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Abstract—We present STREAMRHF, an unsupervised anomaly
detection algorithm for data streams. Our algorithm builds on
some of the ideas of Random Histogram Forest (RHF) [1], a state-
of-the-art algorithm for batch unsupervised anomaly detection.
STREAMRHF constructs a forest of decision trees, where feature
splits are determined according to the kurtosis score of every
feature. It irrevocably assigns an anomaly score to data points,
as soon as they arrive, by means of an incremental computation
of its random trees and the kurtosis scores of the features.
This allows efficient online scoring and concept drift detection
altogether. Our approach is tree-based which boasts several
appealing properties, such as explainability of the results [2].

We conduct an extensive experimental evaluation on multiple
datasets from different real-world applications. Our evaluation
shows that our streaming algorithm achieves comparable average
precision to RHF while outperforming state-of-the-art streaming
approaches for unsupervised anomaly detection with furthermore
limited computational complexity.

Index Terms—Data streams, Unsupervised learning, Anomaly
detection, Random histogram

I. INTRODUCTION

Several emerging applications and devices produce and
accumulate a massive volume of data at an ever increasing rate
in the form of streams. As a result, data stream mining has be-
come common in different domains, such as network security,
traffic management, health monitoring, and social networks.
Streaming algorithms must satisfy strict memory requirements
(typically sublinear in the size of the input dataset) and have
fast processing times. This is in contrast with the classical
static – or batch – setting where data can be randomly accessed
multiple times with less strict processing time or memory
constraints. Anomaly detection is a widely studied problem
in machine learning and data mining. Roughly speaking, it
consists of identifying data points that “significantly” deviate
from the other points in a given dataset. Historically, outlier
detection served mainly as a tool to filter out noise, which
could impair the training of a machine learning algorithm.
Nowadays, it plays a more noble role, as the machine learning
community realized that anomalies are often associated with
interesting or rare events.

Applications of anomaly detection are vast, encompassing
network security and maintenance, data storage, finance, and
medicine. For example, anomaly detection algorithms provide
important primitives in the detection of intrusions in networks,
frauds in financial transactions, data leaks, as well as life-
threatening situations in patient monitoring systems. Often
data arrives in a continuous fashion, in real-time, and in
potentially infinite supply [3]. In many real-world applications,
such as the detection of failures or attacks in networks, we seek
to detect the issue as soon as possible in order to minimize
the damage. As a result, anomaly detection algorithms for data
streams must boast fast processing times as well as meeting
strict storage requirements, while delivering satisfactory re-
sults. A large number of approaches have been developed over
the years. Supervised anomaly detection can be used when
large amounts of labeled data are readily available. However,
due to the difficulty in obtaining labeled data, unsupervised
approaches preserve their appeal.

Despite the efforts made in recent years, most anomaly de-
tection algorithms are designed in the classical offline setting.
Among the most successful algorithms we mention Local Out-
lier Factor (LOF) [4], Isolation Forest (iForest) [5], One-Class
Support Vector Machines (OCSVM or 1-SVM) [6], and more
recently, Random Histogram Forest (RHF) [1]. In particular,
the latter methods have emerged as state-of-the-art approaches
for unsupervised anomaly detection in the static setting. How-
ever, when applied on data streams, static anomaly detection
algorithms fail to process potentially infinite sequences of
instances because of their evolving nature [7]. To cope with
this issue and address the streaming framework requirements,
several models of computation have emerged [8]. This includes
single-pass processing where instances should be processed
only once (or a couple of times), the use of a sliding win-
dow [9] of a fixed size, where only the most recent instances
from the stream are retained, and dimensionality reduction [10]
to reduce the number of dataset features. XSTREAM [11] and
Robust Random Cut Forest (RRCF) [12] have emerged as
state-of-the-art algorithms for evolving data streams.



In our work, we present STREAMRHF, an unsupervised
anomaly detection algorithm for data streams, which is built
on some of the ideas of the RHF method. Contrary to RHF,
STREAMRHF assigns to each data point an anomaly score
online as soon as it arrives. The online setting also imposes
that such a score cannot be changed afterwards as new data
points arrive. The scoring is done by building a decision tree
where feature splits are determined according to the kurtosis
score (aka fourth moment) of every feature. As new data points
arrive, the random trees and the kurtosis scores are updated
incrementally, which allows for an efficient computation of
the anomaly scores for the remaining data in the stream. An
additional sliding window allows to retain only the most recent
data points in the stream. Another appealing property of our
approach is that it is tree-based (contrary to XSTREAM) which
allows for explainability [2].

We conduct an extensive experimental evaluation on 18
datasets containing up to 600k instances from a diverse set of
real-world problems. The source code used in our analysis can
be found at the following address: https://github.com/
stefannesic/streamRHF. Our evaluation shows that our
streaming algorithms achieve comparable average precision to
RHF, while outperforming state-of-the-art stream approaches
for unsupervised anomaly detection, such as XSTREAM and
RRCF. Moreover, STREAMRHF does not need manual tuning
of any critical parameter, hence it can be directly applied on
a wide range of datasets without manual drill-down. This ap-
pealing property along with its efficiency makes it particularly
suitable in a deployment context.

The rest of the paper is organized as follows. In Section II
we discuss the related work for anomaly detection. In Sec-
tion III, we present our main algorithm, while in Section IV
we show our experimental evaluation performed on a large set
of datasets. Finally, we recap our conclusions in Section V.

II. RELATED WORK

The literature on anomaly detection is vast. In this work, we
mainly focus on unsupervised anomaly detection approaches,
since in many scientific disciplines, especially intrusion de-
tection and fraud detection, ground truth data is generally
missing [13]. In this context, different algorithms have been
proposed for unsupervised anomaly detection for data streams
but only few of them outperform multiple standard anomaly
detection algorithms and hence, are considered state-of-the-art,
such as HST [7], RRCF [14], and XSTREAM [11].

Half-Space-Trees (HST) [7] is an ensemble of trees with a
fixed depth (height) that computes the anomaly scores based
on the sample counts and densities of the nodes. HST uses
two windows of equal size (256), where the trees trained on
the previous window are used to observe instances in a given
batch. Simultaneously, new trees are trained on the current
window and once all instances from the current window are
processed, new trees replace the old ones. The latter strategy
is employed to handle concept drifts1 in data streams. HST

1Changes in the data distribution, with the current concept no longer being
representative for the next incoming data.

TABLE I
SUMMARY OF STREAMING ALGORITHMS FOR ANOMALY DETECTION.

CAPABILITIES OF THE ALGORITHMS ARE EXPRESSED IN TERMS OF THEIR ABILITY

TO IMMEDIATELY UPDATE THE SCORING FOR EACH INCOMING DATA POINT

(POINT-BY-POINT REACTIVITY), TO MANAGE CONCEPT DRIFT BY FORGETTING

OLDER INFORMATION, AND TO KEEP A WHITE-BOX APPROACH (TREE-BASED).

Algorithm STREAMRHF XSTREAM RRCF HST
(this work)

Tree-based ! % ! !

Point-by-point reactivity ! % ! %

Concept drift ! ! % !

assumes that the data is scaled, such that features values
are bounded in [0,1]. The latter is a more relaxed condition,
especially in the presence of concept drifts [15].

Robust Random Cut Forest (RRCF) [12] is a stream detector
based on iForest [5] and used on dynamic data streams by
treating different dimensions independently. RRCF preserves
pairwise distance which is important for computation and like-
wise for anomaly detection. Unfortunately, RRCF suffers from
scalability issues, as shown by our experimental evaluation
(provided in Section IV).

Lightweight online detector of anomalies (Loda) streaming
method [15] consists of an ensemble of h one-dimensional
histograms, where each histogram with sparse projections in
Loda provides an anomaly score on a randomly generated
subspace. Projection vectors diversify individual histograms,
which is a necessary condition to enhance the performance
of individual classifiers in high-dimensional spaces. Thanks to
the use of random projection that simplifies the complexity
of all operations, this method has been shown to be 7 − 8
times faster than HST. Due to the fixed number of bins for
the one-dimensional histograms, Loda cannot however handle
growing feature space.

In [11], authors proposed XSTREAM, a window-based de-
tection method particularly effective in feature-evolving data
streams2 through the use of a stream random projection
scheme to handle high-dimensionality. The projection is per-
formed by recursively constructing partitions with splits into
small flexible bins, unlike Loda that cannot handle growing
feature space due to the fixed number of bins for the one-
dimensional histograms. XSTREAM is able to detect anomalies
accurately and handle streams of variable dimensionality and
missing values.

Recently, an ensemble method has been developed,
RHF [1], which is based on a forest of trees. RHF emerged
to be a state-of-the-art approach for unsupervised anomaly
detection in the static batch setting [1]. To the best of our
knowledge, no streaming version of this novel algorithm
has been developed, which is one of the purposes of our
work. Compared to existing algorithms, extending RHF with
streaming capabilities confers several advantages. First of all,
the core of the algorithm remains based on trees that are in-

2Streams with newly-emerging features and changing feature values.



dividually white-box models and explainable by nature. Then,
the construction of RHF using kurtosis enables the possibility
to update the trees incrementally in a continuous way (without
the need to rebuild the whole forest) and to achieve point-
by-point reactivity. Finally, STREAMRHF introduces a sliding
window to handle concept drift and to bound the memory
requirements.

A summary of the main capabilities of STREAMRHF com-
pared to the other streaming approaches is available in Table I.
Most of the previous work considers alternating windows, such
as XSTREAM and HST, that prevent an immediate update of
the model, while other works, such as RRCF, are not able to
react to concept drift. STREAMRHF has both point-to-point
reactivity and concept drift management.

The aforementioned algorithms, notably XSTREAM, RRCF,
and HST, serve the purpose of common baselines for compari-
son since they are the most recent and effective state-of-the-art
stream anomaly detection methods.

III. UNSUPERVISED RANDOM HISTOGRAM FOREST FOR
DATA STREAMS

Data streams are defined as continuous sequences of incom-
ing instances, where each instance is composed of multiple
attributes taking numerical or binary values. In this paper,
we develop an unsupervised anomaly detection algorithm that
aims to detect anomalies in data streams. Our approach is built
on some of the ideas of RHF. In the following section, we
recall how RHF works and then, we discuss how to address the
challenges in developing a streaming algorithm for anomaly
detection.

A. Random Histogram Forest

RHF is an ensemble of t trees of maximum height h
that partitions data randomly with a higher probability of
partitioning on features (aka attributes) whose distribution has
a high value of kurtosis, the fourth standardized moment in
statistics. The intuition behind the partitioning is that instances
that end up in groups with fewer instances are more likely to
be anomalies. For each split, an attribute, as, and a value, vala,
are selected from the range of possible values of as. Then, data
with a value for the attribute as less than vala becomes the
left child and the remainder, the right child.

For a dataset (Xa)a∈J0,dK consisting of d+1 attributes, the
tree split is defined as follows [1]:

1) The sum of the kurtosis K of all features (Xa)a∈J0,dK is
computed:

Ks =

d∑
a=0

log[K(Xa) + 1]. (1)

2) A random number r is chosen

r ∼ Uniform([0,Ks)). (2)

3) The split attribute is selected based on this r value,

as = argmin

(
k ∈ J0, dK

∣∣∣∣∣
k∑

a=0

log[K(Xa) + 1] > r

)
,

(3)
while the value vala is taken at random (uniformly) in
the observed range of that feature.

The trees are split until either the maximum height is
reached or the kurtosis of each attribute is zero, meaning that
all the remaining instances are duplicates. Every instance, i, is
then scored on each tree, T , in the forest based on the number
of instances in their leaf, Sl, or more precisely, the Information
Content:

wT
i = log

(
1

|Sl|

)
. (4)

The score of i, wi, is then calculated as the sum of the t tree
scores:

wi =
∑
T

wT
i . (5)

B. Point-By-Point Reactivity

When adapting an algorithm to the stream setting, the well-
known issue of concept drift must be addressed as the data
distribution can change over time and the initial model may
no longer accurately reflect the distribution of data. Thus,
we need to efficiently update our model so as to take into
account the current distribution of data. One naive solution
would be to recompute from scratch every tree in the forest
as soon as a new data point arrives. However, this is not a
viable solution as it is clearly very expensive. Alternatively,
we could rebuild a subtree as soon as the current kurtosis value
of the corresponding attribute “significantly” deviates from its
value computed during the last rebuild. Such a solution would
require to introduce a threshold on the difference between the
current kurtosis value and the one computed in the last rebuild.
Unfortunately, it is unclear how to set such a threshold a priori,
in that, it might depend on the input data.

Therefore, we strive to develop a parameter-free algorithm
which can efficiently build a random histogram forest as close
as possible to the one that the batch algorithm would compute
at every single update operation. The initial model is built on
the first n initial points of the data stream using the same
RHF algorithm and scored using a function that is detailed
in Equations 4 and 5. This model will serve as the base to
our proposed algorithm described later in this section. Next,
when an instance x arrives, we proceed as follows. Starting
from the root, we first check if by inserting x, the splitting
attribute of the current node will change. If this is the case, we
rebuild the current subtree. Otherwise, we proceed recursively
in either the left subtree or the right subtree, if the value of
the splitting attribute node in x is at most its splitting value or
larger, respectively. This process is iterated recursively until
a leaf is reached, in which case, the score of x is calculated
using Equation 4. Consequently, this allows us to rebuild only
a partial subtree, as opposed to a naive algorithm that rebuilds
each time the whole tree.



Algorithm 1 Insert(node, i, h, z)
Input: node: node of random histogram tree, i: instance,

h: max tree height, z: the seed of array of 2h

Output: Random Histogram Tree rht
1: if node is not Leaf then
2: kvalues = kurtosis(node.data ∪ i); ▷

same function as in the batch, but the seed of every node
is initialized using values of z

3: asplit = get-attribute(kvalues, z[node.id]);
4: if node.attribute ̸= asplit then
5: return RHT-build(node.data ∪ i, node.height)
6: if i[node.attribute] ≤ node.value then
7: node.left = Insert(node.left, i, h, z)
8: else
9: node.right = Insert(node.right, i, h, z)

10: else
11: if node.height = h then
12: node.data = node.data ∪ i
13: return node
14: else
15: return RHT-build( node.data ∪ i, node.height)

In fact, the splitting attribute for a given node is determined
by a random value r, called a seed. To efficiently determine
when the current subtree needs to be rebuilt, we initialize
randomly the value r for every node in every tree and then
maintain its value throughout the entire data stream. Then, for
every node, the value r will guide the choice of the splitting
attribute. Let ascurrent be the existing split attribute in the model.
We therefore select the splitting attribute as follows:

asnew = argmin

(
k

∣∣∣∣∣
k∑

a=0

log[K(X ′
a) + 1] > r

)
, (6)

where X ′ = X ∪ x. If ascurrent ̸= asnew , the sub-tree is rebuilt
from scratch using the batch algorithm.

STREAMRHF is consequently able to adapt to changes in
the distribution of the data upon insertion of new instances
which provides an advantage over the naive approach. The
details for the insertion of the new instances are provided in
Algorithm 1.

C. Concept Drift Management

Since the random seeds are fixed in the beginning, the model
constructed at each insertion is the same as the original batch
algorithm without the need to build a forest from scratch at
each insertion. The aim is to allow the model to forget about
the old inserted instances, which also accounts for possible
memory constraints. For this purpose, our algorithm employs
two windows: a reference window and a current window.
The reference window is of a fixed size and is filled with
the first n instances from the stream. The current window is
initially empty and is gradually filled by each of the upcoming
instances, xi, that are inserted into the model using Algo-
rithm 1. Once the current window is filled with n instances,

Algorithm 2 STREAMRHF(X, h, t, n)
Input: X: stream, h: height, t: number of trees, n: window

size
Output: scores, one for each instance in X

1: scores = [];
2: for i in 0..t do
3: for i in 0..2h − 1 do
4: z[i,j]= RandomSeed(); ▷ set seeds, one per node

per tree, assuming complete tree
5: forest = RHF-build(X[0:n], h, t, z);
6: scores[0:n] = RHF-score(forest, X[0:n]);
7: for i in X[n+1:end] do
8: for all tree in forest do
9: tree = Insert(tree, i, z[tree.id]);

10: scores[i] = RHF-score(forest, i)
11: if i % n == 0 then ▷ reference window
12: forest = RHF-build(X[i-n:i], h, t);

return scores

the reference window is overwritten by the observations in the
current window which is in turn emptied. The model is rebuilt
from scratch with the new reference window and the process
is repeated at each time the current window is filled. Such
strategy turns out to be effective when dealing with concept
drifts, because we are constantly keeping the most recent
instances which are the most suitable ones for representing
the current concept in the data stream. In Algorithm 2, we
present the pseudocode of STREAMRHF.

D. Running Time & Space Requirements

The worst-case running time and the space requirements of
STREAMRHF can be evaluated as follows. Let w be the size of
the sliding window, d the number of features, h the maximum
height of every tree, and t be the total number of trees in our
forest. STREAMRHF requires O(wdt) space, in that, at each
point in time, for every tree, we only need to store all points in
the sliding window. The running time of the initialization step
is in O(wdth), as in the worst-case we might need to process
all the points in the sliding window for every level of a given
tree. The number of operations per update can be as large as
the initialization step, however, this happens only if we rebuild
the whole tree from the root, which does not happen often
according to our experimental evaluation. Indeed, in most of
the cases we rebuild only relatively small subtrees with height
h̄ < h, which gives a running time of O(wdth̄) for such an
update. For future work, it would be interesting to provide a
tighter analysis of the running time of our algorithm on the
average case.

IV. EXPERIMENTAL EVALUATION

We conduct an extensive experimental evaluation on 18
different datasets containing more than 600k instances from
a diverse set of real-world applications. We evaluate our
approach against XSTREAM, RRCF, and HST, which emerged
as state-of-the-art approaches for our problem.



Fig. 1. The SMD multivariate time series dataset is divided into 28 entities
with 38 features but varying element counts (708,420 total elements).

A. Experiment Settings

Environment. The experiments were conducted on a Ubuntu
20.04.2 LTS server equipped with 144 CPUs of model Intel(R)
Xeon(R) Gold 6154 @ 3.00GHz and 264 GB of RAM. The
implementation of the STREAMRHF algorithm was done in
Python 3 and Cython. The implementations of RHF and
XSTREAM were taken from the GitHub repositories of the
respective authors. The C++ version from the repository of
XSTREAM3 is the one adapted to streaming data. The Python
implementations of Robust Random Cut Forest4 and HST5

were used. In order to improve the reproducibility of our
proposed STREAMRHF algorithm, the source code used in
our analysis is also made available6.
Parameters. All parameters of RHF and XSTREAM were set
in accordance with the instructions of the respective authors in
their original work. In particular, the parameters of STREAM-
RHF and HST were set with the same values, T = 100 and
H = 5. For XSTREAM, 100 half-space chains were used with
a projection size of 100 and a depth of 15. Although the paper
uses 1000 chains as well, this setting is much more costly in
terms of execution time. The RRCF parameters were set to
100 trees and shingles were not used. The initial sample size
is always equal to the window size. Window sizes were defined
as percentages of the total number of instances in the dataset,
e.g., 1% or 5%. The experiments were run on 10 iterations
and the mean is reported.
Datasets. To assess the effectiveness of our proposed algo-
rithm on a wide range of real-world applications, we conduct
an extensive experimental evaluation over diverse datasets.
In particular, we consider 17 publicly available benchmark
non-temporal datasets containing between 1920 and 623,091
instances with 3 to 166 features. Non-temporal datasets were
separated into two groups, “Small”, datasets with less than
20k instances, and “Large”, the remainder. This separation
occurs due to the computational cost of the latter group.
The datasets used are described in Table II. The http_logged,
kdd_ftp, kdd_http, kdd_http_dct, and kdd_smtp_all datasets
were constructed from the KDD’99 Cup dataset [16] using the
same procedure as in [1]. The remaining datasets are from the
UCI [17] or ODDS repositories [18]. Non-temporal datasets
were shuffled at each iteration in order to reduce bias in
datasets for one algorithm or another. In addition, we evaluated
the algorithms on a publicly available benchmark multivariate

3https://github.com/cmuxstream/cmuxstream-core/tree/master/cpp
4https://github.com/kLabUM/rrcf
5https://github.com/online-ml/river/blob/main/river/anomaly/hst.py
6https://github.com/stefannesic/streamRHF

TABLE II
OVERVIEW OF THE DATASETS.

Type Dataset Samples Features Anomalies Duplicates

Small1 aabalone 1920 7 1.5% 0
annthyroid 7200 6 2.3% 0
kdd_ftp 5214 3 26.7% 79.7%
magicgamma 19020 10 35.1% 1.7%
mammography 11183 6 2.3% 2.3%
mnist 7603 100 9.2% 0
musk 3062 166 3.1% 0
satellite 5100 36 1.4% 0
satimages 5803 36 1.2% 0.03%
spambase 4601 57 39.4% 7.4%
thyroid 3772 6 2.4% 0

Large2 http_logged 567498 3 0.4% 97%
kdd_http_dct 222027 3 0.03% 0
kdd_http 623091 3 0.64% 98.1%
mulcross 262144 4 10% 0
shuttle_odds 49097 9 7% 0
smtp_all 96554 3 0.03% 0

Time3 smd 708420 38 4.16% 0
1datasets comprising less than 20k elements
2datasets comprising over 20k elements
3datasets where each element is a sample of a time-series

time series dataset from KDD’19, Server Machine Dataset
(SMD) [19], that is composed of 28 entities totaling 708,420
elements and 38 features. Only the labeled test set data was
used from this dataset. As shown in Figure 1, SMD is in fact
composed of 28 separated entities or subdatasets with varying
element counts between roughly 23,687 to 28,726 instances
each. Algorithms were evaluated on each individual entity of
SMD, as recommended by the authors of the dataset.
Metrics. In [20], it was shown that, for highly-skewed
datasets, the Precision-Recall (PR) curve gives more informa-
tion on the accuracy than the Receiver Operator Characteristic
(ROC) curve. In addition, it was shown that “a curve dominates
in ROC space if and only if it dominates in PR space”. There-
fore, the accuracy of the various algorithms is summarized
from their PR curves by the Average Precision (AP). The
chosen implementation is not interpolated and is calculated
as the weighted mean of precisions at each threshold, Pn,
with the weight being the difference in recall at the current
threshold, Rn and the previous one, Rn−1.

AP =
∑
n

(Rn −Rn−1)Pn, (7)

where

Pn =
TP

TP + FP
and Rn =

TP

TP + FN
(8)

are the equations for the precision and recall at the nth

threshold, respectively. The average insertion time is calculated
as the execution time divided by the number of insertions.



TABLE III
AVERAGE PRECISION FOR BATCH AND STREAMING ALGORITHMS, ON BOTH SMALL AND LARGE DATASETS, FOR A WINDOW SIZE OF 1%.

Type Dataset RHF STREAMRHF XSTREAM RRCF HST

Small abalone 0.352± 0.026 0.178± 0.043 0.142± 0.019 0.157± 0.029 0.29± 0.061

annthyroid 0.307± 0.019 0.425± 0.012 0.235± 0.034 0.218± 0.008 0.109± 0.004

magicgamma 0.622± 0.007 0.629± 0.006 0.629± 0.007 0.61± 0.012 0.355± 0.003

mammography 0.156± 0.017 0.189± 0.019 0.201± 0.03 0.138± 0.012 0.047± 0.003

mnist 0.32± 0.019 0.312± 0.014 0.292± 0.035 0.317± 0.008 0.264± 0.027

musk 0.987± 0.023 0.78± 0.045 0.524± 0.09 0.776± 0.017 0.091± 0.029

satellite 0.636± 0.015 0.61± 0.01 0.635± 0.022 0.56± 0.045 0.015± 0.0

satimages 0.928± 0.01 0.901± 0.012 0.94± 0.008 0.777± 0.072 0.012± 0.0

spambase 0.415± 0.015 0.474± 0.013 0.522± 0.024 0.535± 0.006 0.47± 0.015

thyroid 0.548± 0.021 0.583± 0.04 0.235± 0.039 0.298± 0.019 0.157± 0.007

Large http_logged 0.969± 0.002 0.455± 0.025 0.603± 0.053 0.313± 0.011 0.004± 0.0

kdd_ftp 0.449± 0.036 0.279± 0.004 0.351± 0.017 0.219± 0.011 0.866± 0.002

kdd_http_dct 0.774± 0.013 0.374± 0.084 0.208± 0.048 0.423± 0.025 0.035± 0.006

kdd_http 0.55± 0.006 0.267± 0.009 0.276± 0.051 0.182± 0.014 0.021± 0.0

mulcross 0.729± 0.033 0.69± 0.022 0.506± 0.029 0.153± 0.01 0.458± 0.027

shuttle_odds 0.935± 0.005 0.868± 0.006 0.828± 0.022 0.492± 0.029 0.368± 0.027

smtp_all 0.944± 0.023 0.953± 0.008 0.254± 0.111 0.129± 0.01 0.971± 0.019

All mean 0.625± 0.039 0.527± 0.037 0.434± 0.036 0.37± 0.032 0.267± 0.043

median 0.612 0.482 0.371 0.31 0.153

Values are the average and 0.95 confidence interval over 10 runs. RHF is greyed out as it as a batch algorithm with batch scoring.
The best results of streaming algorithms are in blue and best results of RHF algorithms family (batch/stream) are in bold.
Multiple results are considered as the best ones if confidence intervals overlap.

B. Results

We start by comparing our streaming algorithm against the
RHF batch algorithm in terms of precision. Figure 2 shows the
mean AP, median AP, upper quartile AP, and lower quartile
AP of the algorithms while using a window size of 1% (top
figure) and 5% (bottom figure) of the entire dataset size,
for each dataset in the “small” group. We observe that the
performance of our streaming algorithm, STREAMRHF, is
comparable to the batch RHF algorithm performance for the
two configurations of the window size. Recall, that STREAM-
RHF, like other streaming algorithms, computes an anomaly
score online, that is as soon as an instance arrives, without
having any knowledge of the remaining data observations.
Additionally, it only keeps in memory the instances that are
in its window. Therefore, it is an appealing property that our
streaming algorithm does not lose much in terms of average
precision when compared to its batch counterpart.

Table III presents the statistical results of the algorithms
for a window size of 1% on 17 non-temporal datasets. We
notice that, on the overall average, the batch RHF obtains the
most accurate performance for the aforementioned reasons.
Nevertheless, RHF is defeated by our proposed streaming
version, STREAMRHF, on 8 datasets (the values in bold).

Next, we evaluate our approach against state-of-the-art
approaches for unsupervised anomaly detection in streaming
on all datasets including some that contain more than 600k
instances. Table III also shows that STREAMRHF has the

TABLE IV
AP FOR VARYING WINDOW SIZES ON THE SMD TIME SERIES DATASET.

Window STREAMRHF XSTREAM RRCF HST

256 0.121± 0.006 0.145± 0.011 0.051± 0.004 0.255± 0.021

512 0.167± 0.007 0.207± 0.016 0.048± 0.004 0.313± 0.023

1024 0.221± 0.011 0.276± 0.021 0.046± 0.004 0.319± 0.025

2048 0.271± 0.015 0.29± 0.025 0.047± 0.005 0.302± 0.024

4096 0.317± 0.019 0.277± 0.022 0.047± 0.005 0.296± 0.025

20% 0.327± 0.019 0.261± 0.023 0.048± 0.005 0.296± 0.025

25% 0.334± 0.018 0.251± 0.023 0.048± 0.005 0.298± 0.025

30% 0.355± 0.02 0.242± 0.026 0.051± 0.006 0.293± 0.024

Values are average and 0.95 confidence interval over 10 runs, best AP in bold.
Multiple results in bold if confidence intervals overlap.

best average precision over all the datasets in comparison
with the stream anomaly detection algorithms. In particular,
observe that the median AP of STREAMRHF is 30% higher
than the second-best approach. This is thanks to its windowed
strategy that handles evolving data while implicitly dealing
with concept drifts. Figure 2 confirms that STREAMRHF
delivers consistently the best results across different window
sizes with XSTREAM boasting the second-best results.

Table IV reports the AP performance of the various stream-
ing algorithms on a large multivariate time series dataset,
SMD, for various window sizes. Both constant and percentage-



TABLE V
AVERAGE INSERTION TIME (MS) ON SMALL DATASETS FOR A WINDOW SIZE OF 1%

.

Dataset STREAMRHF XSTREAM RRCF HST

abalone 0.92± 0.019 2.17± 0.474 30.028± 0.399 288.479± 1.051

annthyroid 0.991± 0.016 2.031± 0.448 49.385± 0.572 83.541± 0.454

kdd_ftp 0.912± 0.011 1.412± 0.304 30.805± 0.418 110.92± 0.37

magicgamma 1.077± 0.03 1.94± 0.434 58.881± 1.905 36.701± 0.188

mammography 0.977± 0.013 1.738± 0.392 41.352± 0.875 55.319± 0.134

mnist 7.581± 0.271 4.604± 1.064 66.781± 3.169 84.071± 0.42

musk 13.04± 0.533 5.297± 1.15 65.808± 2.631 202.636± 0.843

satellite 2.538± 0.067 2.715± 0.585 50.106± 0.779 116.514± 0.463

satimages 2.441± 0.018 2.615± 0.569 50.969± 0.669 102.838± 0.53

spambase 4.839± 0.206 2.182± 0.473 67.979± 2.389 129.742± 0.368

thyroid 1.039± 0.012 2.218± 0.479 40.759± 0.593 148.494± 0.617

mean 3.305± 0.69 2.629± 0.266 50.259± 2.468 123.569± 12.614

median 1.084 2.412 49.985 110.812

Values are averages over 10 runs with 0.95 confidence interval. Best results are reported in bold.
Multiple results in bold if confidence intervals overlap.

Fig. 2. Average precision on "small" datasets for two different window sizes.
RHF is greyed out as it as a batch algorithm with batch scoring. The orange
horizontal segments (resp. the green triangle points) represent the medians
(resp. the means) over the datasets.

based window sizes were used. The results show that STREAM-
RHF performs best with larger windows since it matches or
outperforms all algorithms when the window contains at least
2048 instances. Moreover, it consistently and largely outper-
forms RRCF, a state-of-the-art algorithm. Figure 3 shows a
statistical test that ranks how our algorithm compares to the
others over all 28 entities of SMD when a window size of
256 and 4096 are used. The advantages of STREAMRHF on
temporal data are more apparent with a larger window size of

Fig. 3. Average rank of algorithms with the Nemenyi test on SMD entities
for a window size of 256 (top) and 4096 (bottom). Groups of methods that are
not significantly different (p = 0.05) are connected. CD is the critical distance
required to reject equivalence.

4096, where it ranks first. However, even on a small window
of 256 instances, our algorithm is not significantly different
from two state-of-the-art solutions. Along with the XSTREAM
and HST, it consistently outperforms RRCF.

Computational complexity results are tabulated in Table V
and depicted in Figure 4 as boxplots. It can be seen that
RRCF and HST have a significant computational overhead
compared to XSTREAM and STREAMRHF, that are up to
two order magnitude faster than the former. In particular,
close comparison of STREAMRHF and XSTREAM reveals
that the former has a consistently lower median insertion
time (see Table V) but a wider inter-quantile (see Figure 4)
with respect to the the latter. Otherwise stated, STREAMRHF
and XSTREAM have comparable mean insertion time (around
3ms). Additionally, STREAMRHF is faster than XSTREAM in
more than 50% of the cases (around 1ms) and is slower than
XSTREAM in 25% of the cases (around 10ms). Overall, as far
as computational speed is concerned, both STREAMRHF and
XSTREAM appear to exhibit lightweight operation.



Fig. 4. Average insertion time of algorithms (ms) on "small" datasets with
different window sizes. The orange horizontal segments (resp. the green
triangle points) represent the medians (resp. the means) over the datasets.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces stream random histogram forest
(STREAMRHF), a one-pass streaming algorithm for unsuper-
vised anomaly detection. STREAMRHF maintains a sliding
window, where only the most recent data instances are re-
tained: the point-by-point reactivity and the use of a sliding
window allows STREAMRHF to efficiently deal with changes
in data distribution, i.e., concept drift.

We conducted an extensive experimental evaluation on a di-
verse set of datasets containing more than 600k instances from
a various set of real-world problems. Our evaluation shows
that: (i) STREAMRHF delivers comparable average precision
with its batch counterpart RHF, despite the requirements of the
stream settings (e.g., one-pass, not keeping the whole stream);
and (ii) STREAMRHF outperforms state-of-the-art approaches
in terms of average precision, while being among the fastest
in terms of computational complexity.

For future work, it would be interesting to try a different
windowed approach by deleting the oldest instance as soon
as the newest one is inserted. This would require a deletion
algorithm that is complementary to the one used for insertion.
This new approach would remove an instance from a Random
Histogram Tree and update the kurtosis values using decre-
mental kurtosis formulas derived from the incremental ones.
The model should then be even more accurate at each new
instance and this should also optimize our algorithm, which
would no longer rebuild from scratch at the end of the two
windows.
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