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Abstract—Anomaly detection research works generally pro-
pose algorithms or end-to-end systems that are designed to
automatically discover outliers in a dataset or a stream. While
literature abounds concerning algorithms or the definition of
metrics for better evaluation, the quality of the ground truth
against which they are evaluated is seldom questioned. In this
paper, we present a systematic analysis of available public (and
additionally our private) ground truth for anomaly detection in
the context of network environments, where data is intrinsically
temporal, multivariate and, in particular, exhibits spatial prop-
erties, which, to the best of our knowledge, we are the first
to explore. Our analysis reveals that, while anomalies are, by
definition, temporally rare events, their spatial characterization
clearly shows some type of anomalies are significantly more
popular than others. We find that simple clustering can reduce
the need for human labeling by a factor of 2×-10×, that we are
first to quantitatively analyze in the wild.

I. INTRODUCTION

Troubleshooting network anomalies is a fundamental task
of modern network management. The overall workflow may
require to analyze categorical (e.g., configuration informa-
tion), textual (e.g., system or service logs), numeric (e.g.,
Key Performance Indicators, KPI, telemetry) information, or
a multi-modal combination of the former, to identify and
repair the fault. Yet, current networks have achieved a size
and complexity that renders human-based Anomaly Detection
(AD) and diagnosis unfeasible without any kind of automated
help [1]: in this regard, Machine Learning (ML) has been
consistently exploited [2] to efficiently solve the AD task.

In particular, we observe that the emergence of model
driven telemetry supported by multiple vendors has made
accessible a wealth of (i) time-varying and (ii) multivariate
(iii) numerical data: consequently, literature to perform AD in
these settings has flourished in recent times. First, an abundant
corpus of ML algorithms and methods has been investigated
– from changepoint detection [3], to trees [4], [5], subspace
projection [6], [7] deep learning [8], to name a few– though
not surprisingly, there is no single method that appears to be
superior to all competitors in all circumstances. Additionally,
as many of the above approaches do not explicitly take into
account the temporal component of multivariate KPIs data, a
complementary research track [9]–[12] has started exploring
unbiased metrics for AD evaluation on temporal data, to
avoid potentially misleading or downright incorrect results.
Under this light, regardless of the ML algorithm class, proper
evaluation of AD algorithms still requires some amount of
labeled data – which holds also for unsupervised algorithms,

where labels are used not for the purpose of model training, but
rather as ground truth (GT) for a fair algorithmic assessment.
As, by definition, anomalous events are rare and as data
labeling is, additionally, a knowingly difficult task, a third
research track is devoted to assessing the label quality [12]
or reducing the burden of ground truth collection via e.g.,
active-learning [13], [14] or synthetic generation [15].

At the same time, whereas as early highlighted network
troubleshooting is inherently multivariate, recent work on
metrics [11], [12] or ground truth [13]–[15] evaluation is
still focused on univariate data – which is partly due to the
lack, up to recent times, of publicly available datasets. To
counter this problem, we set out to systematically analyze and
contrast the available datasets for time-varying multivariate
anomaly detection, with special attention to the computer
network domain. In particular, instead of proposing yet another
“new” algorithm to an already quite extensive arsenal (e.g., see
surveys in [1], [2], [8]), we focus on the study of the ground
truth labels, of which we analyze its temporal (i.e., which
period is labeled as anomalous) and spatial (i.e., which KPIs
are labeled as anomalous during that interval) properties. We
point out that, due to the lack of public data until recent times,
spatial GT properties have not been studied yet.

Summarizing our main contributions, we first present a
thorough analysis of GT under temporal (e.g., outlier vs
long lasting anomaly) and spatial (univariate vs multivari-
ate anomaly) angles. The presence of (i) different types
of temporal anomalies with a, furthermore, (ii) intrinsically
multivariate GT labels suggests the use of complementary
detection techniques (e.g., outlier vs changepoint detection),
and stresses the need of local outlier explanation in the
spatial dimension. Second, we leverage binary clustering to
group spatially similar anomalies and automatically provide
human-readable cluster labels in the original KPI space, that
can greatly assist the labeling tasks (e.g., in active learning
settings). Third, we analyze the clustering results, empirically
quantifying that, despite anomalies being temporally rare, the
spatial footprint of some is significantly more popular than
others – with e.g., top-5 (10) clusters representing the bulk
75% (85%) of anomalous events in the analyzed datasets,
based on which we quantify expected benefits of cluster-based
active learning in the wild.

The remainder of this paper describes the data (Sec. II),
analyzes temporal (Sec. III) and spatial (Sec. IV) properties
of the GT and summarizes our findings (Sec. V).



TABLE I: Statistical description of the data sources used in this paper.

Data
Source Public No. of

datasets
Sampling

period
Median±MAD†

samples / dataset
Median±MAD†

features / dataset
No. of
events

Median±MAD†

# KPIs / event
Ground truth‡

Type, Extent

BGP [16] ✓ 39 5 sec 1K ± 31 873 ± 18 45 n.a. controlled, temporal
Webserver [17] ✓ 15 1 min 398K ± 146 231 ± 0 64 n.a. manual, temporal

Router ✗ 64 1 min 2K ± 1K 87 ± 79 175 4 ± 4.4 manual, spatio-temporal
SMD [18] ✓ 28 1 min 47K ± 37 38 ± 0 325 4 ± 2.9 manual, spatio-temporal
† MAD stands for Median Absolute Deviation. ‡ GT Type is either controlled or manual, GT extent is either temporal or spatio-temporal.
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Fig. 1: Data sources: Temporal representation, where each blue line represents a dataset, with labeled anomalies marked in red.
The inset plots of BGP and Router further expand a single dataset (time on x-axis, KPI on the y-axis) to portray differences
of temporal GT (BGP, no per-KPI information) and complete GT (Router, detailed per-timeslot per-KPI information).

II. DATA

We use four different sources of data, which to the best
of our knowledge comprise all publicly available data with
labeled ground truth related to (i) time-varying (ii) multivariate
(iii) numerical data in the computer networks1 domain. We
additionally consider a private data source, that we cannot,
unfortunately, share due to legal aspects.

Overall summary. As summarized in Tab. I, these data
sources have highly heterogeneous characteristics. Each source
contains several datasets, each of which is a single instance of
multivariate numeric time series (e.g., collected on a specific
device in the topology), that we visually depict at a glance in
Fig. 1, where each blue line represents a different dataset2 and
labeled anomalies are marked in red.

From a temporal perspective, datasets are sampled at minute
(all but BGP) or second (BGP) granularity, with duration rang-
ing from thousands (BGP, Router) to hundreds of thousands
(Webserver) of samples. For each source, datasets can be either
systematically collected at the same (i.e., Webserver) or only
partly overlapping (i.e., BGP, Router) or unknown (i.e., SMD)
times. From a spatial perspective, the set of collected KPIs
(or features) ranges from few tens (Router, SMD) to few
hundreds (BGP, Webserver). Additionally, within each dataset,

1Whereas other publicly available sources exist (e.g., water treatment [19],
[20]), we disregard them in this paper for the sake of simplicity.

2Temporal gaps between datasets in the BGP and Router sources have
been reduced for visual clarity, as the pictures would have been too sparse
otherwise.

the spatial dimension is either fixed (Webserver, SMD) or
variable (BGP, Router).

From a GT labeling perspective, the number of anomalous
events ranges between few tens (BGP, Webserver) to few
hundreds (Router, SMD). Most importantly, we can categorize
the available ground truth along the (i) type and (ii) extent. In
terms of type, anomalies are either controlled by a synthetic
injection process (BGP) or manually verified by human experts
(all but BGP). In terms of extent, the label can only provide a
temporal view (BGP, Webserver) of the anomalous event, or
a complete spatio-temporal view (Router, SMD) by precisely
pinpointing which KPIs exhibit an anomalous behavior during
the interval. As a result, for some data sources (Router, SMD)
it is possible to quantify the spatial footprint of an anomaly
(e.g., median KPI/event as in Tab. I) and further analyze its
prevalence (e.g., clustering as in Sec. IV). We now provide a
brief overview for each source.

BGP. A public [16] collection of 39 datasets, this source
contains multiple experiments run on a testbed datacenter with
8 leaf nodes connected by 4 spine nodes: a dataset in this
source represents a specific device of the deployed testbed.
The testbed runs only BGP as a routing protocol in the control
plane, with application traffic in the data plane peaking up to
1 Tbps. The collected KPIs are selected by experts, and relate
to either control plane (i.e., BGP protocol telemetry) or data
plane (e.g., per node and per interface counters) features.

Ground truth is controlled and temporal, with two types
of injected anomalies (BGP clear; BGP port flap). GT la-
bels reliably indicate the start time of the injected BGP
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anomaly, however the anomaly duration is arbitrarily set to a
duration of 5 minutes (equivalent to 60 samples due to the
5 seconds sampling period). Additionally, the ground truth
reliably indicates the device (equivalently, dataset) where the
anomaly has been injected, but no manual annotation is further
performed. Yet, from Fig. 1, five different experimental groups
are clearly visible, with a controlled pattern of sequential
anomaly injections across the different devices. Thus, when
working with datasets from this source, one should expect
unlabeled anomalies to be also present – due to cascading
effects from neighboring devices.

Webserver. A public [17] collection of 15 datasets, collected
from multiple servers hosting an enterprise application. KPIs
belonging to several categories (e.g., database connections,
memory, transactions, threads, swap and other) are collected
from the operating system and the WebLogic Server appli-
cation. Individual datasets in this source represent distinct
hosts, that may still exhibit correlated behaviors due to the
enterprise application dependencies: e.g., several moments in
time exhibiting simultaneous anomalies are visible in Fig. 1.

The ground truth is temporal and manual, i.e., experts ana-
lyzed the moments in which the application was restarted and
labeled the time period before the restart as either anomalous
or healthy. Since experts validate only a subset of the temporal
period (i.e., the time before a restart), it follows that every
other period that does not precede an application restart is
labeled as normal – which may mask statistically anomalous
data with less prominent business impact.

Router. A private collection of 64 datasets, each of which
correspond to a single router of a Internet Service Provider
(ISP) deployment. Generally, only up to two datasets are
extracted from the same deployment and exhibit temporal
overlap, while most of the datasets spans different ISPs
and are thus independent. Each dataset presents a variable
number of KPIs, whose name comprises two parts: a detailed
node/module/chassis identifier (which we disregard) and a KPI
identifier (for spatial analysis).

The ground truth collection is manual and spatio-temporal.
As in Webserver, an alert ticket prompts human experts to
examine a set of KPIs, to identify anomalous vs healthy
periods. In addition to Webserver, the experts additionally flag
each KPI individually as being anomalous or not: the number
of KPI in each dataset depends on the set of KPIs examined
by each expert and is significantly more variable with respect
to other sources. To make the spatio-temporal analysis more
general in Sec. IV, we consider each name as “flat”, and do
not attempt at using semantic information (e.g., such as KPI
category) or syntactical structure (e.g., hierarchical naming
structure).

SMD. Server Machine Dataset (SMD) is a public [18] col-
lection of 28 datasets, each of which contains performance
metrics like CPU, memory or network usage. While the servers
were deployed in three groups, each dataset must be treated

independently from each other. We additionally remark that
whereas Fig. 1 visually depicts them as perfectly simultaneous,
this does not correspond to the real moments in time in which
each dataset was collected, as this information is not present
in the available data.

The ground truth for these datasets is, as in the previous
case, manual and spatio-temporal, with human experts exam-
ining incident reports and flagging KPIs individually. Roughly
the first half of the data does not exhibit any anomalous KPI
(which is convenient for learning self-supervised represen-
tations of the data [18]), in stark contrast with the second
half of the data (that exhibits a significantly large number
of anomalies). Unlike in the Router source, no identifier
information is present in KPI names and, coherently with
the Router case, we consider each name as “flat” to preserve
generality of the spatial analysis in Sec. IV.

Insights for anomaly detection. The brief description in
this section already highlights important facts, concerning the
released ground truth, that have to be taken into account to
perform anomaly detection in a way that produces results that
are correct and true to the underlying data.

First, incompleteness in the GT or meta-data can lead
to biased evaluation. For instance, cascading effect among
neighboring nodes may arise that are not properly documented
(e.g., SMD source lacks topological meta-data) and labeled
(e.g., BGP source only labels the injection node, but do not
label affected nodes). Similarly, bias can be introduced by
temporal incompleteness (e.g., as experts may purposely avoid
to label anomalies that are irrelevant from business perspec-
tive) or approximation (e.g., when anomaly duration is fixed in
controlled labeling). Finally, GT may exhibit spatial sparseness
due to labeling incompleteness (e.g., false negative of an
expert missing a statistically anomalous KPI), or different tacit
purposes of GT labeling (e.g., labeling the cause vs labeling
all symptoms).

In the remainder of this work, we more systematically
analyze GT from a spatio-temporal angle, to gather richer
insights and implications concerning the network AD task.

III. TEMPORAL PROPERTIES

We start by analyzing the temporal properties of the anoma-
lous GT. In this context, a KPI dataset with F features and
of duration T samples can be represented as a X ∈ RTF

matrix corresponding to a multivariate numeric time series,
and the corresponding ground truth is either (i) a tempo-
ral GT ∈ {0, 1}T binary vector with T values indicating
whether the t-th time slot is anomalous, or (ii) a spatio-
temporal GT ∈ {0, 1}TF matrix describing which features
are anomalous at any sample. We start by characterizing the
duration and interarrival of anomalous events in the GT.

A. Anomalous events duration

Goal. From a methodological standpoint, it is important to
differentiate outlier detection (OD) defined as “an observation
(or subset of observations) which appears to be inconsistent

3



−5

0

5

10

16:40 16:45 16:50 16:55 17:00

Time

K
P

I v
al

ue

0

5

10

15

20

21:20 21:25 21:30 21:35 21:40

Time

K
P

I v
al

ue

0

25

50

75

08:30 08:45 09:00 09:15 09:30

Time

K
P

I v
al

ue

0

10

20

30

Jan 21 Jan 22 Jan 23 Jan 24 Jan 25

Time

K
P

I v
al

ue

0

5

10

15

03:10 03:15 03:20 03:25 03:30

Time

K
P

I v
al

ue

0

10

20

30

40

06:00 07:00 08:00

Time

K
P

I v
al

ue

0

10

20

30

40

11:25 11:30 11:35 11:40 11:45

Time

K
P

I v
al

ue

0

10

20

30

17:00 17:30 18:00 18:30

Time

K
P

I v
al

ue

Short Long

Long

B
G

P
W

eb
se

rv
er

R
ou

te
r

S
M

D

1 minute 10 minutes 1 hour 1 day 1 w 1 m

0%

25%

50%

75%

0%

3%

6%

9%

0%

20%

40%

0%

5%

10%

15%

20%

Distribution of anomalies duration (minutes)

P
er

ce
nt

ag
e

(a) (b) (c)

b

b

b

b

c

c

c

c

B
G
P

W
eb
se
rv
er

R
ou
te
r

S
M
D

deleted−routes−count
E1 input load
E1 input rate

E1 output rate
E2 output rate
items processed

GC Collection Count
GC Collection Time
ND

Active Connections
Stuck threads (run)
Stuck threads (sys)

cause cpu aid me invalid
fqme cnt1
mc cnt0

retransegs
tcp_timeouts
tcp_use

out_rsts
retransegs
tcp_timeouts

cause i nhlfe invalid
excp id l2 mplsuc

Fig. 2: Temporal analysis: (a) Distribution of the duration anomalous events for all data sources. Anecdotal examples of
anomalies with (b) short and (c) long duration: standardized values of the top-3 KPIs (lines) and temporal GT (red ranges).

with the remainder of that set of data” [21] from changepoint
detection (CPD), whose focus is on “detecting various changes
in the statistical properties of time series . . . such as mean,
variance, or spectral density” [22]. Algorithms for OD and
CPD are specifically designed to capture these complementary
types of discrepancies and are hardly interchangeable: as
such, it is important to observe the prevalence of events that
are intrinsically better captured by either of OD or CPD
techniques.

Method and insights. To simplify, we observe that CPD
requires to observe change in statistical properties, which in
turn require the observation to span multiple samples, and
are thus only suitable for relatively long events. Conversely,
OD techniques are amenable to also detect short events, such
as spikes. To examine this question, Fig. 2-(a) presents a
histogram of the duration of the different anomalous events
across data sources.

The first clear observation is that each source has a com-
pletely different profile: BGP has a predefined anomalous
event duration, and as such the delta-shaped distribution is
expected and has limited interest. Webserver has an overall
very long duration (about 9 months) and with few exceptions
experts label events that last no less than 1 hour. Interestingly,
no noticeable “mode” capturing a significant fraction of the
event duration appear, so that events lasting 1 day or 1 week
(i.e., more than 10K consecutive anomalous slots) are equally
likely. Router and SMD instead exhibit a clear mode for
short events: particularly, over 40% (20%) of events in Router

(SMD) have a duration shorter than 1 min (3 min). At the same
time, the rest of the events have a duration that spreads to
really long windows of time (above 1 day).

Summarizing our observations, we first gather that experts
from the same technological domain may label anomalies in
rather different manner: this may be due to an implicit bias to
label short vs long duration, which are not fully elucidated by
the terse representation of a binary ground truth. Second, we
see that a mixture of short outlier and long changepoint events
are present across datasets: detecting both may require the
simultaneous use of complementary OD and CPD techniques,
which is rarely addressed in scientific research, where OD and
CPD are separately studied.

Additional GT observations. Fig. 2 additionally portrays
examples of anomalous events having (b) short and (c) long
duration. The picture depicts the GT (red ranges) and the
temporal evolution of the top-3 KPIs (according to their
variation; in case of Router and SMD, selection is limited
to the top-3 KPI present in the anomalous GT).

For BGP, the examples highlight issues that can arise with
fixed ground truth: e.g., a fraction of the labeled window
contains points that are similar or identical to periods without
anomalies, which can yield false negatives in evaluation.
This said, manual ground truth shows similar discrepancies.
For instance, in Webserver the GT appears to lag behind
statistically anomalous behavior of the top-3 KPIs (for both
short and long examples) while GT in the long event of SMD
appears to fully include the event. Finally, it is interesting to
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contrast labeling of short anomalous events in Router (where
a single sample is often labeled) vs SMD (where 3-samples,
some of which exhibit normal behavior, surrounding the spike
are often labeled).

Abstracting from these anecdotal observations, we gather
that the time window labeled as anomalous does not appear
to be completely aligned with the anomalous looking data.
This can have consequences on the quality of supervised
models, but can also affect unsupervised evaluation as slot-
based precision/recall metrics can be biased by the GT. To
cope with this issue, a recent trend is the usage of evaluation
metrics for temporal AD that allow for slight discrepancies
(e.g., a flexible margin of error) between the ground truth and
detections [10], [23]. At the same time, it appears that the GT
labels in some data sources already “hardcodes” such a margin
of error, for which the usage the aforementioned metrics would
be discouraged. Thus, this calls for more systematic exposure
of the processes of GT definition and universally adopted
standard for AD evaluation.

B. Anomalous event interarrival

Goal. A complementary temporal property of anomalous
events is the duration of the normal period between events,
i.e., otherwise stated, the interarrival time of anomalous events.
Due to the diversity of the data sources, we are not interested
here in a precise characterization of GT labels as a stochastic
process. Rather, our interest is in gathering implications for
AD tasks. For multivariate series with several anomalies, the
temporal distance between them has implications regarding
detection: e.g., if two independent anomalies are close in time,
there is the risk of jointly detecting them as a single event,
potentially misunderstanding both events.

Method and insights. More formally, given a ground truth
vector GT for a specific dataset d ∈ D in the data source D,
we extract from the ground truth all anomalous events as tuples
(d, si, ei), where si and ei represent the start and end-time of
the i-th event, such that (GTt = 1,∀t ∈ [si, ei])∧ (GTsi−1 =
GTei+1 = 0). Considering ordered tuples si > ej ,∀i > j,
we then define the interarrival time as the difference between
consecutive si − ei−1 events in a given dataset d ∈ D.

Fig. 3 depicts the scatter plot of anomaly interarrival time
versus anomaly duration (reporting for the sake of visibility,
a colored convex hull comprising all points in a given data
source), annotating the median interarrival with a vertical
line. As for the anomaly duration, we observe that also the
anomaly inter-arrival process is highly variable across datasets:
in Webserver anomalies are rare events (median interarrival of
two weeks), while the labeling timescales of SMD (median
interarrival 1 day) and Router (median interarrival 1 hour)
sources are significantly shorter, and BGP anomaly injections
appears to be periodic (around 10 minutes). In particular, the
distribution of points and the extent of the hulls in Fig. 3
show that for most sources, there is no systematic bias in the
anomalous arrival pattern (e.g, long anomalies followed by
long interarrival, or short anomalies one after the other). At
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Fig. 3: Temporal analysis: Scatter plot of interarrival time (x-
axis) versus anomaly duration (y-axis), with median lines.

the same time, it appears that for datasets with synthetic GT
(such as BGP), trivial rules learned by ML on data (such as
a detector learning to raise 5-minutes long alarms every 10-
minutes) could appear to be “good for the wrong reasons” [24]
— while such oddities are unlikely in the more complex
situation presented by human labeling.

IV. SPATIAL PROPERTIES

We next turn our attention to the analysis of the spatial
component of the ground truth labels, which is possible for the
SMD and Router sources. We first quantify the spatial footprint
of anomalous events. We next use clustering techniques to
automatically infer an anomalous type classification and study
their relative occurrence.

A. Spatial footprint of anomalous events

Goal. The fraction of KPIs related to an anomaly influ-
ences the difficulty of detecting it. It has to be noted that
multivariate AD methods [3]–[8] are designed to produce a
single anomalous score for the whole event. As such, the
identification of the spatial components that most contribute to
making the timeslot anomalous are computed by entirely other
means (e.g., via reconstruction error [25], by evaluating feature
deviation [26], feature importance [27] or feature predictive
power [28]). Additionally, several state of the art methods [6],
[7] are based on sparse random feature projections: thus, a low
percentage of anomalous KPIs, paired with a high number of
KPIs, can make correct spatial detection a hard task.

Method and insights. As previously done for the temporal
characteristics, we simplify the task and start by contrasting
intrinsically univariate anomalies (i.e., for a given t, only a
single KPI j is anomalous ∃!j : GTt,j = 1) vs anomalies
with a multivariate footprint (where for a given t we quantify
the footprint as the number of anomalous KPIs in the GT
|j : GTt,j = 1|, possibly normalized over the number F of
KPIs in the dataset).

Fig. 4-(a) reports a histogram of the percentage of involved
KPIs per anomalous event, which shows the eminently multi-
variate nature of human labeled anomalies: only 7% (21%) of
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SMD (Router) events are univariate. Additionally, while the
median number of anomalous KPIs per event is 4, the events
with the largest footprint comprise up to few tens of anomalous
KPIs. At the same time, the tail in Fig. 4-(a) shows that as a
small fraction of KPIs is labeled, events do not tend to disrupt
the whole system: rather, a small fraction of KPIs is possibly
enough to characterize the event type – which deserves further
attention.

Additional GT insights. Anecdotal examples of univariate
anomalies are reported in Fig. 4-(b), where KPIs labeled as
anomalous are plotted in a red dashed line, while unlabeled
KPIs are presented in solid black line: in both cases, we
can observe that KPIs that exhibit a statistically anomalous
behavior are not labeled as such by the expert that examined
them. On the one hand, this suggests that the fraction of
purely univariate (from a statistical viewpoint) anomalies is
overestimated in the ground truth. On the other hand, experts
may knowingly discard KPIs that are not relevant from a
business or domain viewpoint: it appears that some amount
of expert knowledge, which is complementary to KPI data
and thus not readily available to the algorithm, needs to be
considered to reconcile algorithmic and expert viewpoints.

Spatio-temporal insights. Finally, we provide a joint spatio-
temporal view and examine the duration of anomalies vs their
spatial footprint on Fig. 5. Duration and number of involved
KPIs appears to be unrelated (Pearson correlation tops to 0.22
for SMD), it is interesting to note that all cross-product of
(short, long) and (uni, multi)-variate anomalies are present in
the sources. Additionally, both sources present a non marginal
fraction of anomalies with low numbers of anomalous KPIs
but extremely long durations, which are particularly hard to
detect.
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B. Popularity of anomalous event types

Goal. The preliminary characterization of the spatial foot-
print of an anomaly suggests that human experts characterize
anomalies using a small fraction of KPIs, which can be used to
group together anomalies presenting similar sets of anomalous
KPIs. The previous characterization, though, presented an
amount of noise, bias and even possible errors in the ground
truth labels, which any grouping process should be aware of.
Our goals in this section are thus to assess whether such
KPIs groups emerge from the GT data via clustering and to
additionally inspect properties of resulting clusters.

Method. For grouping together anomalies with similar set
of KPIs, we resort to clustering in a binary (as each KPI
is either present of absent), large (38 dimensions for SMD
and over 100 for Router) and sparse (as the median number
of KPIs per anomaly is 4) space. More formally, for each
dataset in a source D, given an anomalous event i ∈ [1, N ]
(with N the overall number of anomalous events), starting at
date si and ending at ei, we consider the multivariate set of
anomalous features ki = {j : ∃t ∈ [si, ei], GTt,j = 1}. Let
further denote with F the number of unique features across all
events, as gathered by one-hot encoding of features. We then
construct the matrix K ∈ {0, 1}NF whose elements Ki,j = 1
when anomaly i contains feature j, and Ki,j = 0 otherwise.
Due to aforementioned noise, labeling imprecision etc., we
refrain from just clustering exactly matching footprints (i.e.,
equal rows in the matrix) and rather seek for approximate
matches in this binary, sparse, high dimensional space. To do
so, we employ Proximus [29], a binary clustering algorithm,
that approximates the original matrix with sets of dense
submatrices. Furthermore, a noticeable feature of Proximus
is that clusters are self-described by a dominant pattern, i.e.,
a small set of anomalous features that uniquely identifies and
represents the cluster. Proximus depends on two parameters,
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Fig. 6: Spatial analysis: Representation of anomalous event clusters, projected in a 2d space, for (a) SMD and (b) Router.
Annotations summarize characteristics of the top-5 clusters obtained by Proximus.

namely: (i) the maximum radius R+, i.e., expressed as the
maximum number of bits a member in a cluster may deviate
from its dominant pattern and (ii) the minimum size S−, i.e.,
the minimum number of samples in a cluster.

Clearly, while the algorithm attempts to create clusters that
satisfy the imposed conditions, in some cases conditions are
violated: in this case, Proximus creates a cluster with an
“empty” dominant pattern, which is used as a rag bag [30],
in which unassigned samples are grouped together. To fix
the hyperparameters, we performed for each data source a
grid experiment where we tested all possible combinations
of R+ ∈ [0, F ] and S− ∈ [1, N ], and selected the resulting
clustering that minimized, in this order: (i) the size of the
rag bag cluster, i.e., the total number of samples without
dominant pattern, (ii) the total approximation error, i.e., the
sum of distances from each sample to its dominant pattern
over all samples, (iii) R+ and S−. Notice this order ensures
that (i) most of the samples are clustered, that (ii) clustering
process provides consistent results, as samples are close to
their dominant pattern and (iii) there are as many clusters as
possible, to provide fine-grained anomaly footprint.

Insights on cluster composition. We applied the presented
methodology to the ground truth of both the Router and SMD
sources. A bi-dimensional visualization of the top-5 resulting
clusters is reported in Fig. 6.

We note that the top-5 clusters represent 70% (77%) of the
Router (SMD) events: clusters correspond to different types3

of anomalies, which are automatically-labeled via Proximus’
dominant pattern (of which only up the first two components

3Recall that clustering happens in a much larger space, so clusters are only
apparently close due to 2d projection.

are reported in the figure due to space limits). For each cluster,
annotations further characterize: the dominant pattern length
and mean dispersion (i.e., the average value of the Manhattan
distance between members of each cluster and its pattern); the
median number of KPIs (and percentage of univariate events);
the median duration (and percentage of spikes); the cluster
rank and size (percentage of overall anomalies). We remark
that as the mean dispersion of samples in the clusters is small,
it follows that clusters represent a consistent set of highly
similar KPIs, testifying to the soundness of the approach.

Due to space limitations, we avoid reporting a full descrip-
tion of clusters, that would be interesting for domain experts
but does not add value from a methodological viewpoint. We
instead provide a mathematical model to further testify that
clusters provided by our method are not artifacts. In particular,
we do so by showing that the expert labelling exhibits patterns
that would not appear for randomly generated data. Assuming
two events generated by taking randomly A anomalous KPIs
among F KPIs, the number of shared KPIs l verifies:

P(l) =
(
A

l

)(
F −A

A− l

)/(
F

A

)
, (1)

giving an expected number E[l] of shared KPIs:

E[l] =
F∑
l=0

lP (l) =

F∑
l=0

l

(
A

l

)(
F −A

A− l

)/(
F

A

)
= A2/F.

(2)

Numerically, taking A = 4 (median number of anomalous
KPIs for both Router and SMD) and either F = 87 (Router)
or F = 38 (SMD), we expect less than one KPI in common
in case of random labeling. Therefore, observing large groups
of spatial clusters as those reported by Proximus, indicates
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Fig. 7: Cluster popularity: Relative popularity of different
anomaly types, as identified by their cluster ID. Heavy tailed
popularity distribution is reported for visual comparison only
(Zipf with catalog N = 10, shape α = 1.6; shades representing
the confidence interval at 95 and 99% for a set of 325 events).

that the labeling performed by the expert is exhibiting a
semantically relevant structure.

Additional insights on cluster popularity. As early observed,
cluster size has a skewed distribution: while the overall number
of clusters is 30 (18) for Router (SMD), roughly 3/4 of amo-
malous samples falls in just the top-5 clusters, whereas top-10
cluster comprise 85% (93%) of all events in the Router (SMD)
dataset. In other words, despite anomalies are rare events in the
time dimension, some anomaly types are even rarer than others
in the spatial dimension. We depict the popularity skew by
showing the percentage of events in each cluster, for the top-10
clusters ranked by decreasing size in the log-log plot of Fig. 7.
The picture shows that relative popularity of anomalies follows
a highly skewed popularity distribution4, which has important
consequences for data collection, labeling and operation.

First, we stress that popularity results are remarkably similar
over two independent data sources, collected in distinct envi-
ronments with no overlap in the KPI signals, heterogeneous
spatio-temporal characteristics and rather different labeling
strategies. This reinforces the soundness of our approach and
the generality of the findings concerning the existence of a
remarkable popularity skew across anomaly types.

Second, this means that the existence of such skew can be
leveraged to gather a finer grained understanding of popular
anomaly types. For instance, we previously noticed that not all
KPIs that are statistically anomalous are labeled by experts:
should that happen systematically for some specific KPI in a
cluster, this could help automatically inferring the low business
relevance for that KPIs and anomaly type, i.e., semi-supervised
expert knowledge can be encoded at cluster level. Similarly,
it is possible that, for some clusters, anomalies may share the
same cause and exhibit similar effects: this could simplify the
root cause analysis process, which should be done once per
cluster (as opposed to once per event).

4Note that, due to the small catalog and sample size, it would not be
statistically relevant to attempt to fit a precise distribution: the Zipf law and
simulation envelope for finite realizations of the same length is merely added
for visual reference.
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Fig. 8: Gain of clustering-driven active labeling: reduction of
labeling effort as a function of the number of samples to label
per cluster (dashed lines correspond to labeling only samples
in the top-10 clusters, whereas solid lines correspond to all
clusters).

Third, while in this paper we apply Proximus in offline batch
mode, it can be argued that clustering can be applied online
in incremental fashion, using any of [25]–[28] and spatially
projecting unlabeled anomalies in the same space, labeling
only new samples that do not fit existing clusters. Indeed, after
few samples of the same cluster are labeled by the expert,
there is no need to further systematically label all events from
the same cluster – which, as anomalies are skewed, would
allow to significantly reduce the labeling effort. Moreover, due
to popularity skew, we can expect to quickly reach a good
characterization of few clusters representing the majority of
events.

C. Gain of cluster-based active-labeling

Goal. We observe that spatial skew can yield to a reduction of
labeling effort, that we aim at quantifying. As opposite as to
present a full-blown active-labeling system, we aim at upper-
bounding the gains that a stratified selection of samples based
on clustering could bring. We instead leave the study of online
algorithms to approach such gains for future work.

Method and insights. We leverage the exhaustive set of labels
from N anomalous events, which required human expertise,
and assess how many of these N labels are redundant and
could have been avoided, as they bring little additional in-
formation. As per the observed popularity skew of the spatial
anomaly distribution, the bulk of the events can be categorized
into a small set of anomalous types C that can be gathered by
clustering.

Observe that due to the skew, many labels of the popular
anomalous types/clusters are redundant: e.g., with Zipf skew
α = 1, samples of the most popular anomaly type/cluster are k
times more frequent labeled than for the k-th type/cluster – and
the redundance grows with α, that as we early shown appears
to exceed 1 in our datasets. Note that this Zipf comparison is
heuristic and, in our data, we expect the smaller clusters to be
of size 1 as N increases.

By using clustering, the labeling effort can be significantly
reduced by capping the amount of samples per cluster to a
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maximum M , as opposite to as systematically labeling all
anomalous events. As we aim at upper-bounding the active
labeling gain, we consider an ideal algorithm creating spatial
footprints that exhibit a perfect agreement with expert labeling.
Yet, we point out that our previous work [31] has shown
effective unsupervised (and semi-supervised) algorithms for
automatically gathering spatial anomalous footprint, that ex-
hibit high levels of agreement with expert labeling, so that we
expect that it would be possible to design practical strategies to
approach such upper-bound with even less human intervention.

Fig. 8 quantitatively upper-bounds the expected reduction
by considering two active-labeling strategies, where either (i)
the expert labels only M samples for the top-10 clusters or
(ii) the expert labels M samples for all clusters, for varying
M ∈ [1, 20]. The picture clearly shows that, depending on the
number of labeled samples, the labeling effort can decrease
by up to an order of magnitude (e.g., when M ≈ 5 per cluster
are labeled in the SMD data source). Moreover, the expected
labeling reduction is any case at least a factor of 2 (i.e., for any
strategy and data source). Even with this rather conservative
estimate, the labeling effort would already be halved: in turn,
this would translate into either a cost reduction (e.g., less
time/experts), or an expected increase in the labeling quality
(by focusing the expert attention on useful labels).

V. CONCLUSIONS

In this paper, we carry on a systematic analysis of Ground
Truth (GT) available for (i) multi-variate (ii) temporal data
for network troubleshooting using four data sources. While
the importance of GT for temporal data is discussed in [12],
two of the four considered data sources enabled us to analyze
labeling from a (iii) spatial viewpoint, which to the best of
our knowledge we are the first to analyze.

In particular, we show that (i) anomalies exhibit distinct
spatial patterns that are not due to chance: we propose to
leverage a clustering technique that can assist human labeling,
by directly providing dominant patterns of similar events.
We further show that (ii) albeit anomalies may be rare over
time, their spatial pattern exhibit a significant popularity
skew: interestingly, despite the environment, the collected
KPIs, the labeling process and the temporal patterns exhibiting
significant differences across the two sources, our analysis
gathered consistent remarks at both qualitative and quantitative
levels. Finally, we show that (iii) by exploiting clustering of
the spatial anomaly footprint as a means to perform stratified
sampling in active-labeling settings, one can achieve signif-
icant reduction of the expected labeling effort In particular,
according to the data sources at our disposal, we observe that
reduction is of at least 2× (and up to 10×), which can be
beneficial to, e.g., reduce GT labeling cost and improving GT
quality overall.

As future work, we plan to address the design and im-
plementation of practical online strategies, with the goal
of building larger and high-quality domain-specific anomaly
databases, with a sustainable labeling effort.
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