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ABSTRACT
As networks have historically been built around connectivity,

architectural features concerning quality of service, mobility,

security and privacy have been added as afterthoughts –

with consequent well known architectural headaches for

their later integration. Despite Artificial Intelligence (AI)

is more a means to an end, that an architectural feature

itself, this is not completely different from what concerns its

integration: in particular, while Cloud and Edge computing

paradigms made it possible to use AI techniques to relieve

part of network operation, however AI is currently little more

than an additional tool. This paper describes a vision of future

networks, where AI becomes a first class commodity: its

founding principle lays around the concept of “fast and slow”

type of AI reasoning, each of which offers different types of

AI capabilities to process network data. We next outline how

these building blocks naturally maps to different network

segments, and discuss emerging AI-to-AI communication

patterns as we move to more intelligent networks.
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1 INTRODUCTION
Over the last 60+ years, networking evolved from a mono-

application circuit-switched telecommunication technology,

to a multi-application all-IP cloud-native architecture. To

fully embrace Artificial Intelligence (AI) benefits, coming

e.g., from Machine Learning (ML) and Deep Learning (DL)

models, the next step in networking evolution will be to

place the latter at the very heart of its architectural definition,

giving birth to “AI native” networks.

As illustratef in Fig. 1, AI and network technologies evolved

in parallel since the early 60: while early cross-pollination

attempts dates back the early 70s[1], they were tepidly re-

ceived, and the 1st AI winter froze further early-adoption.

During the 80s, AI and networking independently evolved,

laying out the basis of the current successful ML and IP

technologies – once more facing difficulties such as a 2nd

AI winter in the late 80s, or the burst of the .com bubble

at the wake of the new millennium. Since the early 2000

(resp. 2010), ML (resp. DL) and networking crossed paths

Figure 1: Graphical timeline of the evolution of the
Artificial Intelligence and Networking domains.

again: in these recent research waves, the focus has gener-

ally been on how to leverage advances in AI technologies to

solve specific networking tasks (that are surveyed e.g., in [2–

4]): i.e., with very limited exceptions, AI has been merely

used as an addendum to the network architecture, that we

can refer to as “AI Assisted” networking. Yet, it now starts

being recognized [5] that the network architecture should

evolve to embrace a deeper synergy with AI to fully harness

its benefit, which would thus become a more fundamental

network building block. Otherwise stated, in the upcoming

“AI native” network architecture, AI would no longer be a

late addendum, but would rather be the starting point of the

equation, leading to the confluence of networking and AI in

a more inter-wined evolution path.

In this paper, we outline and discuss a vision for native

network intelligence. In particular, after overviewing related

work (Sec. 2), we refine the so far quite fuzzy definition of

“AI Native” networking (Sec. 3). We next instantiate what we

believe should be the guiding principles for native network

intelligence, in a framework that remains voluntarily at high-

level (Sec. 4): by divide and conquer, wemake a stark contrast

between “fast” and “slow” AI tasks, which are respectively

useful to (i) pervasively leverage AI knowledge for enhanced

perception and frequent decisions, and (ii) to continuously

advance AI knowledge as a slow yet steady background task.



2 BACKGROUND
While much research has been carried out on “AI Assisted”

networking in the last decades [2, 3, 6] the “AI Native” net-

working is still very much in its infancy, leaving the concept

open to interpretation from normalization and funding bod-

ies [5, 7–9] to industrial [10–12] and academic contexts [13–

18].

AI native in in Standards and Funding bodies. Sev-
eral standards appeared that are related to AI, which are

comprehensively overviewed by the EU Observatory for

ICT standardization [7]: despite a fraction is also related to

networking technologies, as in particular ETSI Experiential

Network Intelligence[8], ETSI Zero-Touch Network Service

Management and IRTF Computing in the Network[9], no

standard emerged yet that has the ambition of defining an

AI native network architecture.

Yet, the need for architectural changes is recognized, for

instance in the EU HORIZON program by funding research

and innovation actions addressing the native integration of

AI for telecommunications, to “implement adaptive decision
making at different time scales with expected [. . . ] changes in
the existing architectures.” [5]. In terms of EU funded projects,

the closest in scope is the H2020 project on “Network intelli-

gence for adaptive and self-learning mobile networks” (DAE-

MON)[19], that considers how to integrate AI over different

use cases spanning the whole end-to-end architecture.

AI native in Industrial whitepapers. Smarter customer

products [10] are among the first references of “AI Native”

in the industry, while closer to the networking field, Eric-

sson [11] and DeepSig [12] both explore AI Native in the

context of 5G technologies. In particular, Ericsson targets

5G Business Support Systems, considering e.g., the reduc-

tion of manual effort in the invoicing [11]. Instead, DeepSig

exploits ML for signal processing [12] in the Open Radio

Access Network (O-RAN) Distributed Unit (O-DU) of the

3GPP Rel 18 standard — which is a natural evolution of the

Self-Organizing Networks (SON) pushed by the 3GPP and

the NGMN organizations.

AI native in Academic research. In light of the previous
observations, it is not a surprise that AI Native networking

research emerged in a 5/6G context, with special emphasis

on the communication aspects [13], air-interface [14], ra-

dio access [15] or slicing [16], with a push toward edge [17]
or in-network [18] intelligence. These effort have merit as

they systematically expose challenges and breakdown re-

quirements for AI native 5G communication [17], offering

some architectural design [15] to facilitate the use of AI for

multiple aspects of air transmission – however with few ex-

ceptions [18] the lessons are difficult to be transposed outside

of the realm of PHY communication for 5G/6G (or WiFi-7,

though not explicitly considered in any of the above). We

further remark that, while similar effort is undergoing in

the broader computer science field (as, e.g., for the case of

AI Native databases [20]) however it is manifest that little

can be adapted from different fields (as the optimization or

redesign of index maintenance, query or join operations with

AI are ultimately specific to the database community).

3 PRINCIPLES OF AI NATIVE NETWORKS
3.1 Viewpoints and definitions
To structure the discussion of Native Network Intelligence(NNI),

we start by observing that its definition can lend itself to

multiple interpretations, i.e., where the network:

1 deeply integrates AI : e.g., when fundamental tasks such

as 6G signal processing [13–17], routing [21], packet

classification [22] or bloom filters [23] are realized

or augmented with learning techniques;

2 systematically leverages AI: e.g., in architectures [15,

19, 24] where AI is a fundamental, thought not the

only, part of the decisional tools;

3 is designed by an AI: e.g., when protocol (operational

points) are learned, as in the case of TCP [25–27],

instead of being carefully heuristically tuned as in

the numerous TCP variants surveyed in [28, 29]);

4 is designed for AIs: e.g., AI-to-AI communicationwhere

endpoints are AI agents developing their own lan-

guages [30, 31], as opposite to humans or machines

of IoT/industrial settings.

We next observe that the above viewpoints are not mutu-

ally exclusive, but are rather complementary, possibly impos-

ing different requirements for an native network intelligence.

This also follows from the fact that, generally speaking, any

NNI needs a comprehensive and holistic vision: i.e., instead

of considering AI/ML as tools to solve specific problems in

an isolated manner, the main goal of an NNI architecture is

to more organically integrate AI in the system itself, so to

more coherently and cohesively exploit AI/ML across the

whole spectrum of tasks for which it may be needed.

At the same time, the risk in defining an NNI architecture

is to put excessive emphasis on AI as being the unique build-

ing block able to solve everything, which does not hold. This

is well illustrated in Fig.2, which clearly scopes the role of AI:

albeit important, AI is just a tiny piece of the whole Google
infrastructure [32] – and the fact that this holds for an hyper-

giant that makes intensive use of Cloud AI, strongly suggests

this is therefore likely to hold for the networking field too.

Otherwise stated, an NNI architecture should start from the

tight integration of all pieces, and not myopically focusing

on just some (i.e., AI) but forgetting equally important others

(e.g., data representation, resources and infrastructure).
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Figure 2: The role of AI in the overall Google architec-
ture as overtly discussed in the AI community: “Only
a small fraction of real-world ML systems is composed
of the ML code, as shown by the small black box in the
middle. The required surrounding infrastructure is vast
and complex” [32]. Picture courtesy of [32].

3.2 Goals and implications
We next list a few

1
foundational goals for an NNI, that are

related to the above viewpoints.

3.2.1 Robust AI: Systematic lifelong and safe learning. Net-
works currently lack universal performance models, owing

to complexity of producing such models with analytical tech-

niques [33], for which the old adage is that “all models are

wrong, but some are useful” (G. Box). As even simulation

may face fidelity problems, data-driven models appear to be

an appealing alternative: at the same time, AI models are

intrinsically tied to the data they have been trained with,

so that they can be possibly significantly wrong in some

deployments. Otherwise stated, fairness issues and bias of

AI models in the network field means they can have bad

generalization properties in practice, so they will need to

be constantly updated and verified. This is particularly haz-

ardous for models that need to actuate in the network, so that

safe exploration techniques are necessary to learn in a robust

fashion. Robust and lifelong learning is thus a precondition

to enable a 1 - 2 systematic use of AI in networks.

3.2.2 Trustworthy AI: Explainable and accountable. It is now
quite well recognized that a critical step for AI to be per-

ceived as safe, and therefore be accepted as trustable, is to be

understood: this is necessary to avoid “Clever Hans” models

that, e.g., are right but for the wrong reasons [34]. The notion

of trust can get a different connotation depending on the tar-

get audience: researchers may be questioning model fairness

and data imbalance, operators may be interested in under-

standing model limits in their deployment, some form of

accountability may be needed for business viewpoint, while

the ability to provide accurate step-by-step explanation may

be required for legal compliance due to regulator bodies [35].

Compliance verification need to be done without leaking

1
Due to space constraint, we do not cover equally important aspects tied,

e.g., to automation, hardware support, AI execution and certification.

sensitive model aspects, but may require faithful explaina-

tions [36], i.e., an accurate account of the actual decisions

taken by a model, as opposite to as approximate explanation

of surrogate models [37]. As for other fields [38], trust is es-

pecially critical for growing AI usage for network 3 design

and operation 1 - 2 .

3.2.3 Configuration of AI: Simplicity first. Additionally, net-
work configuration is knowingly already quite complex.

While AI can be used to possibly automate part of the con-

figuration[39], as AI models itself need to evolve, there is an

expressiveness tradeoff between hiding most of AI complex-

ity (with the downside of blackbox obscurity), vs explicitly

exposing inner configuration AI parameters as as further

parameters (exposing thousands, if not millions DL weights,

which is clearly not desirable either). To simplify AI deploy-

ment, some go to the point of proposing to significantly hide

AI in production by using declarative interfaces (as in the

Ludwig and Overton systems [40]) which is not without ap-

peal, as it would simplify the use of existing models while

still allowing for sophisticated control for lifelong learning –

which seems to be desirable to break an adoption barrier, and

retain the necessary level of flexibility to 1 deeply integrate

and 3 retain fine-grained control over AI at the same time.

3.2.4 Open vs proprietary AI: Business coexistence. Irrespec-
tively of how AI models are going to be configured, trained

and deployed in practice, it is clear that having good quality

models is of primary importance. While vendors are obvious

candidates for providing proprietary “defaults” models, the

general tendency in the AI field is to offer API for plugging

third-party models, and optionally 3 combine such “learn-

ware”[41], which is tempting yet more challenging. For the

networking field, is too early to understand the business

viability of model marketplaces [42] and open formats [43],

yet it seems reasonable to at least allow for a coexistence of

both approaches (i.e., custom silos vs models co-developed

within a partner ecosystem), as this can lead to an increase of

a wider spectrum (and possibly higher quality) of learnware

models.

3.2.5 Flexible architecture: Heterogeneous topological and
incremental deployment. AI deployment in a network is topo-

logicallymore articulated than the currentmodel of device AI

(e.g., smartphone app) plus Cloud AI (i.e., the app’s backend

server): as such, NNI faces additional complexity concerning

where AI functions need to be instantiated. For instance,

Cloud AI may increase model generalization capabilities for

the vast majority of (but not all) networks, so that local spe-

cialization would be preferable; at the same time, network

equipment is generally less powerful that the current breed

of user devices, so that while access/CPE AI may impose



Figure 3: Network DIKW Pyramid vs “Fast and slow”
thinking: “fast” AI is pervasive and exploits current
knowledge, while “slow” AI is more sparingly used to
incrementally advance knowledge.

severe constraints to learning/inference, Edge/Fog AI may

represent a good compromise between these two extreme.

As constraints may heavily depend on use-case, it follows

that to support 1 at architectural level, the NNI should be

flexible in mapping a large heterogenity of AI functions to

possibly different network segments – though even recent

advances in serverless [44] execution models [45] are not

sufficient to fully address NNI deployment concerns. Strictly

related, it is important for the NNI architecture to allow for

incremental deployment – to avoid, e.g., a chicken-and-egg

problem concerning the need for new equipment, resource or

capabilities to be deployed at very specific points/segments

in the network prior that any benefit can be obtained, which

could otherwise compromise adoption, hampering 2 .

3.2.6 Flexible primitives: AI-2-AI communications. Unsur-
prisingly, NNI systematically exploits AI to optimize net-

work operation, chaining a set of AI function executed at

different nodes, that we can refer to as AIFV. Additionally,

these AIFV can be seen as a set of communicating AI agents,

irrespectively of whether their purpose is related to network

operation: thus, the type and role of these 4 inter-AI com-

munication should not be constrained a priori – as TCP/IP

did not constrain applications. In turn, this may push to

break the boundaries of classic “effective yet rigid” commu-

nication protocols, by introducing new primitives tailored to

AI agents need. For instance, while two software endpoints

communicate with in-order lossless compression, two AI

learnwares may favor lossy data representation to coordi-

nate distributed decision (e.g., sampling over time[46] or

space, via feature selection or non-linear embedding). Thus,

the AIFV paradigm should offer in-network computing prim-

itives for AI-to-AI communication (e.g., with support for

lossy compression, which can be itself a learned block, as

opposite to a manual design [46] fit for a single purpose).

4 NNI BUILDING BLOCKS
4.1 High-level concepts
4.1.1 From data to knowledge. We start introducing high-

level concepts that are useful for NNI architecture definition.

Generally speaking, AI techniques are useful to (i) enhance

perception by organizing data into information, and (ii) take

decisions according to knowledge. Figure 3 illustrates the clas-
sic Data, Information, Knowledge andWisdom (DIKW) Pyra-

mid, and additionally highlights the two “Fast” and “slow”

type of AI-reasoning discussed next.

As for (i) enhanced perception, differently from other fields

(e.g., self driving cars) where AI is heavily used to make

sense of physical world sensors (e.g., from lidar and camera

readings to moving cars on a map), fine-grained network

telemetry is abundant: hence, perception tasks are essentially

distilling information out of large volumes/streams of data

(e.g., clustering, anomaly detection, important sampling).

In terms of (ii) knowledgeable decisions, the need for a

Knowledge plane has been long recognized [47], yet it only

rarely gained implementationmaturity (end evenwhen it did,

implementations were mostly limited to measurement sys-

tems [48, 49] with very limited and specific intelligence[50]).

In light of recent advances in AI techniques, it is thus useful

to reassess the concept of network “knowledge”. While the

comparison is volountarily stretched, Jean Piaget famously

said that “Intelligence is not what you know, but what you do

when you don’t know”: in the NNI, AI should be aware of the

limit of its knowledge, and strive to continuously improve it.

According to Socrates, knowledge advanceswith a 2-stages

maieutic method, which in the first phase raises doubts about

what is known, and the second phase advances the knowl-

edge itself. In this position paper, we posit that the above

method should also apply to NNI. These two phases should

be reflected in the lifelong learning process of an NNI with

the first phase recognizing that the models in use have some

limits (i.e. detecting out-of-distribution samples, such as zero-

day traffic/attacks, or patterns that are very different than

those seen at training times), and either exposing these prob-

lems to human operators (to gain trust, which needs ex-

planation capabilities), or automatically closing the loop by

generating new knowledge (e.g, after trust is fully gained,

by updating models to incorporate for concept drift of old

classes, or entirely new classes, new facts, etc.).

4.1.2 System-1 vs System-2. We now introduce a knowingly

inaccurate
2
analogy, about the need for “Fast and slow”[52]

thinking skills, to realize the above DIKW-related tasks in the

NNI. According to psychology research popularized by [52],

the human brain is organized into two subsystem. System-1

2
As the psychobehavioral model in [51] was developed to explain irrational

bias in human decision related to economics.
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is fast and correct on simple repetitive tasks: using it has

low cost, but it may be prone to bias and errors. In case of

human beings, psychological bias (such as risk adversion,

illusory correlation, insensitivity to previous outcomes, etc.)

can affect their behavior in non-rational ways, but this is

without serious consequences for most of their daily deci-

sions. System-2 possesses advanced capabilities required for

complex tasks, or to take decision in situations with missing

information: using System-2 is slow, requires a significant

cognitive effort, and is thus used more parsimoniously.

Extending this analogy to the case of NNI, we observe

that many actions require fast timescales and need prompt

responses. AI bias for network models (e.g., due to lack of

contexual or broader information, ageing models or con-

cept drift) can affect decisions in sub-optimal ways, yet the

approximation may be not noticeable (or can be tolerable)

in most of the cases. In the NNI, “fast” intelligence should

therefore be pervasive, as we can expect the benefits of using

(perhaps slightly inaccurate) models to largely out-weight

the loss of not using them. System-1 is thus necessary for a

deep, systematic and native integration of AI in networks.

At the same time, is imperative that the “fast” models in

use are not stale (e.g., in changing environments) or just

plainly unfit (e.g., for a new protocol, application, environ-

ment, spectrum, colored noise), which confirms the need for

System-2 capabilities in the NNI. Given that these advanced

knowledge generation capabilities are used at a slower rate

andmay benefit from a global view [47], a widespread deploy-

ment does not seem to be necessary (i.e., Cloud/Edge/Fog

should suffice for most of the use-cases). At the same time

some System-2 capabilities (e.g., for fine tuning relatively

simple models with local-only significance) may benefit from

in-device availability (e.g., saving the bandwidth/time cost

of moving toward the Fog/Edge/Cloud). System-2 is thus

necessary to support AI lifelong and robust learning, and

to additionally make AI a trusted tool for the network do-

main (e.g, recognize and avoid bias, explain decisions with

causality arguments and avoiding spurious correlation).

4.1.3 AI-to-AI communication. We finally abstract the set of

AI functions that are chained and executed in the network,

and instead of focusing on few relevant yet specific use-cases,

we analyze AIFV under the light of a more general AI-to-AI

communication paradigm, by describing the set of emergent

patterns that we expected to be frequent in the NNI, which

are portrayed in Figure 4.

We highlight that NNI fundamentally differs from the cur-

rent AI-to-AI communications in Cloud AI settings: these are

well exemplified by the “federated learning” paradigm, intro-

duced by Google [53] and that recently enjoyed a growing

popularity, illustrated in Figure 4(e). In federated learning, rel-

atively powerful devices (e.g., smartphones) leverage Cloud

Figure 4: AI-to-AI communication pattern: Fast and
Slow thinking among different NNI segment/endpoints
vs current Cloud-native AI.

resources for model fusion, yet the communication remains

OTT and all network devices in the path are oblivious to the

process: as the exchangedmodel weights are typically private

between the two System-2 endpoints, the whole network

remains a dumb pipe during the whole lengthy process.

In contrast, NNI AI-to-AI patterns reported in Figure 4(a)-

(e) are richer, owing to the network topological complexity.

While in spirit with original TCP/IP architecture we believe

that the network core should remain stateless and simple[54]

(i.e., we are not advocating the NNI as a resurrection of ac-

tive networks[55]), we envision AI-to-AI communication

between (i) multiples set of end-points in the network, as

well as (ii) multiple type of intelligence. For instance, dumb

terminals may require AI as a service, e.g., for System-1 per-

ception or decision tasks (a1); even a relatively powerful

Edge/Fog compute with regional visibility of a fleet of de-

vices, may require System-2 capability in the faraway Cloud

for broader visibility (a2). For sufficiently simple setups, fast

and slow intelligence can be available in devices (b,c1). For

instance, inter-agent communication (b) can happen e.g.,

for distributed decision making among System-1 agents in

embedded systems. Communication between System-1 and

System-2 (indicated as “meta-perception”) is expect to hap-

pen regularly, e.g., for local tuning in the intra-agent case

(c1), or to inform the Fog/Edge and invoke its assistance for

knowledge update (c2). The closest communication pattern

to Cloud-native federated learning is denoted as “knowledge

management” (d), where e.g., Fog/Edge System-2 involve the

Cloud for cross-network generalization of global concepts.

4.2 Low-level tools
4.2.1 AI knowledgemanagement (KM). Ultimately, high-level

concepts need to materialize as low-level implementation,

that we start discussing. Differently from other application

domains where the goal is to mimic (or beat) human thinking



(on writing, drawing, gaming skills), intelligent networks do

not need the emergence of general AI. Yet, the very same defi-

nition of knowledge in the NNI, and the selection of the tools

apt for its management is far from being straightforward,

which we separate into Monolithic vs Holistic KM.

Monolithic KM is the maintenance of specific ML/DL

models for narrow objectives. This can already be complex

as the model catalog can be organized by a single entity with

tight grip on every aspect (the “cathedral”) or by a larger

ecosystem of contributing entities (the “bazaar” or, in AI do-

main, model marketplaces [42]). For this necessary (but not

sufficient) task, tools with open API exist (e.g., ONNX [43],

CoreML [56]), which makes monolithic KM possible for ven-

dors, 3d-parties and tech-savvy customers.

Holistic KM has a broader viewpoint, and addresses inter-

dependence across the whole spectrum of models for orches-

tration, which requires a set of tools (expert models, knowl-

edge graphs, ontologies) that have enjoyed a more timid

succeed compared to other domains. Holistic KM faces addi-

tional difficulties (e.g., open marketplaces, multi-vendor in-

teroperability, etc.), bringing problems related to knowledge

transfer.We further stress that “holistic” does not rhymewith

“centralized”: i.e., NNI cannot have a single “brain” equipped

with slow thinking capabilities, yet a heavily distributed [47]

architecture is currently far from being desirable. It hence fol-

lows that multiple hierarchically connected peripheral brains

may provide a good starting point, with their interconnection

topology [57] trading off latency vs communication costs for

holistic KM.

4.2.2 AI native representation of network data. Knowledge
needs data to reason about, which abunds in NNI. As, from

an information viewpoint there are diminishing returns in

accessing to all data, learning a NNI representation can trade-
off telemetry bandwidth, information content and processing

cost. At the same time, network data is multi-modal, multi-

variate in each mode, temporally multi-scale and topologi-

cally multi-layer – which makes finding a natural represen-

tation far from being trivial. For the NNI, the question is how

to transform named entities (e.g., devices, IP addresses, TCP

flows, named services, etc.) and corresponding categorical
and numerical quantities characterizing them (e.g., configura-

tion, throughput, KPIs, etc.) into an AI native representation

fitter for AI processing and decision making: this common

representation would facilitate (fast) decision making and

(slow) knowledge improvement. While such unified NNI

data representation is lacking, it is plausible to assume that

it would be composed of heterogenity of input types, each

of which requires specific AI processing (e.g., from random

forests for tabular data, to recurrent networks for timeseries,

to transformers for sequences, to graph neural networks for

topologies), which is not yet clear how to best combine [58].

4.2.3 AI execution and triggers. Key to deployment are AI

execution model, and the intimately related aspect of how

AI functions are best triggered from/within the network.

Execution Many alternatives exist for executing AI func-

tions, including container, severless [44] and Function as a

Service (FaaS) models, which fits Cloud/Edge/Fog segments.

While research is ongoing to accelerating stateless [45] or

stateful [59] FaaS, or accelerating ML stacks (such as Ten-

sorFlow) for constrained devices (such as TL-lite, TFlite-

micro[60]), these still leverage (relatively) powerful ARM

CPUs or domain specific hardware accelerators. The ques-

tion on what can be done on more constrained embedded

network devices (e.g., low powerARM cores, P4match-action

tables) and which execution model is the fittest (e.g., byte-

code, micro-kernel, micro-code) is still open. To address this,

we argue that NNI will have to impose a more Network-

centric execution model, that still needs to integrate with

KM (though not necessarily with marketplaces) for securely

deploying updated models to all network elements.

Triggers Related question concerns calls to AI functions:

if RESTful APIs are again fit for Edge/Cloud functions, how-

ever they would result in a clear overkill for in-network op-

eration. The AIFV paradigm introduced early can be wired

to, e.g., a IP-native implementation, where the AI-to-AI pro-

cessing chain exploits SRv6 routing capabilities to trigger

AI functions, extending the current SRv6 programmability

model [61]. At the same time, we ought to stress that while

SRv6 triggers may bring parameters and state (e.g., piggy-
backed in header extension, to circumvent stateless function

limits[59]) we argue that they should not carry code or in-
structions – i.e., the active network [55] paradigm and its

recent resurgence [62] may be a good fit for network pro-

gramming, but is in our opinion far from NNI needs.

5 CONCLUSIONS
This position paper sketches a high-level architectural pic-

ture of Native Network Intelligence (NNI), leaving numerous

implementation details, where we are certain that hordes of

devils hide, for future work.

Our main idea is to simplify architectural decision with

a divide et impera argument, whose starting point is to rec-

ognize that (i) advanced perception and decisions tasks are

frequent enough, simple enough and good enough to justify

pervasive in-network deployment; conversely, tasks related

to (ii) knowledge management are critically important, yet

slower and less frequent, possibly requiring the assistance

of Fog/Edge/Cloud. We further recognize that (i) and (ii) are

two sides (endpoint) of the same coin (communication), and

discuss the rich(er) set of patterns of AI-to-AI communication

that we expect to emerge in the NNI (vs Cloud AI), opening

new opportunities as well as new research challenges.
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