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ABSTRACT

In recent years, specific evaluation metrics for time series anomaly

detection algorithms have been developed to handle the limitations

of the classical precision and recall. However, such metrics are

heuristically built as an aggregate of multiple desirable aspects,

introduce parameters and wipe out the interpretability of the out-

put. In this article, we first highlight the limitations of the classical

precision/recall, as well as the main issues of the recent event-

based metrics ś for instance, we show that an adversary algorithm

can reach high precision and recall on almost any dataset under

weak assumption. To cope with the above problems, we propose

a theoretically grounded, robust, parameter-free and interpretable

extension to precision/recall metrics, based on the concept of łaf-

filiationž between the ground truth and the prediction sets. Our

metrics leverage measures of duration between ground truth and

predictions, and have thus an intuitive interpretation. By further

comparison against random sampling, we obtain a normalized pre-

cision/recall, quantifying how much a given set of results is better

than a random baseline prediction. By construction, our approach

keeps the evaluation local regarding ground truth events, enabling

fine-grained visualization and interpretation of algorithmic results.

We compare our proposal against various public time series anom-

aly detection datasets, algorithms and metrics. We further derive

theoretical properties of the affiliation metrics that give explicit

expectations about their behavior and ensure robustness against

adversary strategies.
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1 INTRODUCTION

Time series anomaly detection is the field consisting in detecting

elements of a time series that behave differently from the rest of

the data. This field attracted interest in recent years with the rise

of monitoring systems collecting a large amount of data over time,

mainly for the purpose of troubleshooting and security. Many sci-

entific domains are involved: water control industrial systems [8,

24], Web traffic [15, 31], servers of Internet companies [21, 26],

spacecraft telemetry [10], and also medicine or robotics [30, 1].

Due to the nature of the series, each anomaly (referred as an event

in the context of time series) can be a point in time (point-based

anomaly) or occupy a range of consecutive samples (range-based

anomaly). The detection is performed in a supervised or in a un-

supervised way, but the resulting performance of the algorithm is

generally always assessed against ground truth labels that have

been previously collected (either in controlled environments or

labeled by experts in the field). This assessment is realized with

evaluation metrics taking as input both the ground truth and the

predicted labels, and outputting one or multiple scores. The most

common metrics for anomaly detection are the classical precision

and recall, computed by comparing the predicted and the ground

truth outputs for each sample. In the usual terminology, the posi-

tive samples refer to the samples that are predicted as positive, and

are partitioned into the true positives (TP, positive samples that

are also anomalous in the ground truth) and false positives (FP).

Likewise, the samples predicted as negative are partitioned into

false negatives (FN) and true negatives (TN). The precisionmeasures

the proportion TP/(TP + FP) of positive predicted samples that are

correct, whereas the recall measures the proportion TP/(TP + FN)

of positive ground truth samples that have been retrieved. Those

classical metrics are convenient for the tasks that regard each sam-

ple separately, however this does not hold for time series datasets,

where the time component is intrinsically continuous. Researchers

developing detection algorithms have realized this challenge dur-

ing the evaluation process and have come up with metrics fitting

their specific use-case: range precision/recall [27] for evaluating

the Greenhouse algorithm [17], time-aware precision/recall [11]

for evaluating the HAI dataset [24], Numenta benchmark [16] for

evaluating the Numenta corpus [1], etc.

In this paper, we first provide a comprehensive picture of the lim-

itations of the classical metrics, along with the different directions

of research that have been explored to handle them. Against this

background, we introduce a new pair of precision/recall metrics

named the affiliation metrics ś that exhibit a series of important

properties as they are theoretically principled, parameter-free, ro-

bust against adversary predictions, retain a physical meaning (as

they are connected to quantities expressed in time units), and are lo-

cally interpretable (allowing to troubleshoot detection at individual

event level). Summarizing our main contributions:

https://doi.org/10.1145/3534678.3539339
https://doi.org/10.1145/3534678.3539339


KDD ’22, August 14–18, 2022, Washington, DC, USA Alexis Huet, Jose Manuel Navarro, & Dario Rossi

• We show that existing range-based metrics for anomaly

detection are easily gamed by adversary predictions: this

complements dataset flaws outlined in [30], and concur in

creating an łillusion of progressž.

• We introduce the affiliation metrics, an extension of the

classical precision/recall for time series anomaly detection

that is local, parameter-free, and applicable generically on

both point and range-based anomalies.

• We produce closed-form expectations of the affiliation met-

rics in theoretical scenarios, proving their robustness against

adversary strategies.

• We contrast the affiliation metrics to existing metrics in real

datasets, and further show local interpretability at the event

level, giving visual clues for algorithmic comparison.

In the following sections, we detail the background for extending

the metrics for time series (Sec. 2) before introducing the affiliation

metrics (Sec. 3). We then evaluate theoretical and practical proper-

ties of the proposed metrics (Sec. 4). We conclude by discussing the

application scope of the affiliation metrics (Sec. 5 and Sec. 6).

2 BACKGROUND AND MOTIVATION

We first introduce the limitations of the classical metrics for time

series anomaly detection, which led to the design of new metrics

that we briefly overview. We next illustrate the main limits of those

proposed metrics, and sum up the main desirable goals for proper

metrics definition, which motivated our work in the first place.

Limitations of the classical metrics for time series tasks.

As summarized in Tab. 1 and illustrated in Fig. 1, two main limi-

tations have been observed in the literature for dealing with time

series tasks (e.g., point or range anomaly detection, segmentation,

or change point detection). The (A) unawareness of temporal ad-

jacency prevents the metric from valuing the proximity between

the samples. For instance, a prediction closely located in time to a

ground truth label is adding both a FP and a FN samples instead

of being considered as a TP, even for a one sample miss [6, 22,

16, 7]. Similarly, the predictions located closely after the end of a

ground truth event (dubbed as łambiguous samplesž by Hwang

et al. [11]) are immediately penalized without any tolerance. The

other aspect concerns the (B) unawareness of the events durations,

which relates to evaluation of the individual samples without con-

sidering each event as a single unit. Adverse consequences include

the overrating of long events, in the sense that correctly detecting

such event will be rewarded much more than correctly detecting

another single-sample outlier [27, 11].

Recent time series evaluation metrics. To cope with the

above problems, numerous evaluationmetrics have been recently in-

troduced to better handle the time component, that can be grouped

into three main categories: (i) distance-based metrics, (ii) window-

based metrics, and (iii) metrics specific to range-based anomalies.

The first direction to handle near detection, i.e. limitation (A), has

been to employ direct measurement of the distances between the

elements from the two sets to derive a single score. This score

is usually measured as a total deviation distance and is meant

to be minimized. Since the Hausdorff distance is sensitive to the

presence of any outlier, it is not suitable for evaluating the time

Table 1: Limitations of the classical precision and recall for

evaluating time series tasks as exposed in the literature.

Limitation Aspect Mentions

(A)
Unawareness of the

temporal adjacency
Inter-events [6, 22, 16, 7, 11]

(B)
Unawareness of the

events durations
Intra-event [27, 11]

gt

pred 1

pred 2

0 10 20 30 40 50

time

Figure 1: The classical precision/recall of predictions 1 and 2

against ground truth are 0.50/0.09 and 1.00/0.91, illustrating

resp. limitations (A), since each ground truth event is approx-

imately detected but the scores are low, and (B), since only a

single event is correctly detected but the scores are high.

series prediction tasks [4, 12]. Further work have therefore carried

out modified Hausdorff distances [12] built on metrics introduced

for computer vision tasks [3, 2].

An orthogonal direction of research to handle limitation (A)

has been to surround each ground truth event by a window. Each

window containing a predicted element is considered as a TP, re-

laxing the difficulty to obtain it compared to the classical matrix

of confusion. The precision and recall are then deduced from this

new counting. For point anomaly detection, Gensler and Sick [6]

propose to count the predictions within a ground truth window as

a TP, but only once for each window. The same principle has been

used in the context of change point detections [28]. The scoring of

the ambiguous samples located after the anomalous point or range

is also performed from ground truth windows: both in the Numenta

Anomaly Benchmark (NAB) scoring [16] and in the time-aware

precision/recall (TaP/TaR) metrics [11], predictions are mapped to a

score based on a decaying sigmoid function. Finally, Scharwächter

and Müller [22] compute the TP differently depending on the se-

lected point of view, either from the predictions or from the ground

truth.

To handle limitation (B), range-based metrics have recently been

proposed [27, 11, 31, 14]. The range precision/recall (RP/RR) [27]

and the TaP/TaR [11] are designed for anomaly detection events.

The common idea consists in rewarding both the presence and

the size of an overlap between the predicted and the ground truth

events. For those metrics, each event is considered as a single unit

irrespective of its length. Finally, the point adjust metrics [31] and

an extension [14] have been introduced to ease the scoring of the

range-based events: the computation consists in sticking to the

classical metrics, after initially extending each TP sample to the

whole corresponding ground truth event. As [31, 14] however do

not deal with limitation (A) nor (B), this yield to a recent adaptation

named F1-composite metric [5].

Characteristics and limitations of the existingmetrics. The

characteristics of the existing metrics are summarized in Tab. 2.

Most of the metrics (except distance based) take the form of a
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Table 2: Characteristics of the recent metrics extending the

classical precision/recall for time series anomaly detection.

(Class) Metric
P/R

form?

mainly

for

handles

(A) (B)

#

param.

(i) distance [4, 12, 7] % point ! % 0

(ii) window [6, 16, 22] ! point ! % 1

RP/RR [27] ! range % ! 4

(iii) TaP/TaR [11] ! range ! ! 3

point adjust [31, 14] ! range % % 0

(Ð) affiliation (this work) ! both ! ! 0

precision and recall pair. Except TaP/TaR [11], no metric handles

both limitations (A) and (B). Distance-based and windowed metrics

are mostly limited to point anomalies and cannot handle (B), while

RP/RR and point adjust metrics are not able to handle limitation (A),

e.g. a one sample miss, since the overlap is empty in this case.

Remarkably, with the exception of distance-based and point

adjust metrics, one or multiple parameters have to be selected to

control several aspects of the scoring process, adding a number

of parameters in the anomaly detection pipeline, likely leading to

a lack of generality. While their purpose can be understood, fine-

tuning or overspecializing the metric may be counterproductive

for real use-cases. Conversely while most of those parameters have

default values, their setting is not always trivial. For instance, to

handle (A) both TaP/TaR and window-based metrics select a win-

dow size which is tuned for each dataset and drastically impacts

the evaluation [22, 25]. It even prevents the well-definition of the

metrics when two windows overlap (i.e. leading to a precision pos-

sibly greater than one, as mentioned in [28], and occurring but not

discussed for [6, 16, 11]).

Interpretability and robustness against adversary algo-

rithms or naive random predictions. A core issue finally con-

cerns the interpretability of the recent range-based metrics. For

instance RP/RR and TaP/TaR derive per event quantities, averaged

over the whole dataset. Individual quantities are however difficult

to understand, as they combine multiple aspects: existence of an

overlap, proportion of the overlap, relative positions, or ambiguous

samples. Additionally, each predicted event is considered as an in-

dividual element, which is detrimental for the global meaning of

the score, since the number of predicted events and their positions

are not controlled: the resulting metric is not considering each re-

gion equally, that is any cluster of predictions in a specific region

can impact globally the final score. This lack of locality allows the

development of adversary algorithms reaching both high recall and

high precision, as we show in Sec. 4.2.

Another aspect related to interpretability concerns the lack of

statistical properties constraining the behavior of the metrics. Over-

estimation of the scores has been shown for window metrics using

Monte Carlo simulations [22], while for the point adjust metrics it

has been recently pointed out that łeven a random anomaly score

can easily turn into a state-of-the-art time series anomaly detection

methodž [14] ś while in our proposal, random scores define the

lower bound baseline as we formalize in Sec. 4.4 and demonstrate

in Appendix C.

Design targets. To sum up, a convenient precision/recall pair

for time series anomaly detection should include the following

desirable targets, that have not been jointly addressed in prior art:

• handle the limitations (A) and (B) introduced by the presence

of time (only addressed by TaP/TaR);

• parameter-free definition (only available with distance and

point adjust metrics);

• expressiveness of the scores, in the sense that a slight im-

prove of the predictions should result in a slight improve of

the scores (only addressed by the distance metrics);

• local interpretability of the scores (not addressed so far);

• existence of statistical bounds of the scores (only addressed

by simulation for window-based metrics).

3 LOCAL EVALUATION BASED ON
AFFILIATION

In this section, we introduce and describe the reasoning of the affil-

iation metrics for evaluating anomalous events. Three concepts are

developed. First, we define a directed average distance between sets,

to measure how far the events are one from each other (Sec. 3.1).

Then, each prediction is affiliated to the closest ground truth event,

allowing a local perspective and maintaining the interpretability

even for outlying predictions (Sec. 3.2). Finally, the observed tem-

poral distances are locally converted into probabilities, by com-

paring them against random sampling, and are averaged into a

precision/recall pair (Sec. 3.3). The practical aspects are detailed at

the end of the section (Sec. 3.4).

We limitedly detail description for anomalous events consisting

of ranges (particularization to the case of point anomalies is deferred

to the Appendix B). An anomalous event is described by a contin-

uous time interval [𝑡start, 𝑡stop) with 𝑡stop > 𝑡start. Both prediction

and ground truth are represented by a set of disjoint anomalous

events, respectively noted pred1, . . . pred𝑚 and gt1, . . . gt𝑛 .

3.1 Average distance between sets

The distance from a point 𝑥 to a set 𝑌 is defined, as usual, by:

dist(𝑥,𝑌 ) := min𝑦∈𝑌 |𝑥 −𝑦 |. For measuring the distance from a set

𝑋 to another, we consider the average directed distance defined by:

dist(𝑋,𝑌 ) := 1
|𝑋 |

∫

𝑥 ∈𝑋
dist(𝑥,𝑌 )𝑑𝑥 . For the corner cases, we have

dist(𝑋,∅) = +∞ for nonempty𝑋 , andwe keep dist(∅, 𝑌 ) undefined

for all 𝑌 . This function is not a metric in the mathematical sense be-

cause it does not satisfy symmetry nor the triangle inequality, how-

ever is nonnegative and, for the case where 𝑋,𝑌 are sets of disjoint

anomalous events, verifies dist(𝑋,𝑌 ) = 0 ⇔ (𝑋 ⊂ 𝑌 and 𝑋 ≠ ∅). It

has been introduced as a part of the modified Hausdorff distance [3]

used in computer vision.

This directed distance has been selected for smoothness and

interpretability reasons. First, contrary to the Hausdorff metric or

to a simple threshold based on a window size, it satisfies smooth

variation [3, 12] since each sample contributes to the total score.

Then, it has a clear interpretation as an average and retains a phys-

ical meaning as a time. Additionally, the distance is not converted

into an undirected one ś such as taking the maximum over the

two directions in the modified Hausdorff distance ś to prevent the

dilution of the interpretation by an additional layer. Indeed, our

main idea in using this function is to relate the directed distance
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from prediction to ground truth events to a precision, and the one

from the predicted events to the ground truth to a recall.

This idea is illustrated through the example in Fig. 2a. The pre-

diction comprises three events whereas the ground truth is a single

event. From the predicted events to the ground truth (left of Fig. 2a),

the directed distance is short, since 80% of the prediction area

matches with the ground truth while the remaining predicted event

(accounting for 20%) is at a distance of 1min30s in average. In total,

the directed distance is 18s. This short distance is interpreted as a

good precision of the predictions. Improving the precision would be

possible by removing the last predicted event and would lead to an

average distance of zero corresponding to a perfect precision. From

the ground truth to the predicted events (right of Fig. 2a), the di-

rected distance is computed in the other direction, giving a directed

distance of 76.5s. This distance is interpreted as a recall, currently

expressed in time. In that case, removing the last predicted event

would not change the directed distance nor the recall.

3.2 Local affiliation to the closest ground truth

The time axis is partitioned by assigning each time 𝑡 to the closest

ground truth event gt𝑗 , 𝑗 ∈ J1, 𝑛K. The resulting partition consists

of 𝑛 intervals, and the 𝑗-th one 𝐼 𝑗 is called the zone of affiliation of

the ground truth event 𝑗 . On each zone of affiliation, the ground

truth and predictions belonging to it are obtained and the average

directed distances described in Sec. 3.1 are computed to retrieve

the individual precision/recall distances. Formally, the union of all

predictions is noted pred :=
⋃𝑚

𝑖=1 pred𝑖 and the formulas are given,

for 𝑗 ∈ J1, 𝑛K, as follows:

Dprecision𝑗
:=dist

(

pred ∩ 𝐼 𝑗 , gt𝑗

)

, (1)

Drecall𝑗 :=dist
(

gt𝑗 , pred ∩ 𝐼 𝑗

)

. (2)

The choice made by isolating each zone of affiliation from the

ground truth perspective (for both precision/recall) is driven by the

difference of reliability expected regarding the ground truth and

the predictions. For the ground truth, upstream control measures

can be taken in place to assess its quality, for instance by ensuring

that each labeled event corresponds to a separate anomaly that

would need to be identified. On the other hand, there should not

be expectation for the shape of the predicted events, particularly

on their distribution along the time line. As a consequence, taking

the perspective of the ground truth is preventing the possibility for

multiple short predictions stacked in a local area to bias globally

the evaluation metric (cf. Sec. 4.2). Overall, each individual distance

is related to a single ground truth and can be interpreted locally.

A practical derivation of the individual precision/recall distances

is presented for the example shown in Fig. 2b. First, the total timeline

is cut into the zones of affiliation: (−∞, 3:30), [3:30, 5:00), [5:00, +∞).

Then the individual precision/recall distances are computed on each

zone. For the first zone, it corresponds exactly to the case shown

in Fig. 2a, giving 18s / 76.5s for respectively the precision and the

recall. The results are 11min30s / 2min30s for the second zone and

31min15s / 2min30s for the third one.

Individual distances are providing a summarized view of each

ground truth event expressed in a meaningful unit (i.e., time), and

can be used as they are by practitioners and domain experts. How-

ever, for comparing the different ground truth events of a dataset,

gt

pred

03:00 03:05 03:10

time (HH:MM)
03:00 03:05 03:10

time (HH:MM)

(a) Average distance between sets: example of the directed distance

computed from predicted events to ground truth (left) and from

ground truth to predicted events (right).

gt

pred

03:00 04:00 05:00 06:00

time (HH:MM)
03:00 04:00 05:00 06:00

time (HH:MM)

(b) Local affiliation to the closest ground truth event: example result-

ing in zones delimited by the dashed lines. The zones are similar for

both directions: precision (left), and recall (right).

𝑥 ↦→ 𝐹precision𝑗
(dist(𝑥, gt𝑗 )) 𝑦 ↦→ 𝐹𝑦,recall𝑗 (dist(𝑦, pred∩𝐼 𝑗 ))

gt

0

0.33

0.67

1

pred

04:00 05:00

time x (HH:MM)

04:00 05:00

time y (HH:MM)

(c) Comparison against random sampling: example for converting

each predicted sample to a precision score (left) and each ground

truth sample to a recall score (right).

Figure 2: Illustration of the three steps for computing the

affiliation metrics.

it would be desirable to convert each individual value to the [0, 1]

range, by assuming that each ground truth event is equally impor-

tant (as opposed to the classical metrics that consider each sample as

equally important). This normalization step is presented in Sec. 3.3.

3.3 Comparison against random sampling

The final normalization step consists in replacing each distance

measured at the sample level with a probability [0, 1], by comparing

this distance against the random sampling of a prediction. We here

introduce the main concept of this step, but we point out that the

survival functions and the integrals involved in the computations

have closed-form expressions, that are detailed in Appendix A.

Individual precision probability. As previously expressed,

each affiliation zone is considered separately. On each zone, the

ground truth gt𝑗 is fixed and a random prediction is made: this

prediction 𝑋 is a random variable corresponding to a single point
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in time uniformly sampled within the affiliation zone. For the pre-

cision, the distance from 𝑋 to the ground truth gt𝑗 is a random

variable with a cumulative distribution function 𝐹precision𝑗
(that

only depends on four time elements: the current zone and ground

truth intervals). The value of an observed distance 𝑑 ≥ 0 against

this random prediction is defined by the survival function:

𝐹precision𝑗
(𝑑) := 1 − 𝐹precision𝑗

(𝑑−) . (3)

Applying this function on each predicted sample, we derive the

individual precision probability (see also Appendix A.2.1) as follows:

𝑃precision𝑗
:=

1

|pred ∩ 𝐼 𝑗 |

∫

𝑥 ∈pred∩𝐼 𝑗

𝐹precision𝑗
(dist(𝑥, gt𝑗 ))𝑑𝑥 .

(4)

Individual recall probability. For the recall, the distance de-

pends on the considered ground truth sample 𝑦 ∈ gt𝑗 . Knowing it,

along with the affiliation zone interval, the distance from 𝑦 to 𝑋 is

a random variable with a distribution 𝐹𝑦,recall𝑗 . As before, the value

of an observed distance is defined by the survival function, and by

applying this function on each ground truth sample, we derive the

individual recall probability as follows (see also Appendix A.2.2):

𝑃recall𝑗 :=
1

|gt𝑗 |

∫

𝑦∈gt𝑗

𝐹𝑦,recall𝑗 (dist(𝑦, pred ∩ 𝐼 𝑗 ))𝑑𝑦. (5)

Illustrative example. The computation for the second affilia-

tion zone of Fig. 2b is detailed with the help of Fig. 2c. For the preci-

sion, the function 𝑥 ↦→ 𝐹precision𝑗
(dist(𝑥, gt𝑗 )) is deduced from the

survival distribution (left of Fig. 2c). We observe that any predicted

sample located inside the ground truth area would get a value of 1,

while this value decreases to 0 as the distance to the ground truth

event increases. For instance, the value of the predicted time 3:40 is

0.556 (illustrated by a gray arrow). Taking the average over all the

predicted elements, we obtain an individual precision probability of

0.672. For the recall, the function 𝑦 ↦→ 𝐹𝑦,recall𝑗 (dist(𝑦, pred ∩ 𝐼 𝑗 ))

is computed for each ground truth sample 𝑦 (right of Fig. 2c). Any

ground truth element inside the predicted area has a value of 1, that

decreases as the distance to the predicted elements increases.

In the case of 𝑦 = 04:10, the evaluation gives a value of 0.778

(illustrated by a gray arrow). Taking the average over all the ground

truth elements, we obtain an individual recall probability of 0.944.

Interpretation and understanding. The baseline for the ran-

dom prediction has been selected with the lightest possible a priori

on the predicted samples, namely by selecting a single predicted

sample randomly in each affiliation zone. In particular, no infor-

mation about the shape, the distribution, or the number of the

predicted events is used.

Some observations can be directly made from the construction.

First, we note that a precision of 1 is equivalent to pred ⊂ gt, while

a recall of 1 corresponds to gt ⊂ pred, which is in alignment with

the classical metrics. Then, a precision or a recall lower than 0.5

(resp. around 0.5) is interpreted as doing worse than (resp. as bad as)

a random prediction, meaning that the predictions made have not

been able to provide information about the location of the event.

The exact formulation of those interpretations constraining the

behavior of the affiliation metrics are formalized through properties

in Sec. 4.4.

Averaging of the individual precision/recall probabilities.

The precision/recall are defined as the mean over the defined indi-

vidual probabilities. Following the corner cases about the average

distance between sets, an individual precision probability is unde-

fined only when there is not any predicted element affiliated to gt𝑗 .

We let 𝑆 := { 𝑗 ∈ J1, 𝑛K ; pred ∩ 𝐼 𝑗 ≠ ∅}, and obtain:

𝑃precision :=
1

|𝑆 |

∑︁

𝑗 ∈𝑆

𝑃precision𝑗
, 𝑃recall :=

1

𝑛

𝑛
∑︁

𝑗=1

𝑃recall𝑗 . (6)

3.4 Practical settings

In real settings, the affiliation metrics can be applied on evenly or

unevenly-spaced time series. The ground truth and the predictions

have the form of a binary vector of same length 𝑁 , where the

anomalous samples are indicated by 1 and the normal ones by 0,

each index 𝑖 corresponding to a timestamp 𝑡 (𝑖), as depicted in Tab. 3.

Table 3: Illustration of the practical input shape for calculat-

ing the affiliation metrics, here corresponding to Fig. 2a

index 𝑖 1 2 3 4 5 6 7 8

gt 1 1 1 1 1 0 0 0

pred 0 0 1 0 1 0 1 0

𝑡 (𝑖) 3:00 3:02 3:05 3:06 3:07 3:10 3:11 3:12

A consistent way to convert those indexes into range-based

events is to match any positive index 𝑖 to the corresponding inter-

val [𝑡 (𝑖), 𝑡 (𝑖 + 1)). The last timestamp 𝑡 (𝑁 + 1) is clear for evenly

spacedmeasures, otherwise it needs to be selected. In the example of

Tab. 3, it gives the events pred1 = [3:05, 3:06), pred2 = [3:07, 3:10),

pred3 = [3:11, 3:12) and gt1 = [3:00, 3:10). It corresponds to the

example of Fig. 2a. Given those intervals, the individual preci-

sion/recall distances are available. With the additional knowledge

of the total range [𝑡 (1), 𝑡 (𝑁 + 1)], the precision/recall probabilities

can be computed. Moreover, due to the closed-form expressions

developed in Appendix A, their implementation is computation-

ally efficient. Further practical considerations for reproducibility,

including pointers to code, etc. are discussed in Appendix D.

4 EVALUATION AND PROPERTIES

The evaluation of the affiliated metrics is performed against the

range-based anomaly detection metrics RP/RR and TaP/TaR, along

with the classical sample-based metrics on a set of algorithms and

datasets (Sec. 4.1). We first show that adversary predictions easily

fool range metrics, whereas affiliated metrics are local and robust

(Sec. 4.2). Second, we show that this local construction further al-

lows a detailed per-event interpretation and comparison of the

results given by the anomaly detection algorithms (Sec. 4.3). Fi-

nally, we formalize (Sec. 4.4) and prove (Appendix C) theoretical

properties of the affiliated metrics in typical prediction scenarios.

4.1 Evaluation settings

Benchmark anomaly detection algorithms. As our primary

aim is to contrast metrics for algorithmic evaluation, we rely on the
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anomaly detection algorithms that were selected by the previous

authors [27, 11]. For the datasets Machine-Temp, NYC-Taxi, and

Twitter-AAPL, the predicted events are deduced from three algo-

rithms: Greenhouse [17], LSTM-AD [20], both based on neural net-

works, and one implemented in the Luminol library based on time

series bitmaps [29, 18] (Luminol TSB). For the SWaT dataset, two

unsupervised algorithms are selected (iForest [19] and OCSVM [23])

along with a neural network approach (seq2seq [13]).

Datasets. Similarly, we select the four time series datasets used

in [27, 11] for the comparison. Three of them are those used by

authors of the RP/RR metrics [27], and taken from the publicly

available Numenta Anomaly Benchmark Data Corpus [1]:Machine-

Temp (temperature sensor data of an industrial machine), NYC-

Taxi (number of New York City taxi passengers), and Twitter-AAPL

(collection of Twitter mentions of the ticker symbol AAPL). The

other dataset has been used by authors of the TaP/TaR metrics [11],

and is a secure water treatment testbed known as SWaT [8]. A short

description of the number of samples, percentage of anomalies, and

number of anomalous events is available in Tab. 4.

4.2 Adversary predictions

Adversary algorithm. We design an algorithm to deceive met-

rics that consider each predicted event as a unit, by aggregating

numerous predictions within a local region in order to impact the

score globally. Following the definition coined and discussed byWu

and Keogh [30], an anomalous event is said trivial if it can be iden-

tified with a single elementary line of code (e.g., a threshold)1. The

function applied to derive a trivial event for the selected datasets is

reported in Tab. 4. Regarding SWaT, since we do not have direct

access to the raw data, we simply consider one of the events, for

instance the first one containing 940 samples, as trivial.

Knowing any such trivial event, the adversary predictions are

defined in two steps: (i) within the trivial event, set the maximum

possible number of predicted events by alternating positive and

negative samples. (ii) outside the trivial event, label all the samples as

positive. We denote this methodology for producing the predicted

events as adversary algorithm2.

The construction of the adversary is shown for the NYC-Taxi

dataset in Fig. 3. First, given the raw values of the series, a trivial

event is identified (it does not need to cover entirely the true event).

Then, the adversary algorithm is applied to produce the predictions,

resulting in thirteen predicted events.

Trivial and adversary predictions are reported along with the

other anomaly detection algorithms in Tab. 5.

Results for the RP/RR and TaP/TaR metrics. The second

and third rows of Tab. 5 show that the adversary algorithm beats by

far any other tested algorithms, although this adversary algorithm

being unable to provide any informative content about the position

of the anomalies, since almost all the samples are labelled positively.

1Note that the threshold can be on the original data or from a new time series derived
from it using basic primitive operations, such as a moving average of the series.
2We stress that similar adversary strategies can be defined for other metrics non
included in the evaluation, such as point adjust F1-composite metric [5]. The adversary
in this case would (i) keep the trivial event of duration 𝑇 and (ii) add 𝑁 additional

predictions of length 𝑇
10𝑁 regularly spaced over the rest of the interval, so that the

precision is at least𝑇 /(𝑇 + 𝑁 (𝑇 /(10𝑁 ))) = 1/(1 + 1/10) ≈ 0.91, while the recall is
1 for sufficiently large 𝑁 .

Table 4: Description of the datasets and of the corresponding

base trivial events for the adversary algorithm.

Machine

Temp

NYC

Taxi

Twitter

AAPL
SWaT

samples 17682 2307 11889 449919

anom. 6% 27% 7% 12%

# events 2 3 2 35

trivial 𝑌𝑡 < 40 𝑌𝑡 < 1250 𝑌𝑡 > 12000 First event

Yt = 1250

0

  10K

20K

30K

gt

trivial

pred

0 500 1000 1500 2000

gt

trivial

pred

2060 2070 2080 2090

time

Figure 3: Construction of the adversary predictions for the

NYC-Taxi dataset, with a zoom on the interval 𝑡 ∈ [2060, 2090)

containing the trivial event 𝑌𝑡 < 1250. The predicted events

(bottom row) are calculated using the adversary algorithm

given a trivial event (middle row). The predictions are evalu-

ated against the ground truth (top row).

In this way, those algorithms are unable to provide reliable results

in a conceivable situation.

The results of the evaluation for the adversary algorithm can

be retrieved theoretically, for a dataset containing 𝑛 ground truth

events and where the trivial event is cut into 𝑘 pieces. First, 𝑛 − 1

events are fully recalled, while the remaining one overlaps 50% of

the trivial event, giving a recall around 1− 1
2𝑛 for RP/RR and at least

1 − 1
4𝑛 for TaP/TaR (using default parameters). Then, the precision

is perfect for 𝑘 pieces and uncontrolled for the two remaining ones,

giving a total precision of at least 𝑘
𝑘+2

. Globally, both precision and

recall are close to 1 for 𝑘 and 𝑛 sufficiently large.

Results for the classical and affiliation metrics. We observe

in Tab. 5 that the classical and the affiliationmetrics are not sensitive

to the adversary algorithm.

For the classical metrics, that operate at the sample level, the

trivial algorithm has a precision of one while the recall covers the

proportion of correctly identified samples. The adversary algorithm

increases the recall but drastically impacts the precision, since most

of the elements are now FP.

For the affiliation metrics, that operate at the event level, the

trivial algorithm has also precision of one while the recall covers

the proportion of correctly identified events (e.g. 1/35 ≈ 0.03 for
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Table 5: Comparison of the metrics using datasets and algorithm predictions selected by [27, 11], against a trivial prediction

and an adversary algorithm. Each cell shows the precision/recall/F1-score w.r.t. a certain metric, algorithm, and dataset. The

algorithm reaching the best F1-score is shown in bold for each metric and dataset.

Metric Algorithm
Dataset

Machine-Temp NYC-Taxi Twitter-AAPL

trivial 1.00/0.34/0.50 1.00/0.03/0.07 1.00/0.13/0.23

Classical adversary 0.05/0.83/0.10 0.27/0.98/0.42 0.06/0.93/0.12

(sample-based Greenhouse 0.33/0.42/0.37 0.23/0.43/0.30 0.50/0.06/0.11

precision/recall) LSTM-AD 0.06/1.00/0.12 0.24/0.49/0.32 0.24/0.13/0.17

Luminol TSB 0.10/0.04/0.06 0.15/0.02/0.04 0.37/0.07/0.11

trivial 1.00/0.46/0.63 1.00/0.18/0.31 1.00/0.31/0.48

adversary 0.99/0.75/0.85 0.88/0.85/0.86 0.96/0.75/0.85

RP/RR Greenhouse 0.15/0.57/0.24 0.23/0.52/0.32 0.26/0.51/0.35

LSTM-AD 0.03/1.00/0.06 0.27/0.51/0.35 0.10/0.51/0.17

Luminol TSB 0.08/0.50/0.14 0.14/0.34/0.20 0.24/0.51/0.32

trivial 1.00/0.42/0.59 1.00/0.02/0.03 1.00/0.06/0.12

adversary 0.99/0.96/0.97 0.93/1.00/0.96 0.96/1.00/0.98

TaP/TaR Greenhouse 0.17/0.47/0.25 0.32/0.64/0.43 0.42/0.04/0.07

LSTM-AD 0.04/1.00/0.07 0.36/0.66/0.47 0.13/0.08/0.10

Luminol TSB 0.10/0.02/0.04 0.23/0.02/0.03 0.26/0.04/0.07

trivial 1.00/0.50/0.66 1.00/0.30/0.46 1.00/0.49/0.66

adversary 0.49/1.00/0.66 0.54/1.00/0.70 0.50/1.00/0.67

Affiliation Greenhouse 0.71/0.99/0.83 0.51/0.99/0.67 0.78/0.98/0.87

LSTM-AD 0.50/1.00/0.67 0.51/1.00/0.67 0.66/0.99/0.79

Luminol TSB 0.54/0.99/0.70 0.38/0.79/0.51 0.73/0.98/0.83

Algorithm
Dataset

SWaT

trivial 1.00/0.02/0.03

adversary 0.12/0.99/0.21

iForest 0.30/0.74/0.43

OCSVM 0.17/0.85/0.28

seq2seq 0.59/0.25/0.35

trivial 1.00/0.03/0.06

adversary 1.00/0.99/0.99

iForest 0.04/0.52/0.08

OCSVM 0.14/0.61/0.23

seq2seq 0.35/0.66/0.46

trivial 1.00/0.03/0.06

adversary 1.00/0.99/1.00

iForest 0.05/0.40/0.09

OCSVM 0.17/0.55/0.26

seq2seq 0.44/0.65/0.52

trivial 1.00/0.03/0.06

adversary 0.53/1.00/0.69

iForest 0.52/0.84/0.64

OCSVM 0.65/0.70/0.68

seq2seq 0.86/0.79/0.83

Table 6: Tabulated and visual per-event comparison between iForest and seq2seq on the SWaT dataset for the first six ground

truth events, using the affiliation metrics. The affiliation zones are indicated with dashed lines.

Algorithm Mean of 35 events Ev. 1 Ev. 2 Ev. 3 Ev. 4 Ev. 5 Ev. 6

iForest 0.52/0.84/0.64 0.37/0.53/0.44 1.00/0.91/0.95 0.76/0.99/0.86 NaN/0/NaN 0.38/0.60/0.46 0.09/0.21/0.12

seq2seq 0.86/0.79/0.83 0.96/1.00/0.98 0.86/1.00/0.93 0.73/0.78/0.75 0.39/0.71/0.50 0.71/0.97/0.82 0.88/1.00/0.94

1 2 3 4 5 6gt

iForest

seq2seq

0 2000 4000 6000 8000

time

the SWaT dataset). The adversary algorithm increases the recall

but reduces the precision to 0.50, meaning that the predictions are

not better compared to a random prediction (by definition of the

construction of the metric, as developed in Sec. 4.4).

Regarding the other algorithms, we consider for instance Green-

house and observe that it did not provide informative predictions

for the NYC-Taxi (affiliation metrics with a precision around 0.50),

while performing better for both Machine-Temp and Twitter-AAPL.

For this latter, Greenhouse performs fewer predictions that do not

cover the whole ground truth events but are overlapping or close

to them, explaining the small classical recall (0.06) compared to the

high affiliated recall (0.98). This also holds for the SWaT dataset,

for which we give a detailed event level interpretation in Sec. 4.3.

4.3 Event-level comparison

Since affiliation metrics have a local significance, each anomalous

event can be analyzed individually from both precision and recall

viewpoints, which is not possible with the other range-based met-

rics. An example of the results obtained using iForest and seq2seq for

the 6 initial events of the 35 overall anomalous events of the SWaT

dataset is shown in Tab. 6. The illustration intentionally mimics

the one reported in [11], where however the judgement of algorith-

mic performance at individual events level is left to the eye of the

reader. In contrast, affiliation precisely quantifies in an unbiased

and unequivocal manner the detection performance of each event,

offering a new light in the algorithmic evaluation through this new

detailed view.



KDD ’22, August 14–18, 2022, Washington, DC, USA Alexis Huet, Jose Manuel Navarro, & Dario Rossi

For events 1 and 6 of Tab. 6, iForest misses the ground truth

events by far, while seq2seq predictions locate near and within

the anomalous region. This translates into a poor precision/recall

for iForest (worse than a random prediction for the precision, as

bad as a random prediction for the recall) while for seq2seq the

precision is good, with a perfect recall. Event 2 depicts the situation

with a perfect precision (for iForest) or an almost perfect recall

(for seq2seq), leading to similar performance since in both cases

the main region has been correctly identified. For event 3, iForest

has better identified the ground truth, even if both predictions

are better than a random prediction. For event 4, the prediction

is either missing (for iForest) or poor (for seq2seq). For event 5,

most the predictions made by iForest are close to the limit of the

affiliation zone, impacting the overall precision, whereas seq2seq

also captures most of the ground truth event inducing a boost in

the precision and in the recall.

Overall, seq2seq gives better results for 21 events (13 for both

precision and recall, and 8 only for the precision), equivocal results

for 4 events (increase of the precision while the recall decreases, or

the contrary) and a worse performance for 2 events. The remaining

events are either completely undetected by iForest (for 2 events) or

by seq2seq (for 6 events).

Globally, iForest, OCSVM, and adversary algorithms do not pro-

vide better results compared to a random guess. Locally, e.g. for

events 2 and 3, the iForest algorithm is better (in terms of F1-score)

compared to seq2seq. This behavior highlights the difference in the

algorithm to deduce the anomalies (per sample for iForest and in-

context for seq2seq) and can help for understanding the strengths

and weaknesses of the algorithms and design better ones (for ex-

ample for doing ensembles).

In an operational perspective, non-normalized distances can

complement the understanding for each event by providing the

individual time distances for precision/recall (optionally consider-

ing directionality, i.e., in case from a practical viewpoint an early

detection is preferable to a late one).

4.4 Theoretical properties

In addition with the practical results, we provide theoretical proper-

ties supporting the correct behavior of the affiliation metrics. Since

each affiliated zone is considered independently, we consider a sin-

gle ground truth event gt𝑗 included in the affiliation zone 𝐼 𝑗 . We let

𝑝 = |gt𝑗 |/|𝐼 𝑗 | the proportion taken by the ground truth event within

its affiliation zone, which is also the proportion of positive samples.

As we consider an anomalous detection task, we are expecting rare

events and 𝑝 ≪ 1 in most of the cases.

In the following, we derive a closed-form of the metrics in three

scenarios: first (i) when the whole interval is predicted as anoma-

lous, then (ii) for a random prediction within the affiliation zone,

and finally (iii) for a single prediction located at specific locations on

the interval. Details of the proofs are available in the Appendix C.

Predicting the whole interval as anomalous. In this case,

the precision and recall are given by (cf. Appendix C.1 for proof):

𝑃precision =
1

2
+
𝑝2

2
, 𝑃recall = 1. (7)

In the 𝑝 ≪ 1 regime, the precision is close to 1/2 which cor-

responds to a poor detector (as poor as a random predictor). For

all values of 𝑝 , this behavior can be put in parallel with the clas-

sical precision/recall, in which predicting all samples would give

precision of 𝑝 and a recall of 1.

Expected precision and recall given a single random pre-

diction. The expected precision and recall are given by:

𝑃precision =
1

2
+
𝑝2

2
, 𝑃recall =

1

2
. (8)

This property confirms that scores around 1/2 corresponds to

a random detector (cf. Appendix C.2 for proof). In this case, the

classical precision/recall would give a precision of 𝑝 and a recall

close to 0 assuming a large number of samples.

Single prediction at a defined position. We consider different

single predictions located at four different positions on the affili-

ation zone: (a) the border of the affiliation zone, (b) the position

halfway between the border and the ground truth event, (c) the first

element of the event, and (d) the center of the event. The latter case

(d) corresponds to the best possible single-element prediction. Since

the position of the ground truth event also impacts the results, for

simplification we assume it centered within the affiliation zone.

We defer a derivation of closed-form expression for (a)-(d) in

Appendix C.3, and report here an intuitive example. The scores as

a function of 𝑝 are reported in Fig. 4, along with an illustration of

the four positions for 𝑝 = 1/5. For 𝑝 ≪ 1, we observe that both

precision and recall are 0 for distant predictions (a), and increase

until reaching 1 for close predictions (c, d). In the other regimes,

the precision is always 1 for overlapping predictions (c, d) but the

recall decreases as 𝑝 increases, representing the impossibility for

a single prediction to reach a perfect recall of a large event. For

instance, the results for the best single-element prediction (d) are

given by (with 𝑥+ := max (0, 𝑥) the positive part):

𝑃precision = 1, 𝑃recall = 1 −
𝑝

2
+

1

2𝑝

(

𝑝 −
1

2

)2

+

. (9)

5 DISCUSSION

We finally discuss the proposed affiliation metrics along comple-

mentary aspects.

Shape of the ground truth labels. The most important factor

towards a correct evaluation is the ground truth labels themselves.

The intended purpose and a description of the labeling strategy are

necessary requirements, but other factors impact the quality of the

evaluation. First, the actual output should represent an anomaly

detection task, i.e. labeled events need to be rare. Furthermore, we

expect that each event corresponds to a single anomaly. For this

purpose, the merge of fragmented events related to a single anom-

aly have been proposed [30]. However, the amplitude of the labeled

zone may remain imprecise: even for controlled experiments [8,

24] for which the start date is known, the time at which the system

returns to a steady state remains subjective. By design, the affilia-

tion metrics are less sensitive to precise labeling compared to the

previous range or window-based metrics.
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Figure 4: Given a ground truth centered in the affiliation

zone and filling a proportion 𝑝, result of the affiliatedmetrics

for a single-point prediction located at the: (a) border of the

affiliation zone, (b) position halfway between the border and

the event, (c) first element of the event, (d) center of the event.

Expressiveness of the metrics. The affiliation metrics have

been built to handle the two main limitations of the classical pre-

cision/recall. As for algorithmic comparison, we have shown that

they are expressive enough to perform a fair comparison without

the need for introducing additional parameters. The modification

of the metrics to handle additional features (such as focusing on

overlaps only, or giving more importance to the beginning of an

event) is possible by modifying the survival functions ś but, at the

same time, this is not encouraged. The main reason is the addi-

tional layer of complexity needed to select those parameters, in the

context of small volume of labeled events, would render evaluation

arbitrary.

Theoretical properties. The affiliation metrics focus on a sin-

gle aspect of the evaluation: the assessment of the proximity be-

tween the predicted and the ground truth labels, which is the pri-

mary aspect to compare anomaly detection algorithms from a re-

search point of view. Summarizations of the precision/recall as a

single quantity that exist for the classical metrics (such as the F-

score or the Average Precision) are straightforward to derive for the

affiliation metrics. In order to properly characterize the behavior

of such summarized metrics, further research is needed to gather

theoretical bounds on the variance.

Practical deployment. From a deployment perspective, com-

plementary measures need to be considered, similarly to those

introduced by Gensler and Sick [6], such as the number of pre-

dicted events in each segmentation zone and the direction tendency

of the predictions. In this context, the trade-offs between those

measures remain in the hand of the field expert. In order to assist

decisions (e.g., algorithm selection and score thresholding), further

development of an interactive visualization library leveraging the

affiliation metrics would be beneficial.

6 CONCLUSION

For evaluating time series anomaly detection tasks, we proposed a

precision/recall pair that handles the limitations encountered with

the classical metrics. Contrary to the existing metrics, it is generic

(parameter-free, applicable on all datasets), and local (each ground

truth event is considered separately). In turn, locality makes it both

expressive (possible to break down the final score into individual

interpretable and visualizable bricks) and robust (e.g., not sensitive

to adversary predictions). Finally, its construction makes it both

theoretically principled, as well as practically useful ś overall, we

hope that the research community will find them a useful contribu-

tion for the unbiased evaluation of time series anomaly detection

tasks.
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A CLOSED-FORM OF THE AFFILIATION
METRICS

For the ground truth event gt𝑗 =: [𝑎, 𝑏) located within the affiliation

zone 𝐼 𝑗 =: [𝐴, 𝐵), we let respectively 𝑚 and 𝑀 the shortest and

largest distance from the event to the borders of the zone:

𝑚 := min (𝑎 −𝐴, 𝐵 − 𝑏) and 𝑀 := max (𝑎 −𝐴, 𝐵 − 𝑏) .

A.1 Survival functions

The survival function for the precision defined by Eq. 3 is given by

𝐹precision𝑗
(0) = 1 and, for 𝑑 ∈ (0, 𝑀]:

𝐹precision𝑗
(𝑑) = 1 −

|gt𝑗 | +min(𝑑,𝑚) + 𝑑

|𝐼 𝑗 |
. (10)

The explanation is as follows: taking uniformly at random an

element within the affiliation zone, the probability to obtain a dis-

tance of zero is |gt𝑗 |/|𝐼 𝑗 |, while outside the decrease of the survival

function is in 2𝑑 on (0,𝑚] and in𝑑 on (𝑚,𝑀], because two elements

exist for each distance before𝑚, and only one after. For a ground

truth sample 𝑦 ∈ gt𝑗 , we let:

𝑚𝑦 := min (𝑦 −𝐴, 𝐵 − 𝑦) and 𝑀𝑦 := max (𝑦 −𝐴, 𝐵 − 𝑦) .

The survival function for the recall is given, for 𝑑 ∈ [0, 𝑀𝑦], by:

𝐹𝑦,recall𝑗 (𝑑) = 1 −
min(𝑑,𝑚𝑦) + 𝑑

|𝐼 𝑗 |
. (11)

A.2 Closed-form of the integrals

The closed-form of the integrals is straightforward (integral of

piecewise linear functions) but include many cases due to the pres-

ence of the min and max functions. The expressions are derived in

the following paragraphs. All the cases have been considered in the

Python implementation [9].

A.2.1 Integral over the samples for the precision. For the pre-

cision, each predicted interval located within the affiliation zone is

cut into three pieces (possibly empty), corresponding to the portion

before, within, and after the ground truth event. We consider the

case of a single predicted interval pred located after the ground

truth event (thus not intersecting it). The distance from the inter-

val to the ground truth event goes from 𝑑min = predstart − 𝑏 to

𝑑max = predstop − 𝑏. We also consider either the case (a) 𝑑max ≤ 𝑚

or (b)𝑚 ≤ 𝑑min. For the remaining case𝑚 ∈ (𝑑min, 𝑑max), the pre-

dicted interval is cut again into two smaller pieces, one verifying

(a) and the other (b). The integral over the samples is given by:

A :=

∫

𝑥 ∈pred
𝐹precision𝑗

(dist(𝑥, gt𝑗 ))𝑑𝑥 =

∫ 𝑑max

𝑑min

𝐹precision𝑗
(𝑧)𝑑𝑧.

(12)

We replace the survival function using (10). The linear part gives
∫ 𝑑max

𝑑min
𝑧𝑑𝑧 = (𝑑max − 𝑑min) (𝑑max + 𝑑min)/2 = |pred|𝑑center, with

𝑑center the distance reached for the point at the middle of the pre-

dicted interval. For the two cases (a) and (b), we deduce the same

expression:

A

|pred|
= 1 −

|gt𝑗 | +min(𝑑center,𝑚) + 𝑑center

|𝐼 𝑗 |
. (13)

A.2.2 Integral over the samples for the recall. For the recall,

we cut the ground truth interval into a finite partition such that

each piece gt𝑗,𝑘 is either fully included in the predictions (and the

integral is immediate) or has a unique closest prediction 𝑡pivot,𝑘 ∈ 𝐼 𝑗
located at the border or outside the piece. Furthermore, all elements

of a piece should be closer either to the closest prediction or to the

border. We consider the case of a closest prediction located after the

ground truth event, so that the distance from an element 𝑦 ∈ gt𝑗,𝑘
to the predictions is: 𝑡pivot,𝑘 − 𝑦.

The integral over the samples is given by:

B :=

∫

𝑦∈gt𝑗,𝑘

𝐹𝑦,recall𝑗 (dist(𝑦, pred ∩ 𝐼 𝑗 ))𝑑𝑦 (14)

=

∫

𝑦∈gt𝑗,𝑘

𝐹𝑦,recall𝑗 (𝑡pivot,𝑘 − 𝑦)𝑑𝑦. (15)

We replace the survival function using Eq. 11. We define 𝑦center
the middle point of gt𝑗,𝑘 , 𝑑pivot = |𝑡pivot,𝑘 − 𝑦center | its distance to

the pivot prediction, and𝑚center = min(𝑦center −𝐴, 𝐵 − 𝑦center) its

closest distance to the border. Using those notations, we obtain on

the one side the linear part:
∫

𝑦∈gt𝑗,𝑘

(𝑡pivot,𝑘 − 𝑦)𝑑𝑦 = |gt𝑗,𝑘 |𝑑pivot (16)

and on the other side:
∫

𝑦∈gt𝑗,𝑘

min(𝑡pivot,𝑘 − 𝑦,𝑚𝑦)𝑑𝑦 = |gt𝑗,𝑘 |min(𝑑pivot,𝑚center) .

(17)

Combining those elements, we arrive at the following expression:

B

|gt𝑗,𝑘 |
= 1 −

min(𝑑pivot,𝑚center) + 𝑑pivot

|𝐼 𝑗 |
. (18)

B PARTICULARIZATION TO POINT
ANOMALIES

The case of point anomalies corresponds to express each anomaly

at date 𝑡 as the limit of an event [𝑡, 𝑡 + 𝜀) when 𝜀 → 0. It is therefore

immediate to restate Eq. 4 as follows (with pred corresponding here

to the point predictions within the affiliation zone 𝐼 𝑗 ):

𝑃precision𝑗
=

1

#pred

∑︁

𝑥 ∈pred

𝐹precision𝑗
(dist(𝑥, gt𝑗 )) (19)

and Eq. 5, since gt𝑗 is now a single point, as:

𝑃recall𝑗 = 𝐹gt𝑗 ,recall𝑗 (dist(gt𝑗 , pred)) . (20)

The forms of the survival functions do not change (in Eq. 10, the

term |gt𝑗 | is replaced by 0).

C PROOF OF THE PROPERTIES

The generic method for proving the properties is to find a cut of

the intervals satisfying the conditions expressed in Appendix A,

and to apply (13) and (18).
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C.1 Predicting the whole interval as anomalous

The recall is 1 because the ground truth interval is included in the

predictions. For the precision, we suppose that 𝑚 = 𝑎 − 𝐴 (the

other case is symmetric). The predicted interval [𝐴, 𝐵) is cut into

[𝐴, 𝑎) ∪ [𝑎, 𝑏) ∪ [𝑏,𝑏 +𝑚) ∪ [𝑏 +𝑚, 𝐵). The Eq. 13 is applied on each

part, giving four areas:

A [𝐴,𝑎) =
(𝑎 −𝐴) (𝐵 − 𝑏)

𝐵 −𝐴
, A [𝑎,𝑏) = 𝑏 − 𝑎 , A [𝑏,𝑏+𝑚) = A [𝐴,𝑎) ,

A [𝑏+𝑚,𝐵) =
1

2

((𝐵 − 𝑏) − (𝑎 −𝐴))2

𝐵 −𝐴
.

It leads to the following expression (corresponding to the Eq. 7):

𝑃precision =

A [𝐴,𝑎) + A [𝐴,𝑎) + A [𝐴,𝑎) + A [𝐴,𝑎)

𝐵 −𝐴
=

1

2
+
1

2

(

𝑏 − 𝑎

𝐵 −𝐴

)2

.

(21)

C.2 Expected precision and recall given a single
random prediction

The expected recall is expressed as the average of (5) over 𝑡 ∈ 𝐼 𝑗 :

E [𝑃recall] =
1

|gt𝑗 |

1

|𝐼 𝑗 |

∫

𝑡 ∈𝐼 𝑗

∫

𝑦∈gt𝑗

𝐹𝑦,recall𝑗 (dist(𝑦, 𝑡))𝑑𝑦𝑑𝑡

=
1

|gt𝑗 |

1

|𝐼 𝑗 |

∫

𝑦

∫

𝑡
1 −

min( |𝑡 − 𝑦 |,𝑚𝑦) + |𝑡 − 𝑦 |

|𝐼 𝑗 |
𝑑𝑡𝑑𝑦

where on the second line, we use the Fubini’s theorem, which

facilitates the computation of the inner integral for each fixed 𝑦:

𝑅(𝑦) :=

∫

𝑡
1 −

min( |𝑡 − 𝑦 |,𝑚𝑦) + |𝑡 − 𝑦 |

|𝐼 𝑗 |
𝑑𝑡

=|𝐼 𝑗 | −
1

|𝐼 𝑗 |

[∫

min( |𝑡 − 𝑦 |,𝑚𝑦) + |𝑡 − 𝑦 |𝑑𝑡

]

=|𝐼 𝑗 | −
1

|𝐼 𝑗 |

[

2

∫ 𝑚𝑦

0

2𝑧𝑑𝑧 +

∫ 𝑀𝑦

𝑚𝑦

(𝑚𝑦 + 𝑧)𝑑𝑧

]

.

For the last line, we observe that for 𝑡 ∈ [𝑦 −𝑚𝑦, 𝑦 +𝑚𝑦], the

distance |𝑡 − 𝑦 | goes from 0 to𝑚𝑦 (and this happens two times, on

the left and on the right), while for 𝑡 ∈ [𝑚𝑦, 𝑀𝑦], the distance goes

from𝑚𝑦 to 𝑀𝑦 . After computing the integral, we end up with a

quantity which does not depend on 𝑦:

𝑅(𝑦) = |𝐼 𝑗 | −
1

2|𝐼 𝑗 |
(𝑚𝑦 +𝑀𝑦)

2
=

|𝐼 𝑗 |

2
, (22)

and finally: E [𝑃recall] = 1/2. For the expected precision, the com-

putations are identical to those leading to Eq. 21.

C.3 Single prediction at a defined position

To ease the understanding, we consider the case |𝐼 𝑗 | = [𝐴, 𝐵) =

[0, 1). Since gt𝑗 = [𝑎, 𝑏) is centered in the affiliation zone and of

proportion 𝑝 , we have: [𝑎, 𝑏) = [1/2−𝑝/2, 1/2+𝑝/2). We detail the

case (d) of a prediction located at the position 1/2 and corresponding

to Eq. 9.

If 𝑝 ≤ 1/2, the cut [1/2 − 𝑝/2, 1/2) ∪ [1/2, 1/2 + 𝑝/2) verifies

the necessary conditions. By applying Eq. 18 on each part, we

obtain: B[1/2−𝑝/2,1/2) = B[1/2,1/2+𝑝/2) = (𝑝/2) (1 − 𝑝/2) so that

𝑃recall = 1 − 𝑝/2.

If 𝑝 > 1/2, the ground truth region is partitioned into four areas:

[1/2 − 𝑝/2, 1/4) ∪ [1/4, 1/2) ∪ [1/2, 3/4) ∪ [3/4, 1/2 + 𝑝/2), from

which we compute:

B[1/4,1/2) = B[1/2,3/4) =(1/4) (3/4),

B[1/2−𝑝/2,1/4) = B[3/4,1/2+𝑝/2) =(𝑝/2 − 1/4) (1/2),

so that 𝑃recall = 1/2 + 1/(8𝑝). By combining those two cases, we

end up with Eq. 9. Globally, the same method is applied for the

positions (a), (b), (c), and we get the curves represented in Fig. 4:

(a) 𝑃precision = 0, 𝑃recall =
𝑝

4
, (23)

(b) 𝑃precision =
1

2
−
𝑝

2
, 𝑃recall =

1

2
−
𝑝

2
+

25

64𝑝

(

𝑝 −
1

5

)2

+

,

(24)

(c) 𝑃precision = 1, 𝑃recall = 1 − 𝑝 +
16

9𝑝

(

𝑝 −
1

3

)2

+

, (25)

(d) 𝑃precision = 1, 𝑃recall = 1 −
𝑝

2
+

1

2𝑝

(

𝑝 −
1

2

)2

+

.

(26)

D REPRODUCIBILITY

The affiliation metrics have been implemented using the standard

Python 3 library and is available at [9]. The implementation lever-

ages the closed-form highlighted in Appendix A and follows the

process of Sec. 3.4: the binary inputs are converted into events

before being separated into affiliation zones. On each segment, the

metrics are computed and the output consists of the precision/recall

scores as well as the individual distances and probabilities.

Reliability of the code has been checked through unit tests. Ad-

ditionally, the numerical results related to the affiliation metrics

obtained in Sec. 4 are directly reproducible by typing the following:

python -m unittest discover. On a Windows 10 machine us-

ing an Intel(R) Core(TM) i7-8650U processor running at 1.90 GHz

with 16 GB of RAM, the whole tests took 8 seconds, including the

computation of the affiliation metrics for the SWaT [8] dataset con-

taining 449919 samples and 35 ground truth events, against up to

472 predicted events.
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