,” in ACM CoNEXT, 2021.

[138] E. Balkanli et al., “On the analysis of backscatter traffic,” in IEEE
LCN, 2014.

[139] S. Truex et al., “A hybrid approach to privacy-preserving federated
learning,” in ACM Workshop on AI and Security, 2019.

[140] Z. Wang et al., “Beyond inferring class representatives: User-level
privacy leakage from federated learning,” in IEEE INFOCOM, 2019.

[141] J. Brophy et al., “Machine unlearning for random forests,” in ICML,
2021.

[142] S. Neel et al., “Descent-to-delete: Gradient-based methods for machine
unlearning,” arXiv:2007.02923, 2020.

[143] M. Chen et al., “When machine unlearning jeopardizes privacy,” in
ACM CCS, 2021.

[144] D. M. Sommer et al., “Towards probabilistic verification of machine
unlearning,” arXiv:2003.04247, 2020.

[145] https://www.nytimes.com/2020/12/03/technology/
google-researcher-timnit-gebru.html.

[146] N. Mehrabi et al., “A survey on bias and fairness in machine learning,”
ACM Computing Surveys, vol. 54, no. 6, pp. 1–35, 2021.

[147] S. Lapuschkin et al., “Unmasking Clever Hans predictors and assessing
what machines really learn,” Nature, vol. 10, no. 1, 2019.

[148] R. R. Hoffman et al., “Trust in automation,” IEEE Intelligent Systems,
vol. 28, no. 1, pp. 84–88, 2013.

[149] N. Wang et al., “Trust calibration within a human-robot team: Compar-
ing automatically generated explanations,” in ACM/IEEE HRI, 2016.

[150] A. B. Arrieta et al., “Explainable Artificial Intelligence (XAI): Con-
cepts, taxonomies, opportunities and challenges toward responsible AI,”
Information Fusion, vol. 58, pp. 82–115, 2020.

[151] Z. Meng et al., “Interpreting deep learning-based networking systems,”
in ACM SIGCOMM, 2020.

[152] S. M. Lundberg et al., “A unified approach to interpreting model
predictions,” in NIPS, 2017.

[153] P. J. Phillips et al., “Four principles of explainable artificial intel-
ligence,” US National Institute of Standards and Technology (NIST)
Draft, 2020.

[154] D. Alvarez-Melis et al., “Towards robust interpretability with self-
explaining neural networks,” NeurIPS, 2018.

[155] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, vol. 1, no. 5, pp. 206–215, 2019.

[156] A. P. Bianzino et al., “A survey of green networking research,” IEEE
Commun. Surveys & Tutorials, vol. 14, no. 1, pp. 3–20, 2010.

[157] R. Schwartz et al., “Green AI,” Commun. of the ACM, vol. 63, no. 12,
pp. 54–63, 2020.

[158] https://openai.com/blog/ai-and-compute/.
[159] P. Dhar, “The carbon impact of artificial intelligence,” Nature Machine

Intelligence, vol. 2, no. 8, pp. 423–425, 2020.
[160] https://www.wired.com/story/ai-great-things-burn-planet/.
[161] A. Finamore et al., “Accelerating deep learning classification with

error-controlled approximate-key caching,” IEEE INFOCOM, 2022.
[162] https://openai.com/blog/ai-and-efficiency.
[163] A. Howard et al., “Inverted residuals and linear bottlenecks: Mobile

networks for classification, detection and segmentation,” in IEEE
CVPR, 2018.

[164] N. Ma et al., “Shufflenet v2: Practical guidelines for efficient cnn
architecture design,” in ECCV, 2018.

[165] T. Elsken et al., “Neural architecture search: A survey,” The Journal
of Machine Learning Research, vol. 20, no. 1, pp. 1997–2017, 2019.

[166] J. Rexford et al., “Future internet architecture: clean-slate versus
evolutionary research,” Commun. of the ACM, vol. 53, no. 9, 2010.

[167] M. Ammar, “ex uno pluria: The service-infrastructure cycle, ossifica-
tion, and the fragmentation of the internet,” ACM SIGCOMM Computer
Communication Review, vol. 48, no. 1, 2018.

[168] S. Hooker, “The hardware lottery,” Commun. of the ACM, vol. 64,
no. 12, pp. 58–65, 2021.

Dario Rossi is Director of Huawei AI4NET Lab and
Director of the DataCom Department at the Paris
Research Center, France. Before joining Huawei in
2018, he held Full Professor positions at Telecom
Paris and Ecole Polytechnique and was holder of
Cisco’s Chair NewNet Paris. He has coauthored 15
patents and over 200 papers in leading conferences
and journals, that received 9 best paper awards, a
Google Faculty Research Award (2015) and an IRTF
Applied Network Research Prize (2016). He is a
Senior Member of IEEE and ACM.

Liang Zhang is Vice-Director of Huawei AI4NET
Lab and Director of the DataCom AI Department
at the Nanjing Research Center, China. He received
the PhD degree from Southeast University, Nanjing,
China, in 2010. His research interests include in-
telligent fault analysis, network traffic analysis and
network optimization.


