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Abstract

Score-based diffusion models map noise into data using stochastic differential equations. While current practice
advocates for a large T to ensure closeness to steady state, a smaller value of T should be preferred for a better
approximation of the score-matching objective and computational efficiency. We conjecture, contrary to current
belief and corroborated by numerical evidence, that the optimal diffusion times are smaller than current adoptions.

1. Introduction
Diffusion-based models (7; 10; 11; 14; 4; 2; 8) generate samples from an unknown density pdata by reversing a diffusion
process which injects noise into the data. This diffusion process is a forward Stochastic Differential Equation (SDE)

dxt = f(xt, t)dt+ g(t)dwt with x0 ∼ pdata , (1)

where xt is a random variable at time t, f(·, t) is the drift term, g(·) is the diffusion term and wt is a Wiener process. We
denote the time-varying probability density by p(x, t), by definition p(x, 0) = pdata(x), and the conditional on the initial
condition x0 by p(x, t |x0). The forward SDE is usually considered for a sufficiently long diffusion time T as in principle,
when T → ∞, p(x, T ) converges to Gaussian noise. Given initial condition p(x, T ), the backward SDE (1)

dxt =
[
−f(xt, t

′) + g2(t′)∇ log p(xt, t
′)
]
dt+ g(t′)dwt t′

def
= T − t, (2)

after a reverse diffusion time T will be distributed as pdata(x). Time varying density of Eq. (2) is denoted with q(x, t).

Practical considerations on diffusion time. In practice, diffusion models are challenging to work with (11). First, a
direct access to the true score function ∇ log p(xt, t) is required in the reverse diffusion is unavailable. This can be solved
by approximating it with a parametric function sθ(xt, t), which is trained using the following loss function,

L(θ) = T Et∼U(0,T )E∼(1)g
2(t)∥sθ(xt, t)−∇ log p(xt, t |x0)∥2 , (3)

where the notation E∼(1) means that the expectation is taken with respect to the random process xt in Eq. (1). Considering
affine drift, the term p(xt, t |x0) is analytically known and normally distributed for all t (expression in Table 1, and in
(12)). Intuitively, the estimation of the score is akin to a denoising objective, which operates in a challenging regime.
Later we will quantify precisely the difficulty of learning the score, as a function of increasing diffusion times. Second,
the noise distribution p(x, T ) is analytically known only when the diffusion time is T → ∞. The common solution is to
replace p(x, T ) with a simple distribution pnoise(x) which, for the classes of SDEs we consider in this work, is a Gaussian
distribution. Indeed, in the infinite diffusion time regime, it is possible to derive p(x, T → ∞) = pnoise(x) analytically. We
report in Table 1 the two main families of forward SDEs used in the literature, with the corresponding pnoise(x).
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Table 1: Two main families of diffusion processes

Diffusion process Marginal p(xt, t |x0) = N (m, sI) pnoise(x)

Variance Exploding α(t) = 0, g(t) =

√
dσ2(t)

dt m = x0, s = σ2(t) − σ2(0) N (0, σ2(T ) − σ2(0)I)

Variance Preserving α(t) = β(t), g(t) =
√

β(t) m = cx0, s = 1 − c, c = e−
1
2

∫ t
0 β(dτ) N (0, I)

In the literature, the discrepancy between p(x, T ) and pnoise(x) has
been neglected, under the informal assumption of a sufficiently large
diffusion time. While this is a valid approach to simulate and generate
samples, the reverse diffusion process starts from a different initial
condition q(x, 0) and, as a consequence, it will converge to a solution
q(x, T ) that is different from the true pdata(x). Later, we will expand
on this error, but for illustration purposes Fig. 1 shows quantitatively
this behavior for a simple 1D toy example pdata(x) = πN (1, 0.12) +
(1 − π)N (3, 0.52), with π = 0.3: when T is small, the distribution
pnoise(x) is very different from p(x, T ) and samples from q(x, T )
exhibit very low likelihood of being generated from pdata(x).
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Figure 1: Effect of T on a toy model.

Crucially, Fig. 1 (zoomed region) illustrates an unknown behavior of diffusion models, unveiled in our analysis. In practice,
there exists an optimal diffusion time that strikes right the balance between efficient score estimation, and sampling quality.

Contribution In § 2 we provide a new characterization of score-based diffusion models to obtain a formal understanding of
the impact of the diffusion time T . We consider a decomposition of the evidence lower bound (ELBO), which emphasizes
the roles of (i) the discrepancy between the “ending” distribution of the diffusion and the “starting” distribution of the
reverse diffusion, and (ii) of the score matching objective. This allows us to investigate the existence of an optimal diffusion
time < ∞, differently from current best practice for selecting T . In § 3 we provide experimental evidence of the described
phenomenon.

2. A new ELBO decomposition and a tradeoff on diffusion time
The dynamics of a diffusion model can be studied through the lens of variational inference, bounding the (log-)likelihood
using an evidence lower bound (ELBO) (3). Our interpretation emphasizes the two main factors affecting the quality of
sample generation: an imperfect score, and a mismatch, measured in terms of the Kullback-Leibler (KL) divergence, between
the noise distribution p(x, T ) of the forward process and the distribution pnoise used to initialize the backward process.

2.1. The ELBO decomposition

By manipulating the LELBO derived in (3, Eq. (25)), we can write

Epdata(x)
log q(x, T ) ≥ LELBO(sθ, T ) = E∼(1) log pnoise(xT )− I(sθ, T ) +R(T ), (4)

where R(T ) = 1
2

T∫
t=0

E∼(1)

[
g2(t)∥∇ log p(xt, t |x0)∥2 − 2f⊤(xt, t)∇ log p(xt, t |x0)

]
dt, and I(sθ, T ) =

1
2

T∫
t=0

g2(t)E∼(1)

[
∥sθ(xt, t)−∇ log p(xt, t |x0)∥2

]
dt. Note that R(T ) depends neither on sθ nor on pnoise, while

I(sθ, T ), or an equivalent reparameterization (3; 9, Eq. (1)), is used to learn the approximated score, by optimization of the
parameters θ. It is then possible to show that

I(sθ, T ) ≥ I(∇ log p, T )︸ ︷︷ ︸
def
=K(T )

=
1

2

T∫

t=0

g2(t)E∼(1) [∥∇ log p(xt, t)−∇ log p(xt, t |x0)∥]2 dt. (5)
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Consequently, we can rewrite I(sθ, T )) = K(T ) + G(sθ, T ), where G(sθ, T ) is a positive term that we call the gap term,
accounting for the practical case of an imperfect score, i.e. sθ(xt, t) ̸= ∇ log p(xt, t). It also holds that

E∼(1) log pnoise(xT ) =

∫ [
log pnoise(x)p(x, T )

p(x, T )

]
p(x, T )dx = E∼(1) log p(xT , T )− KL [log p(x, T ) ∥ pnoise(x)] . (6)

Therefore, we can rewrite the ELBO in Eq. (4) as

Epdata(x)
log q(x, T ) ≥ −KL [p(x, T ) ∥ pnoise(x)] + E∼(1) log p(xT , T )−K(T ) +R(T )− G(sθ, T ). (7)

Before concluding our derivation it is necessary to introduce an important observation.

Proposition 1. Given the stochastic dynamics defined in Eq. (1), it holds that

E∼(1) log p(xT , T )−K(T ) +R(T ) = Epdata(x)
log pdata(x). (8)

Intuitively, when sθ = ∇ log p (and consequently I(sθ, T ) = K(T )), Eq. (4) is attained with equality. Moreover when
pnoise(x) = p(x, T ), then q(x, T ) = pdata(x). The formal justification of Proposition 1 is obtained by manipulating the
results in (3) and the equality between q(x, t′) and p(x, t) when the score estimation is exact and q(x, 0) = p(x, T ). Finally,
we can now bound the value of Epdata(x)

log q(x, T ) as

Epdata(x)
log q(x, T ) ≥ Epdata(x)

log pdata(x)− G(sθ, T )− KL [p(x, T ) ∥ pnoise(x)]︸ ︷︷ ︸
LELBO(sθ,T )

. (9)

Eq. (9) clearly emphasizes the roles of an approximate score function, through the gap term G(·), and the discrepancy
between the noise distribution of the forward process, and the initial distribution of the reverse process, through the KL term.
In the ideal case of perfect score matching, the ELBO in Eq. (9) is attained with equality. If, in addition, the initial conditions
for the reverse process are ideal, i.e. q(x, 0) = p(x, T ), then the results in (1) allow us to claim that q(x, T ) = pdata(x).

2.2. Is there an optimal diffusion time?

While diffusion processes are generally studied for T → ∞, for practical reasons, diffusion times in score-based models
have been arbitrarily set to be “sufficiently large” in the literature. Here we conjecture the existence of an optimal diffusion
time, which strikes the right balance between the gap G(·) and the KL terms of the ELBO in Eq. (9).
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Figure 2: ELBO decomposition, ELBO and likelihood for a 1D toy model, as a function of diffusion time T . Tradeoff and optimality
numerical results confirm our theory.

Empirically, we use Fig. 2 to illustrate this tradeoff through the lens of the same toy example we use in § 1. On the left, we
show the ELBO decomposition. We can observe that G(ŝθ, T ), the gap term obtained with the optimal set of parameters θ
for each T , is an increasing function of T , whereas the KL term is a decreasing function of T . Even in the simple case of a
toy example, the tension between small and large values of T is clear. On the right, we show the values of the ELBO and of
the likelihood as a function of T . We then verify the validity of our claims: the ELBO is neither maximized by an infinite
diffusion time, nor by a “sufficiently large” value. Instead, there exists an optimal diffusion time T ⋆ ≂ 0.85 which, for this
example, is smaller than what is typically used in practical implementations, i.e. T = 1.0
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3. Experiments
We now present numerical results on the MNIST and CIFAR10 datasets, to support our conjecture in § 2. We follow a
standard experimental setup (8; 9; 3; 4): we use a standard U-Net architecture with time embeddings (2) and we report
the log-likelihood in terms of bit per dimension (BPD) and the Fréchet Inception Distance (FID) scores (uniquely for
CIFAR10). Although the FID score is a standard metric for ranking generative models, caution should be used against
over-interpreting FID improvements (6). Similarly, while the theoretical properties of the models we consider are obtained
through the lens of ELBO maximization, the log-likelihood measured in terms of BPD should be considered with care
(13). Finally, we also report the number of neural function evaluations (NFE) for computing the relevant metrics. Training
and evaluation is performed on a small cluster with 16 NVIDIA V100 GPUs. We considered Variance Preserving SDE
with default β0, β1 parameter settings. When experimenting on CIFAR10 we considered the NCSN++ architecture as
implemented in (11). Training of the score matching network has been carried out with the default set of optimizers and
schedulers of (11), independently of the selected T . For the MNIST dataset we reduced the architecture by considering 64
features, ch mult = (1, 2) and attention resolutions equal to 8. The optimizer has been selected as the one in the CIFAR10
experiment but the warmup has been reduced to 1000 and the total number of iterations to 65000.

Exploring different diffusion times. We look for further empirical
evidence of the existence of an optimal time. We shall focus on the
baseline model (11), results are reported in Table 2. For MNIST, we
observe how times T = 0.6 and T = 1.0 have comparable performance
in terms of BPD, implying that any T ≥ 1.0 is at best unnecessary and
generally detrimental. Similarly, for CIFAR10, it is possible to notice that
the best value of BPD is achieved for T = 0.6, outperforming all other
values.

Table 2: Optimal T

Dataset Time T BPD (↓) NFE (↓)

MNIST 1.0 1.16 300
0.6 1.16 258
0.4 1.25 235
0.2 1.75 191

CIFAR10 1.0 3.09 221
0.6 3.07 200
0.4 3.09 187
0.2 3.38 176

Dataset T = 1.0 T = 0.6 T = 0.4 T = 0.2

FID 3.64 5.74 24.91 339.72

NFE 1000 600 400 200

Training and sampling efficiency Reducing T has the benefits of reducing training and
sampling cost. For training, smaller times T allows to use simpler parametric score models. Sampling
speed benefits are evident from Table 2. When considering the SDE version of the methods the number of
sampling steps can decrease linearly with T , in accordance to theory (5), while retaining good BPD and
FID scores. Similarly, although not in a linear fashion, the number of steps of the Ordinary Differential
Equation (ODE) samplers can be reduced by using a smaller diffusion time T .

4. Conclusion
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