
1

Deployable models for approximating
web QoE metrics from encrypted traffic

Alexis Huet∗, Antoine Saverimoutou†, Zied Ben Houidi∗,
Hao Shi∗, Shengming Cai∗, Jinchun Xu∗, Bertrand Mathieu†, Dario Rossi∗

∗Huawei Technologies – {alexis.huet, zied.ben.houidi, shihao19, caishengming, xujinchun, dario.rossi}@huawei.com
†Orange Labs – {antoine.saverimoutou, bertrand2.mathieu}@orange.com

Abstract—Being on endpoints, Content Providers can easily
evaluate end users’ web browsing quality of experience (web
QoE) by accessing in-browser computed application-level met-
rics. Because of end-to-end traffic encryption, it is becoming
considerably harder for Internet Service Providers (ISPs) to
evaluate the web QoE of their customers, which is important
for management purposes. In this paper, we propose data-driven
machine learning techniques and exact flow-level algorithmic
methods to infer well-known application-level web performance
metrics (such as SpeedIndex and Page Load Time) from raw
encrypted streams of network traffic. We prove the efficiency
of our approach taking as input a unique dataset of more than
200,000 experiments, targeting a large set of popular pages (Alexa
top-500), from probes from several ISPs networks, with different
browsers (Chrome, Firefox) and viewport combinations. Results
show that our data-driven models are not only accurate for
several web performance metrics, but also feature the ability
to generalize to previously unseen conditions. Furthermore, we
discuss how our extremely lightweight flow-level method has a
provable accuracy on a specific metric, and is thus of particular
appeal from a deployment viewpoint.

Index Terms—Machine learning; Network monitoring and
measurements; Quality of experience; Web

I. INTRODUCTION

With the generalization of encryption [1], [2], ISPs are
struggling to get insights from data flowing within their
networks. When it comes to the web, encryption forced ISPs to
give up on services like transparent caching and redundancy
elimination. Today, it is also threatening their ability to un-
derstand web traffic, not to talk about estimating the quality
of experience (QoE) their users witness when accessing it.
Nowadays, when a user complains that browsing is slow and
sluggish, an ISP has no objective way to verify it. Besides,
human operators doing troubleshooting for the ISP can barely
tell if the problem originates from the application, the user
home-network, the transport network or because of a change
in one of the many content delivery networks that contribute
today to the delivery of a single web page [3].

Although directly collecting subjective web QoE is expen-
sive [4]–[6], it is possible to measure objective Application-
level web Quality of Service (AppQoS) metrics as a proxy
of user QoE, such as simple Page Load Time (PLT) [7] or
more advanced indicators related to visual progression as the
SpeedIndex (SI) [8]. Nonetheless, computing these indicators
needs access to application or at least HTTP-level information
– an information that the ISP has not anymore access to in
the nowadays widespread case of TLS encryption.

In this paper, we tackle the problem of AppQoS metrics
estimation from streams of encrypted network traffic in the
case of a single session. In particular, we estimate a set of
popular metrics collected at the application-level from Timing
APIs (e.g. PLT) or javascript code (e.g. SpeedIndex and
variants [9]). Among these indicators, the ByteIndex (BI) [9],
defined as the cumulative progression in time of the down-
loaded objects sizes in bytes, acts as a bridge between network
traffic and AppQoS: intuitively, by simply tracking the packet
size (or total bytes downloaded every ∆T ms), the cumulative
byte progression of a web session can be measured at the
network-level (net-BI) from encrypted network data. Machine
learning techniques can then be additionally leveraged to
devise estimators of the remaining AppQoS metrics, using
time series of byte progression as input.

To do so, we collect a large dataset of web page load con-
trolled experiments in which we measure both the application
view, from which we gather the groundtruth AppQoS metrics,
as well as the network view, i.e., packet-level traces. When
constructing the datasets, for the sake of generalization, we
collect experiments pertaining to a large variety of conditions.
We then evaluate the accuracy of our estimators compared to
groundtruth AppQoS metrics and study how they generalize
to different conditions (different types of pages as well as
different network conditions). Our contributions are as follows:

• First, we define exact (net-BI) or data-driven models
of AppQoS metrics that are able to operate directly on
encrypted network traffic.

• Second, we show that net-BI approximates well the
application-level app-BI (6% median error) and inference
generalizes well to any other AppQoS metrics (less than
14% median error in the worst case).

• Third, we systematically study the transferability of the
data-driven models to previously unseen conditions at
multiple levels (environment, viewport settings, location,
browser family and version, network conditions, etc).

• Fourth, we introduce a flow-level net-BI implementation
that we formally prove to have the same accuracy of its
packet-level counterpart: in reason of its extreme light-
weight, flow-level alternative is of particular appeal on
constrained deployment settings.

This paper is an extension of [10], that first described our
approach to estimate the QoE based on encrypted network
traffic. This paper presents the follow-up of our research

2

that we extended notably along (i) the comparison of several
machine learning models, as well as (ii) the formal proofs of
net-BI computation and (iii) the net-BI online computation.

The remainder of the paper is organized as follows. Sec. II
presents background material on web QoE performance mea-
surement and Sec. III formulates the problem, overviewing
our testbeds and the open source datasets. Sec. IV describes
exact and data-driven models for AppQoS inference. Sec. V
contrasts the accuracy of multiple models and Sec. VI sys-
tematically assesses the ability of such models to generalize
to unknown conditions. Sec. VII proposes simple theoretically
sound and lightweight flow-level algorithms that (limited to
one metric) are appealing for constrained deployment. Finally,
Sec. VIII overviews related literature and Sec. IX summarizes
our findings.

II. A PRIMER ON WEB PERFORMANCE

From a network standpoint, the rendering of modern web
pages requires downloading hundreds of complex objects
(style sheets, images, javascript code dynamically generating
requests for other objects, etc.) hosted on dozens of domains,
which are fetched opening multiple connections per domain,
using multiple protocols (e.g., HTTP, HTTP/2, HTTP/3).

Web practitioners use a waterfall diagram to represent the
full sequence of these download events, from the initial DNS
request to map the domain name of the visited web page,
to the final request of the last object referenced in the page.
Web performance is generally assessed within the browsers,
with objective application-level metrics that can be directly
extracted (or require to be computed) from the web rendering
waterfall. We denote such metrics, which are broadly used
as a proxy of web user Quality of Experience, as AppQoS
metrics, of which we here present a taxonomy following the
organization presented in [9].

In this work, we do not propose any new metric, but
rather an effective method to systematically learn any of these
metrics, from encrypted traffic. We point out that while our
proposal is quantitatively assessed on few popular metrics,
the extent of application of our methodology is more general
than its evaluation in this paper.

A. Time instant (direct)

AppQoS metrics of the time instant class track important
events during the page rendering. Notable examples include
the Time to The First Byte (TTFB), the Time to The First
Paint (TTFP), the time at which parsing of the Document
Object Model (DOM) is completed, the Time To Interaction
(TTI) after which a page is responsive for users, the time at
which all the content Above-the-Fold (ATF) is rendered [11],
and the time at which the page was fully loaded: Page Load
Time (PLT). With few exceptions, most of these metrics are
defined in the W3C normative reference and are directly
accessible via APIs such as Navigation Timing [12], Paint
Timing [13], and Resource Timing Level [14]. Fig. 1 depicts
the progress of the page download process, that originates
at the browser navigationStart event (t = 0 of the
session) and finishes at the onLoad event (corresponding to

Fig. 1: AppQoS primer from [16]: time instants (vertical lines)
and time integral (shaded areas) metrics

PLT=onLoad− navigationStart in the figure). Several
time instant metrics are annotated as vertical dashed lines in
the figure. (more metrics are covered in Sec. VIII).

Although time instant metrics are apparently simple, it
should be noted that (i) different browsers may have different
implementations of such metrics, and (ii) slightly different
definitions for the same metrics may be used in practice. As
for (i), it is important to assess cross-browser compatibility,
which has limitedly been done so far [7]. As for (ii), we
remark that recent research [7] points out that even for
very simple and widely used metrics such as the PLT, there
exists significant discrepancies (20% for the median page)
depending on the adopted definitions. It follows that for more
complex and recent metrics such as the ATF (which identifies
the time at which the browser finished entirely rendering
the viewport area), further implementation discrepancies may
arise. For instance, the testbeds we use in this work implement
slightly different implementations of the ATF concept: Web
View implements ATF as the Time for Full Visual Rendering
(TFVR) [15] whereas Web Page Test implements it as Visually
Complete (VC) [11], and both support the Approximated ATF
(AATF) [16] chrome plugin we previously released [17].

For consistency, among the time instant metrics we consider
DOM and PLT, which are less ambiguously defined, as well
as prominently used (PLT in particular) in related literature.

B. Time integral (computed)

Reducing web performance to the timing of single events
is not without downsides: for instance, ATF definition is not
agreed upon, whereas PLT is the extremum of a time-series,
and by definition its measurement can be prone to outliers. For
such reasons, the web performance community started defining
metrics that exploit the timing information of all events in
the webpage waterfall, which can be conveniently done by
relatively simple integrals.

Considering the process x(t) of the normalized page
progress in Fig. 1, a time integral metric X is defined as the
residual cumulative progress, depicted as the gray shaded area
above the x(t) curve, that is computed as:

Xtend =

∫ tend

0

(
1 − x(t)

)
dt (1)

3

where tend is the cutoff of the integral (e.g., note that in the
example in the figure, the cutoff is set at tend=ATF for which
x(ATF) is renormalized to 1). Intuitively, for two runs of
the same page ending at the same PLT, it is smaller for the
run that appears more responsive at the beginning (i.e., whose
progress is faster x′(t) > x(t)).

Several metrics have the form (1), and vary only for the
specific choice of the x(t) implementation. The first proposal
in this class, namely the SpeedIndex [8] (SI), is based on
the visual progress of the page rendering process, computed
at pixel-level (with problems due to changing content) or
by histogram of the pixel-colors (approximation). Similarly,
Perceptual SpeedIndex (PSI) [18] enhances SI by further using
SSim video similarity metrics. ReadyIndex [19] (RI) tracks the
readiness of the page, by averaging visual progress (i.e., paint
events) of an element with the progress of its functionality
(i.e., whether all JavaScript related to that element have been
downloaded). However, SI, PSI and RI are heavyweight and
have not been deployed outside lab environment. Real User
Monitoring SpeedIndex (RSI) [20] is a lightweight approxi-
mation that circumvents this problem by using the bounding
box size as proxy of visual completion. Finally, even simpler
approximations have been proposed: ByteIndex [9] (BI) is an
approximation that replaces the visual rendering progress by
the byte progress, where bytes come from the size of objects
requested by the browser. Similarly, ObjectIndex (OI) [9] uses
object count progress, where all objects are counted equally
regardless of their size.

As metrics in this class are particularly important, we
consider an extensive selection to include SI (as a prominent
and reference metric, generally used in the literature), RSI
(that has been recently used in a large scale study involving
real Wikipedia users [5]), as well as BI and OI (that have as
well enjoyed deployment [21]).

C. User perception (QoE)

AppQoS metrics are objective quantities meant to approxi-
mate web users’ subjective Quality of Experience (QoE). Web
QoE has been the object of recent attention, with several
studies focusing on involving real users or volounteers, either
in lab [16], by means of crowdsourcing [4], [22], or through
real campaigns [5] where users are asked for different types of
perceptual satisfaction (a feedback 5-grade Absolute Category
Ranking [6], [16], a binary user acceptance [5], [23], or
a user perceived delay [4], [24]). In a nutshell, while the
instant/integral AppQoS metrics differ quantitatively, they are
qualitatively based on the assumption that the quicker the
content is loaded, the higher the user QoE, which has been
ascertained by studies involving real web users [5], [16], [24]–
[26]. We remark that different AppQoS metric pairs are highly
correlated: for instance, the observed correlation on top-100
Alexa web pages [9] between SI and PLT (resp. BI) is 0.79
(resp. 0.82). However, the relationship of subjective experience
and AppQoS metrics is far from being fully elucidated yet:
e.g, [27] shows that animated content can impact the percep-
tion of ATF, and [24] shows that different objective AppQoS
metrics are better fit to represent different classes of users

having different perceptual abilities. This suggests to consider
several AppQoS metrics as relevant proxy of user experience.

Furthermore, while an exact model for web users’ QoE is
still not agreed upon, a relatively simple rule of thumb can be
employed to gauge the rough expected impact that AppQoS
delay has on web QoE perception. In particular the classic
psycho-behavioral Weber-Fechner law [28], which shows a
logarithmic separation of human perception timescales, has
been later successfully casted to the computer network do-
main [29]. As human nature and senses have not fundamen-
tally changed, “the basic advice regarding response times has
been about the same for thirty years” [29], i.e., 100ms is
the limit for having the user feel that the system is reacting
instantaneously, whereas 1s is the limit for the user’s flow of
thought to stay uninterrupted, even though the user will notice
the delay. For the web, this boils down to saying that 100ms
are practically unnoticeable from the user – which can help
us appreciating the accuracy of our models later on.

III. TESTBEDS AND DATASETS

We provide a brief overview of the testbed and tools we use
and of the experimental workflow we follow. In particular,
Fig. 2 provides a view at a glance of our measurement
campaign, and Tab. I reports further details on the datasets
that we collect and make available [30].

A. Testbeds

The testbed we built is based on two software tools, namely
Web Page Test (WPT) [36] and Web View (WV) [37]. We
point out that while both WPT and WV collect measurement
directly from the browser, using more than one tool in the data
collection process is a necessary step to ensure the generality
of the QoE inference. In a nutshell, the use of both tools allows
to explore a wide set of complementary aspects (cf Tab. I),
which in turn is necessary to ensure that inference models are
broadly applicable and their results representative of end-user
experience.

1) Web Page Test: Web Page Test is a popular tool for
measuring and quantifying websites performances. WPT is
based on a software deployed on machines located at different
points of the world. Public WPT instances enable anyone to
perform tests to evaluate one website from a specified location
of the planet, as it could be experienced by a user located in
that place. For this type of use, WPT offers a public page
to enable anybody to launch a test by selecting the location
of the vantage point, the browser she wants to use and the
target URL of the website. WPT allows to perform a single
test (first view) or two tests (first view + repeat view) and
measures the information for the repeat view: this emulates
someone revisiting a website and allows to assess the impact
of cached contents (both locally and in network proxy caches).
Private WPT instances, such as the one we use in our testbed,
run the same WPT software and can be instructed to perform
large scale measurements. Some of our private WPT instances
run on VMs in our lab servers using their native broadband
connections, while others run from laptops in our labs that are
either connected to WiFi or to 4G networks.

4

TABLE I: Summary of the datasets in this work (WPT, WV) vs related work. Datasets available at [30].

Factor Web Page Test (WPT) Web View (WV) Literature

Locations {Asia, EU, US} × {Public, Private} EU
Generally in EU [31], [32]
EU, US and others in [33]

Target pages Top-500 × {world, China} × {main, subpages} 50 main pages from Top-500
Limited (3-20) in [31], [33], [34]
Up to Top-10K main pages in [32]

Network conditions 50% native + 50% (Fiber, DSL, 4G, 3GFast, . . .)1 (Fiber, ADSL)2 Ethernet, mobile broadband [31]

Browsers Chrome Chrome, Firefox
Mainly Chrome only [6], [34]
Chrome and Firefox in [31], [32]

Viewports Default 1920×1080, 1440×900
Default or not specified [19], [34]
Five viewports in [32]

Protocols {HTTP/2} × {IPv4} {HTTP/2, HTTP/3} × {IPv4, IPv6}
From HTTP/1 only [33] to
{HTTP/2, HTTP/3}× {IPv4} [31], [32]
{IPv6} [35] but no AppQoS metrics

Metrics BI, PLT, SI, OI, DOM BI, PLT, RSI, OI, DOM PLT, RSI, SI, ATF [31], [32]

Samples no. 119,395 111,171

1 https://github.com/WPO-Foundation/webpagetest/blob/master/www/settings/connectivity.ini.sample
2 https://webview.orange.com/monitoringParameters

For each test, WPT requests the content of the specified
page and logs several key metrics (see Sec. II) of the browsing
process, and other information such as the volume of down-
loaded content, the number of connections and requests, etc.
This is the information we exploit in this paper. Additionally,
WPT assesses how good are the practices of the website: for
instance, it informs if it properly compresses the text and the
images, reuses existing connections, if it relies on a CDN
network, etc. WPT offers a simple visual interface with a score
(A being the best) associated with a color code (green, yellow,
red). WPT argues that if the score is not A or B, issues should
be addressed by the web owners to improve the design of their
website (which is useful from the website developer viewpoint,
but orthogonal with respect to the focus of our work).

2) Web View: Web View (WV) is a software tool developed
by Orange whose main objective is to perform automated
web browsing measurements. Similarly to WPT, WV collects
page timing and browsing information, with the ability to
configure several test parameters (such as the website list,
the browser, the screen size, the use of ad blocker, etc.). In
addition, WV can use specific transport protocols (HTTP/1,
HTTP/2 or HTTP/3), which is useful to evaluate the adoption
of these protocols by web servers, and their impact on the
performance of its users (e.g., repeat tests can evaluate the
benefits of website certificate re-use for faster handshake).

However, whereas WPT adopts the viewpoint of a web user,
WV adopts the point of view of the ISP that users access
to reach their favorite web pages. As such, WV probes are
located behind commercial home boxes, allowing to know
exactly the QoE that end-users in this access network could
get. Moreover, WV is designed to continuously measure rep-
resentative information of web pages from strategically placed
network probes, in order to better qualify and understand web
browsing performance and especially track how performance
changes over time. To further identify the root cause of
performance changes, WV also offers the ability to know

Fig. 2: Synoptic of the workflow in this paper

content provenance: i.e., WV identifies the locations of the
content providers and informs if the content is provided by
CDN, cache servers or origin servers (which is useful from
the ISP’s viewpoint, but orthogonal with respect to the focus
of our work).

B. Workflow

We automate execution of data collection by instrumenting
several workers (either public or private instances). Both tools
have access to application layer information and can thus
provide us with a groundtruth for the metrics we target to
estimate. Each worker executes multiple web sessions, con-
sisting, each, of opening a browser under specific conditions
and loading a web page until the end of network activity. For
each session, we collect simultaneously (i) application level
information from the browser and (ii) raw network packet
traces.

Given an AppQoS browser metric of interest, we then build
a labeled dataset from the collection of controlled experiments:
each network packet trace is associated with the corresponding
value of the AppQoS metric. This labeled dataset feeds a
machine learning model, with as input a function of the
encrypted packet trace, and as output the value of the AppQoS
metric, as detailed in Sec. IV.

Once the model has been trained, we test its prediction
ability on new samples in Sec. V. One of the main fallacies

5

for a successful application of supervised machine learning in
real network deployment is represented by the possible lack
of generalization capabilities. In other words, the model works
well on the collected dataset, but performance may degrade
in other network settings. Since we are well aware of this
fallacy, we particularly stress-test the generalization ability of
our models in Sec. VI.

C. Datasets

To stress test the model’s generalization capabilities, we
purposely collect two distinct datasets with two different
tools, that are available at [30]. We perform a large set of
controlled experiments with both WV and WPT, varying a
number of relevant parameters and conditions, for a total of
200K+ web sessions, roughly equally split among WV and
WPT. Tab. I gives an overview of our measurement campaign
put in perspective with the closest datasets in the literature
in terms of scale: compared to existing ones, our dataset is
unique in terms of geographical coverage, scale, diversity
and representativeness (location, targets, protocol, browser,
viewports, metrics).

About half (55967) of WPT experiments are performed
using the online service www.webpagetest.org at different
locations in Europe (Frankfurt, Paris, London), Asia (Seoul,
Singapore, Tokyo) and USA (Dulles). For the the other half
(63428) of experiments we use private WPT instances in three
locations in China (Beijing, Shanghai, Dongguan). The list of
target URLs comprises the top-500 worldwide and the top-
500 in China. We additionally randomly take 5 subpages from
each main page, to increase content diversity with respect to
the landing page.

We vary network conditions by leveraging WPT traffic
shaping capabilities: half of the experiments use native WPT
connections and the other half is apportioned among 4G, fiber,
3GFast, DSL, and other shaping/loss conditions (conditions
are normalized in WPT; details are accessible through WPT
configuration file pointed in Tab. I and are reported for each
experiment in [30]). The other elements in the configuration
are fixed: Chrome browser on desktop with a fixed screen
resolution, HTTP/2 protocol and IPv4.

Using the Web View (WV) platform, we further collect
111171 experiments from three machines at two different
locations in France (Paris and Lannion). Compared to the WPT
experiments, we select two versions of two browser families
(Chrome 75/77, Firefox 63/68), two screen sizes (1920x1080,
1440x900), and employ different browser configurations (one
half of the experiments activate the AdBlock plugin) from
two different access technologies (fiber and ADSL). From
a protocol standpoint, we use both IPv4 and IPv6, with
HTTP/2 and HTTP/3, and perform repeated experiments with
cached objects/DNS. Given the settings diversity, we restrict
the number of websites to about 50 among the Alexa top-
500 websites, to ensure statistical relevance of the collected
samples for each page.

We remark that prior work has focused each time only on
specific aspects, such as L7 protocols HTTP/1 vs HTTP/2 [6]
or HTTP/2 vs HTTP/3 [31], [32]. Lower layer protocols (e.g.,

impact of IPv6 that we consider in this work) have been dis-
regarded to the best of our knowledge: indeed, existing work
studying the impact of IPv6 on web performance [35] focused
mainly on simple L3 (IPv6 reachability) or L4 statistics (TCP
connect times of website), unlike ours which focuses on actual
L7 AppQoS metrics. Similarly, vantage points are typically
spread in few locations in few continents [31], [32]. With few
exceptions [31], [32], most related work also focus on a single
browser (typically Chrome), with the default viewport. In this
work, we carefully balance all conditions to build datasets that
contain variability in all the factors mentioned in Tab. I. By
doing so, we are able not only to study the ability of machine
learning models to forecast QoE from encrypted traffic, but
also to stress-test the generalization properties of such models
to very heterogeneous conditions.

IV. NETWORK-LEVEL INFERENCE OF APPQOS METRICS

In this section, we illustrate how to approximate in-browser
AppQoS metrics directly from encrypted traffic. We first show
and illustrate how BI metrics can be computed from packet-
level data, and later describe how to extend the inference to
other AppQoS metrics.

A. ByteIndex (BI) metrics

Whereas BI considers the object sizes as seen by the
browser, net-BI instead takes the packet size as seen by the
network. It is useful to recall the ByteIndex (BI) definition:
given a session consisting of loading a single web page, let
x(t) the percentage of bytes already retrieved at time t. By
definition, x(t) is a monotonic non-decreasing curve, going
from 0 at the initial time t = 0 of the session to 1 after the
time to last byte is retrieved. The BI is the area above the curve
(and below 1), formally defined as BI :=

∫ +∞
0

[1 − x(t)]dt.
The numerical evaluation of this formula depends on the

timescale used for populating x(t). In the rest of this section,
we use different time granularity, yielding to different sizes of
individual events, that yield to (slightly) different BI metrics.
• app-BI Having access to HTTPS header, the original

application-level BI [9], denoted as app-BI in this work,
is computed at object arrival times ti, using the size si of
the received i-th object, so that x(t) is incremented at ti
by si/

∑
j sj , i.e., the proportion that object si represent

of all objects
∑

j sj in the page.
• net-BI At the finest granularity, network-level BI can be

computed from individual packets: whereas the formula
to compute net-BI remains the same as in the previous
case, now ti and si correspond to the reception time and
size of the i-th packet. Since the navigation start time is
not available from the network side, we select the first
DNS query time, as seen in the DNS record packets, as
initial time of the session.

• Time-aggregated net-BI A more convenient granularity
is to aggregate packets received during windows having
fixed duration W . We consider W = 100ms in this
work, that was shown to provide accurate results in our
preliminary work [38]. In this case, the size sw cumulates
the size of packets received during the window

∑
j∈w sj ,

6

DOM SI PLT

0e+00

1e+05

2e+05

0 2000 4000 6000
Time (ms)

O
bj

. s
iz

e
(B

yt
es

) DOM SI PLT

app−BI
3044 ms

0%

20%

40%

60%

80%

100%

0 2000 4000 6000
Time (ms)

B
yt

es
 p

ro
gr

es
s

0

500

1000

1500

0 2000 4000 6000
Time (ms)

P
ac

ke
t s

iz
e

(B
yt

es
)

net−BI
3040 ms

0%

20%

40%

60%

80%

100%

0 2000 4000 6000
Time (ms)

B
yt

es
 p

ro
gr

es
s

0e+00

2e+05

4e+05

6e+05

0 2000 4000 6000
Time (ms)A

gg
r.

pa
ck

et
s

si
ze

 (
B

yt
es

)

time−agg. net−BI
3045 ms

0%

20%

40%

60%

80%

100%

0 2000 4000 6000
Time (ms)

B
yt

es
 p

ro
gr

es
s

Fig. 3: Illustration of application (top) and network views (middle and bottom) for Byte Index metrics, i.e., the colored area
on top of the x(t) progress curve (black continuous line). Several other AppQoS metrics (DOM, SI, PLT) are annotated in the
picture.

represented by the time tw of the w-th aggregate (centered
in the window, so tw = (w − 1)W + W/2).

B. Application vs Network views of web page rendering

For the sake of illustration, we visually compare in Fig. 3
the three different set of events for the same single session,
from top to bottom: application BI, packet-level net-BI, and
time-aggregated net-BI. Pictures on the left represent events
by segments with different times and sizes. Pictures on the
right cumulates events, depicting x(t) curves with black lines
and BI metrics with colored areas. To avoid cluttering the
picture we do not attempt at differentiating all events (domains
or flows), and only highlight the top contributor: the DNS
domain contributing the most to app-BI is colored in pink
(top picture), while the IP contributing the most to net-BI is
colored in orange (middle and bottom). Dark-gray segments
and areas correspond to the remaining domains/servers.

Several interesting remarks can be gathered from the pic-
ture. First, the time-series of events cannot be directly com-
pared: few objects are loaded in the browser, that correspond
to long sequences of packets. However, the cumulative curves
look similar, and the areas of app-BI and net-BI directly
annotated in the pictures give remarkably similar values in
this example (a thorough and statistically relevant analysis is
reported in Sec. V). Second, it is clear that aggregation of
packets in windows or objects levels changes the nature of
the events, but the cumulative curve and the BI values remain
similar. It follows that time-aggregation is a simple method for

reducing the amount of data to store in memory while keeping
the same shape for x(t), providing a lightweight yet accurate
view of the traffic.

C. Learning AppQoS metrics

1) High level idea: The aggregated network view addition-
ally provides a more homogeneous view of the traffic, that can
be leveraged as input for learning various AppQoS metrics in
addition to BI, such as those annotated as vertical lines Fig. 3.
We also remark that, according to the definitions of app-BI and
net-BI, we expect these alternative formulations to be similar,
with small discrepancy even in degraded network conditions
(this is confirmed in Sec. V). In addition, application-level
BI is known to have high correlation [9] with the most
important AppQoS metrics (such as SI, PLT, etc.). As such, it
is reasonable to resort to supervised machine learning to learn
the just illustrated similarities between application-layers and
the network-level views.

In a nutshell, given any AppQoS metric of interest y avail-
able in our dataset, our methodology is to train a supervised
model y = f(x) from sessions of web browsing, of which
application labels y and network features x are simultaneously
gathered. To ensure that the models are portable (across types
of web pages, different network conditions, etc.) we test our
models in a wide range of conditions (recall Tab. I).

2) Inputs x vs Output y: Our methodology works with
different sets of inputs based on the time-aggregated x(t)
shown in the bottom plot of Fig. 3. In particular, we sample

7

x(t) every 100ms from 0 to 10s. Then, we compute the net-
BI value, which is the area above the curve x(t). The input x
is the fixed-size vector of length 101 consisting of appending
the discretized time series (a vector of length 100) with net-
BI (of length 1). For each output y (i.e., the PLT and SI
metrics shown as vertical reference lines in Fig 3), we then
train a specific model. We focus on a subset of important
AppQoS metrics out of overall collected ones: ByteIndex (BI),
SpeedIndex (SI), RUM SpeedIndex (RSI) and Page Load Time
(PLT). Since results are qualitatively similar, this allows us to
report results in a more concise way.

3) Regression y = f(x): For the regression task, we
employ state of the art approaches from different branches
of ML, namely (i) decision trees, (ii) gradient boosting and
(iii) deep learning.

As for (i), decision trees are known to be extremely simple
yet accurate for regression tasks: as such, they provide an in-
sightful baseline that lower bounds computational complexity
of ML methods. For this category, we consider the popular
CART algorithm [39] which we use as a baseline.

However, (ii) ensemble techniques are known to provide
superior accuracy with respect to individual trees, at the price
of additional computational complexity. For this class, we
leverage the LightGBM [40] gradient boosting method, which
is the current state of the art in this class. We tune its
hyperparameters using Bayesian optimization: a satisfactory
set of hyperparameters used in the following is given by an
ensemble of 1700 estimators where each tree has a depth of 7,
and with at least 21 elements in each leaf. Clearly, in reason of
the additional number of estimators, we expect a performance
payoff at the price of moderate complexity increase – since
the tree depth is bounded, and since tree operations during
inference boil down to simple if-then-else branches.

Finally, as for (iii) deep learning techniques, we resort to
1D-Convolutional Neural Networks (CNN) as they offer supe-
rior performance on time series: this is due to the non-linear
feature extraction capabilities of the convolutional layers,
which are well suited in capturing time-series patterns of high
complexity. The computational cost of CNN (for training and
inference) is higher than that of the previous methods: as such,
deployment consideration may discourage the use of more
complex alternatives (e.g., LSTM or transformers), unless
justified by a significant accuracy improvement. We devise a
deep learning 1D-CNN architecture and hyperparametrization
that we use consistently for all QoE metrics, and that operates
on the time-aggregated net-BI samples in input (opportunely
normalized between 0 and 1). In particular, we adopt a VGG-
16 [41]-like architecture, by stacking consecutively series of
Convolutional and Pooling layers before closing with a pair of
dense layers. As in VGG-16, we choose a small filter size and
a small stride (respectively 3 and 1 in our case). Overall, our
1D-CNN model employs 9 layers for over 2 million trainable
parameters. Given that our dataset is not particularly big with
respect to the model size, we rely on dropout layers to avoid
overfitting: in particular, we use a 0.5 dropout after each dense
layer and a 0.25 dropout after each set of convolutional and
pooling layers. We expect our 1D-CNN to provide superior
accuracy, at the price of an even increased complexity due

3% 4%6% 8%
14%14%

Feature
eng.

Machine
learning

0

200

400

600

800

app−BI app−BI PLT OI SI/RSI DOM
Metric

A
bs

ol
ut

e
er

ro
r (

m
s)

Fig. 4: Absolute median errors (bar plot) with first and third
quartile (error segments) for predicting five AppQoS metrics
in the WV and WPT datasets, with feature engineering (gray,
for app-BI only) and machine learning using LightGBM. The
relative median error in percent is added close to each bar.

to the large number of matrix computations involved in the
inference process.

4) Training and evaluation: We use two different processes
to respectively (i) quantify accuracy and complexity of the
above models, to select the best candidate for deployment in
Sec. V and (ii) stress test model generalization capabilities in
Sec. VI. As for (i), as typically done in the literature, the whole
set of experiments is randomly split into five equally-sized
subsets to perform 5-fold cross validation: in this case, models
are exposed during training to all conditions in the dataset,
so that it is possible to relatively compare ML models in a
principled way (due to cross-validation), although it remains
unclear how such model would perform when exposed to
completely different environments (e.g., a new browser).

As such, we (ii) stress test model generalization by per-
forming more challenging split of the different folds along
the different conditions of a dimension to test. While the
methodology is detailed in Sec. VI-A, in a nutshell the idea
is to, e.g., check generalization capability over browsers by
training over Chrome and testing over Firefox (and vice
versa), ensuring a wider discrepancy of the training-testing
conditions.

V. MODEL ACCURACY

We now report results of AppQoS estimation from en-
crypted network traffic. We first provide a bird-eye view,
summarizing the performance results for each of the metrics on
the dataset as a whole. We next dissect deeper the performance
across multiple models and testbeds.

A. Bird-eye view: Aggregated results for all metrics

We start by quantifying the accuracy of machine learning
models in inferring the range of AppQoS metrics in our WPT
and WV datasets using 5-fold cross validation. Fig. 4 depicts
the AppQoS metric estimation error in both absolute (bars) and
relative (annotated percentage over the bar) terms, with metrics
ranked on the x-axis by increasing amount of median error.
Bars report the median error, and error bars extend to the 1st
and 3rd quartile of the error distribution: it can be seen that the
median error is below 300ms (14%) for all metrics, including

8

 0

 100

 200

 300

 400

 500

app−BI PLT OI SI/RSI DOM
Metric

A
bs

ol
ut

e
er

ro
r

(m
s)

LGBM

CNN

CART

1

10

100

1000

app−BI PLT OI SI/RSI DOM
Metric

T
ra

in
 ti

m
e

(s
)

1

10

100

1000

app−BI PLT OI SI/RSI DOM
Metric

In
fe

re
nc

e
tim

e
(m

s)

Fig. 5: Absolute median errors (top), training time (middle)
and inference time (bottom) for different ML/DL models and
AppQoS metrics.

SpeedIndex (SI computed on WPT) and RUM SpeedIndex
(RSI computed on WV).

Additionally, notice that for one metric (app-BI), the plot
reports the error when its estimation is carried out through
feature engineering only (gray shaded background) as well
as when its estimation is carried out using machine learning
from the periodic time-series (white background). Here feature
engineering means considering time-aggregated net-BI as a
direct approximation of the app-BI, without use of learning
algorithm. While app-BI estimation with the time-aggregated
net-BI is already fairly accurate (about 100ms error or 6%), it
can be seen that machine learning enhances app-BI forecast,
lowering the median error to about 50ms (3%).

In light of the Weber-Fechner law, and the timescale sep-
aration of human perception for which 100ms difference in
rendering times are hardly perceivable by end-users, and
delays up to 1s are tolerable, it can be seen that AppQoS
metrics can be learned with a useful degree of precision.

B. Digging deeper: Comparison across models

Whereas the general workflow for learning supervised re-
gression models is the same, the use of different models such
as a single CART decision tree, vs an LightGBM boosting tree
ensemble, vs a CNN deep learning model yield to different
operational points in the trade-off between model accuracy
and complexity. Fig. 5 reports the median and quartiles model
accuracy (top plot), together with the training complexity
(middle) and inference complexity (bottom) complexities for
all AppQoS metrics and models. Notice that the error statistics
for LightGBM model map thus directly to those reported in
Fig. 4.

Expected tendencies are immediate to gather. In terms of
complexity, CART is the fastest to train, specifically more
than 2× faster than LightGBM and over 100x than CNN.

0.77

0.940.78

0.790.70.92

0.820.760.910.9

0.810.740.910.920.96

RSI

OI

PLT

app−BI

net−BI

app
−BI

PLT OI
RSI

DOM

WV

0.79

0.940.84

0.780.780.89

0.770.840.880.85

0.760.830.870.860.99

SI

OI

PLT

app−BI

net−BI

app
−BI

PLT OI SI
DOM

WPT

Fig. 6: Spearman’s correlations between net-BI and AppQoS
metrics for the WV (left) and WPT (right) datasets

Inference times are also favorable to CART that is about
40–50× faster than LightGBM, that is already 5× faster
than CNN. Note that these inference time refer to inference
for the whole dataset, after the dataframes are loaded in
memory: it follows that inference complexity is negligible
from a practical viewpoint. More importantly, model simplicity
comes at the price of reduced accuracy, as the relative error
is also roughly 2× worse than LightGBM and CNN. On the
other side, the accuracy is best for CNN, which outperforms
LightGBM on all metrics except PLT. However, the reduction
of few percents of relative error wrt LightGBM comes at
the price of more costly training (and inference) processes.
Notice also that in absolute terms, CNN error improves by
few tens of milliseconds, which may have little practical
impact compared to the timescales of human perception. These
observations have important consequences for our work since,
as we shall see in Sec. VI, a thorough evaluation of the model
transferability requires to systematically retrain the models to
stress-test their generalization capability – which requires fast
training methods.

Summarizing, whereas CART trees are inexpensive yet in-
accurate, and CNN accurate but costly to train, LightGBM
stands out for having performance that is close to CNN,
with far smaller training times. In the reminder of this paper
we thus limitedly use LightGBM models, as they represent a
“good enough” choice for practical deployment.

C. Digging deeper: Comparison across testbeds

We now extend the comparison to explicitly contrast
datasets collected across different testbeds. We start by ex-
amining in Fig. 6, the Spearman correlation between AppQoS
metrics in both WPT and WV datasets. Two important remarks
can be gathered from the picture. First, net-BI and app-BI have
high correlation with the other AppQoS metrics: coupled to
the low error in app-BI estimation, this partly explains the
good performance in estimating any time-related performance
indicator, since additional non-linear dependencies can be
captured by ML models.

Second, it can be seen that the exact value of the cor-
relation can vary depending on confounding factors in the
measurement campaigns: particularly, notice that RSI vs SI
metrics measured respectively in WV and WPT have different
definitions, and hence correlation values; also interestingly,

9

100

1,000

10,000

100,000

 t: 100
WPT: 0%
 WV: 1%

1,000
12%
40%

10,000
86%

100%

100,000
100%
100%

app−BI (ms)

SI
/R

SI
 (m

s)

Dataset

WPT

WV

Fig. 7: Scatter plot for 1000 sampled points. x-axis denote the
proportion of elements having app-BI ≤ t for each dataset.

whereas RSI (WV) correlation is lower than SI (WPT), for all
remaining metrics that are identically measured by WV and
WPT, it is generally the opposite, i.e., correlation is higher in
WV than in WPT.

We further visualize the just exposed differences in the VW
vs WPT datasets by focusing on the SI/RSI metric, which is
among the most important to assess web QoE. Fig. 7 reports a
scatter plot of app-BI vs SI (WPT) or RSI (WPT) for the two
datasets. Particularly, it can be seen that points in the scatter
plot align well around the y = x intercept, which explains
the high Spearman correlation. At the same time, notice that,
as encoded in the x-axis label, only 12% of WPT (40% of
WV) samples have an app-BI up to 1 sec. Also, whereas all
WV samples have an app-BI of less than 10 sec, there are
14% of WPT experiments having app-BI in excess of 10 sec.
The underlying reasons of these differences may be multiple,
as e.g., this can be due to remote Asian locations used in
WPT, or public dataset instances of WPT, etc. A question
arise about ML models whose performance have been studied
in this section: particularly, it is unclear how well models that
have been exposed to only part of these conditions during
training, generalize to previously unseen conditions.

Otherwise stated, the above observations reinforce the need
to widen the investigation boundaries beyond those of a single
environment. Otherwise, the risk is that the gathered results
may limitedly apply to a dataset, and may not generalize to
other environments or real deployments: assessing the model
portability is thus our main focus in what follows.

VI. MODEL GENERALIZATION

We now focus on portability and dig into the generalization
capabilities at a deeper level, providing operational suggestions
concerning the need for retraining along the different dimen-
sions (i.e., pages, browsers, protocols, etc.) in our datasets.

A. Methodology

The previous results have shown that machine learning
models provide a satisfactory forecast of AppQoS metrics
from encrypted traffic: whereas this is a positive fact for ISPs,
drawing such a conclusion would be naı̈ve in our opinion.
Despite the large scale of the experiments, the variability of

the dataset and the use of methodologically sound cross-fold
validation, the models have so far been tested in quite homo-
geneous conditions: i.e., they were exposed, during training,
to a random sample of all tested conditions.

For instance, the previous section has shown that our models
work well for two major browsers (Firefox and Chrome,
that make up for 70% of the market share according to
https://gs.statcounter.com/), yet it is unclear to what extent
such performance would generalize to the remaining (non-
chromium based) browsers in the market, or can general-
ize across browser versions or to future browser releases.
In the above case, the model generalization capability (aka
portability in the remainder of this section) can be answered
by purposely avoiding to expose the training process to a
particular browser B, and testing the model accuracy on
exactly that left-out browser B.

More formally, in this section we systematically stress test
the model generalization capabilities by exposing it, during
training, to only part of the conditions in our dataset. To
do so in a principled way, we resort to leave-one-out testing
where we systematically exclude each time one condition (e.g.,
Firefox) from the training and test on this excluded condition.
This allows us to quantify, in a fine-grained way, what are the
most difficult factors that limit the model portability. In turn,
this knowledge can be useful to prioritize retraining (e.g., when
new browser versions are introduced, or new protocols, etc.)
and more efficiently guide future measurement campaigns.

In principle, to stress test generalization capabilities of
the models, this methodology can be extended to consider
pairs of conditions to be left-out from training. In practice
however, the breakdown of settings across testbeds reduces the
combinatorics of the conditions that can be left out: indeed,
several combinations cannot be tested (e.g., any combination
involving two testbeds, such the impact of Viewport, available
only on WV, vs the network conditions, available only on
WPT) while the available combinations would reduce the
heterogeneity (e.g., as the impact of AdBlocker vs L7/L3
protocols could be tested only on the WV, or similarly the
network conditions vs browser combinations are available only
on WPT). As such, we limitedly consider each condition in
isolation in the following.

B. Results

Fig. 8 shows at a glance our portability results across some
of the most important dimensions in our datasets. The figure
shows the results for three metrics (PLT, BI, SI/RSI) using the
LightGBM models. The results for each left-out condition are
represented by a boxplot showing the median, first and third
quartiles of the relative error when testing the inference model
on the left-out condition. From top to bottom, left to right,
we present portability across the (1) measurement tools (WPT
vs WV), as well as the (2) collection environment (Public vs
Private) and (3) probe location. Content plays undoubtedly
an important role, for which we break down portability per
(4) cluster of pages (World, China, Subpages of the same
page) and (5) portion of the visible page, as not all content is
rendered above the fold. We also consider user heterogeneity

10

Fig. 8: Model generalization: leave-one-out tests, where models are purposely built so that conditions in the test fold are not
exposed during training.

by contrasting (6) viewports that stem from different user
devices, as well as (7) browser families vs (8) browser ver-
sions, and (9) the use of Ad blocker plugins. Finally, from the
network viewpoint, we consider (10) L7 Protocols (HTTP/2
vs HTTP/3, with/without caching of HTTP/DNS responses),
(11) L3 Protocols (IPv4 vs IPv6) and (12) different network
conditions. Several remarks are in order.

(1) Measurement tools, (2) Environment and (3) Location.
The first subplot in the figure shows the effect of leaving out
the entire WV or WPT datasets from training, which allows
us to understand whether a single measurement campaign is
sufficient to build AppQoS estimators that generalize well
to unseen conditions. We observe that when it comes to
PLT, omitting WPT from training (i.e. training on WV only)
and testing on WPT, results in higher relative errors (larger
inter-quartiles), compared to omitting WV from training. The
explanation is that WPT experiments have much higher PLTs
(recall Fig. 5) and that learning PLTs of slow-loading pages
from examples containing mainly fast-loading pages yield
higher errors. Overall, it can be remarked that while median
PLT and BI generalize well (median error on previously
unseen conditions on the order of 10%) however the error can
grow large for the 3rd quartile (up to 70% for PLT). Similarly,
it can be seen that median error for SI/RSI estimation on
previously unseen conditions roughly doubles (up to 30%

whereas it was 14% when training on both WV and WPT
datasets). It is thus clear that there is a benefit in exposing
models to an as heterogeneous as possible set of conditions,
so that hopefully the estimation accuracy does not degrade in
operational deployment.

Variability extends also to public vs private instances of
the same tool, as well as different locations of the private
instances. Particularly, whereas BI estimation remains precise
in both cases, we notice that environment and location have a
roughly similar impact on PLT and SI estimation.

(4) Target pages and (5) Visible page portion. The variability
across groups of pages shows that the model generalization
capability to unseen pages of different part of the world
(World, China), or different subpages (Sub) remains on par
with the environmental variability. This is reassuring as it
suggests that there may be no need to provide a very fine-
grained per-page modeling. Further work can though help to
make sure that our findings remain valid for different types of
pages or less popular ones from top 1M Alexa.

Conversely, the visible portion of the page plays a significant
role and better explains the root of the error. It is well known
that not all the page is visible immediately after download,
and the portion of the visible page is generally referred to as
“Above the Fold” [11]. We first compute for each experiment
the ratio between the height of the screen and the total length

11

of the page. This ratio represents the proportion of the page
which is above-the-fold. Based on this ratio, we separate the
experiments into 3 bins of equal sizes.

Notice that the behavior is non monotonic in the visible
portion: this is intuitive since in the case where we are testing
visible portion in [30%,85%), the model has been fed with
both extremes, containing pages with either a [0%,30%) or
[85%,100%) visible portion. As such, the model can generalize
by interpolating to intermediate visible portions in [30%,85%)
based on the extreme examples, while the opposite is not
possible with the same accuracy level.

(6) Device viewport, Browser (7) family / (8) version and
(9) AdBlock. User devices (hardware), browser (software) and
preferences (AdBlock) are clearly expected to affect model
generalization capability.

Intuitively, for any given page, a larger viewport increases
the portion of the visible page. This is symmetrical to the
previous case where the visible portion was intrinsically due
to the page content, and is equally important due to the large
variety of user devices. Results show that models generalize
well across the two popular 1440x900 and 1920x1080 view-
port sizes.

Conversely, as it can be expected, models generalize poorly
across browser families: this is due to the fact that browsers
differ in the rendering engine, so that exactly as viewing
performance differs across browsers, AppQoS models should
include samples from all browsers of interest. On the positive
side, models’ performance is largely portable across major
versions within the same browser family, which means that
retraining should not happen on a timescale of nowadays
(agile) software evolution.

Similarly, we see that performance estimation can be af-
fected by presence of Ad blocking plugins, for which including
both options in model training seems relevant, particularly for
the RSI metric.

(10) L7 protocols, (11) L3 protocols and (12) network condi-
tions. Another aspect influencing performance pertains to the
servers configuration (HTTP/2 vs HTTP/3), as well as whether
DNS responses or HTTP objects happen to be in the device
(or proxy) cache. Interestingly, we see that models generalize
well across these different settings. Similarly, the use of IPv4
or IPv6 at the lower layer of the networking stack is only
minimally affecting model portability.

Finally, given the abundance of related literature on the
topic, it is not a surprise that protocol performance is affected
by the bandwidth resources available in uplink/downlink. As
such, it is vital that multiple network conditions are included in
the model, as this would otherwise hamper the model accuracy,
limiting its relevance from an operational standpoint.

C. Implications

Whereas the previous section has delved into each condition
in detail, it is now worth to relatively compare the impact of
each condition. To this purpose, Tab. II compactly reports the
model generalization ability. Specifically, each of the subplots

TABLE II: Summary of model generalization performance.

Factor WPT WV Rel. Err. Rank
Measurement tool X X 31.6% 1
Visible page portion X 29.1% 2
Browser family X 28.8% 3
Probes environment X 23.8% 4
Target page set X 22.9% 5
Probe location X 22.1% 6
Ad blocker X 20.3% 7
Network conditions X 19.0% 8
Browser version X 17.4% 9
L7 Protocols and caching X 13.5% 10
Viewport X 11.7% 11
IPv4 vs IPv6 X 10.8% 12
All X X 14.0%

in Fig. 8 gathered by leave-one-out validation is summarized
as a single scalar value, namely the weighted mean of the
median relative error over the whole set (and not only the left
out condition) for SI/RSI. By considering the most critical
metric, we gather a conservative analysis of the relative error
in the estimation. The table also reports the average median
relative error for SI/RSI on the bottom gathered by 5-fold
cross-validation, which is useful as a reference. Based on this
table, we now make the following recommendations.

The main takeaway from the table is that pooling datasets
from heterogeneous sources is extremely beneficial: i.e., when
models are trained over both datasets, the model is exposed
to a larger variety of conditions, which significantly help
in reducing the estimation error (14% vs 31.6%, rank 1).
Including public vs private instances (23.8% error, rank 4)
from multiple locations (22.1% error, rank 6) is also desirable,
although this clearly has a large infrastructural cost.

Second, stratified sampling of pages with different visible
portions is a good criterion for target page selection: in
particular, failing to do so can yield a larger error 29.1%
(rank 2) that cannot be simply offset by selecting pages from
different geographical areas (error 22.9%, rank 5). This is
trivial as it boils down to a more careful selection of the target
set, and does not add any further deployment cost.

Third, models generalize poorly across browser families
and plugins that alter the page rendering process. Including
multiple browser families (28.8% error, rank 3) and AdBlocker
configurations (20.3% error, rank 7) is a necessary price to
pay to increase model generality that is difficult to offset
otherwise. Including multiple browser versions is instead far
less important (17.4%, rank 9).

Fourth, and rather interesting, it seems that network condi-
tions (19.0%, rank 8) and protocols have a smaller impact on
the model generalization. As shown earlier, network conditions
have a measurable effect on the performance. As such, it is
recommended to expose models to new transport technologies
and network vantage points. At the same time, especially for
what concerns L7 (13.5%, rank 10) or L3 protocols (10.8%,
rank 12), it seems that ISPs should be able to capture their
users QoE in spite of the fast-paced changes in the application
domain that happen outside their control.

These considerations are reassuring, and give the research
community a clear view of the most important relevant aspects
from an operational perspective.

12

● ●●● ●●

●●●
●

●
●

●●●●

●

●

●
●
●

●
●●●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●●●●●● ●
●

●
●

●●●

●●

●●●

●
●
●

●

●

●

●

●

●
●●●
●

●

●

●

●●

●
●

●

●●
●
●●●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

● ● ●●●●●●●●●●● ● ●0e+00

1e+05

2e+05

0 2000 4000 6000
Time (ms)

O
bj

. s
iz

e
(B

yt
es

)

app−BI
3044 ms

0%
20%
40%
60%
80%

100%

0 2000 4000 6000
Time (ms)

B
yt

es
 p

ro
gr

es
s

●

●

●
● ● ● ●0e+00

1e+06

2e+06

0 2000 4000 6000
Flow BI (ms)

F
lo

w
 s

iz
e

(B
yt

es
)

per flow net−BI
3040 ms

net−BI
3040 ms

time−agg. net−BI
3045 ms

0%
20%
40%
60%
80%

100%

0 2000 4000 6000
Time (ms)

B
yt

es
 p

ro
gr

es
s

Fig. 9: Illustration of application view (top) and network view at the flow level (bottom). In the network view, the reference
time for each flow is taken as its flow BI time (which is not the start time of the flow). This choice allows exact reconstruction
of the net-BI metric, see Sec. VII-B for definition of flow BI time and details.

VII. A LIGHTWEIGHT FLOW-LEVEL ALGORITHM FOR
PRACTICAL DEPLOYMENT

In this section, we consider the viewpoint of an ISP or
equipment vendor that is interested in a practical deployment
of the above models. Particularly, whereas previous sections
have focused on learning ML models for AppQoS inference
(Sec. IV), evaluating the accuracy and complexity of such
models (Sec. V) and stress testing their generalization ca-
pabilities (Sec. VI), the operational complexity of gathering
the necessary packet-level input features was never properly
accounted for.

Particularly, notice that the app-BI considers object sizes
as seen by the browser, and only requires to perform simple
object-level computation (i.e., after each object is received).
Conversely, the net-BI approximation from encrypted traffic
as well as the ML models introduced earlier, need to operate
at packet-level, by e.g., aggregating packets received during
windows having as duration W = 100ms, which is signifi-
cantly more complex in practice, compared to easily available
flow-level measurements.

In this section, we propose a new solution so that the net-
BI of a web session can be computed from simple flow-level
computations (i.e., when the net-BI of individual flows is
available through IPFIX [42]) and formally prove that this
can be done without any loss of accuracy. We additionally
present a simple online algorithm (operating at packet-level
of a single TCP flow) to compute the flow-level net-BI, that is
of high practical appeal for deployment (e.g., for IPFIX export
of net-BI of individual flows).

A. High Level Idea

For the sake of illustration, we first contrast from a high
level perspective the object-level app-BI to our new flow-level
net-BI in Fig. 9. Note that to compute the flow-level net-BI,
we introduce on a new time, called flow BI, which can be
computed per flow: it corresponds to the flow Byte Index that
we introduce later (BIj in Eq. 12).

First, as previously, on the left, events at different granu-
larity (browser objects on top, TCP/IP flows on the bottom)
are represented by segments with different times and sizes.
The DNS domain contributing the most to app-BI is colored
in pink, while the TCP/IP flow corresponding the most to net-
BI is colored in orange, whereas other objects and flows are
depicted in gray. On the right, the corresponding cumulative
curves x(t) are drawn in black, and the cumulative integral
metrics of the BI families are represented as the shaded areas.
For reference, the x(t) curves corresponding to the time-
aggregated net-BI and packet-level net-BI reported earlier in
Fig. 3, are now overlayed to our new flow-level net-BI.

We recall that the time-series of application-level and
network-level events cannot be directly compared: few objects
are loaded in the browser, which originate from either an even
smaller number of flows (as in Fig. 9), or from a very large
sequence of packets (recall the packet-level view in Fig. 3).
In particular, it can be seen that any flow-level representation
will place all the bytes corresponding to all the objects for
the dominant domain in the example (the pink events on
top), at a single point corresponding to the aggregate size
of all objects carried by the flow (the single orange event
on bottom), depicted as an impulse occurring at a particular
time. Several choices are possible concerning the placement
of this impulse in time (e.g., flow start time, flow end time).
We show that placing the impulse at flow BI time (defined
later in Sec. VII-B) yields to an exact reconstruction of the
net-BI. In particular, whereas the flow-level x(t) curve looses
in terms of granularity with respect to packet-level or object-
level curves, we see in Sec. VII-B that it faithfully captures
the most important information, i.e., the area above the x(t)
curves that correspond to metrics of the BI family.

B. Theoretical properties of net-BI metrics

1) Alternative form of the BI metrics: The representation
of Byte Index as an integral makes it easier to understand in
the narrative. However, it does not give a straightforward way

13

for computing it. In this section, we introduce an alternative
summation form that makes its computation as well as the
formal proof of some relevant properties easier.

We consider a web session consisting of a sequence of
packets such that the i-th one occurs at time t(i) (relative to
the session start) and transmits b(i) bytes. We are interested in
the individual contribution of each packet to the whole session,
for which we derive

p(i) := b(i)/
∑
k

b(k). (2)

We are going to show that the network-level BI (net-BI) can
be expressed as follows:

net-BI =
∑
i

p(i)t(i). (3)

First, we describe x(s) the curve corresponding to the pro-
gression of bytes. At any instant s, the progress x(s) is the
sum of individual contribution until s, so

x(s) =
∑
i

p(i)1t(i)≤s (4)

Then, we note that
∑

i p(i) = 1, which allows deducing a
simple form for the complement of the progression:

1 − x(s) =
∑
i

p(i) −
∑
i

p(i)1t(i)≤s =
∑
i

p(i)1t(i)>s. (5)

Putting all together, we express the Byte Index as follows:

net-BI :=

∫ ∞
0

[1 − x(s)]ds =

∫ ∞
0

∑
i

p(i)1t(i)>sds. (6)

We switch the summations using Fubini’s theorem, which
gives us the desired result:

net-BI =
∑
i

p(i)

∫ ∞
0

1t(i)>sds (7)

=
∑
i

p(i)

∫ t(i)

0

ds (8)

=
∑
i

p(i)t(i). (9)

Recall later that switching summations between time and
size gives a first intuition on how the BIs from different
individual flows should be combined to find the flow net-
BI: instead of interpreting events based on the instant of
occurrence (x-axis), we interpret them as a progress of the
completion (y-axis). Equivalently, instead of calculating the
Riemann integral (vertically, by integrating the visual progress
corresponding to a given time increment dt), it is more
appropriate in this case to calculate the area above the x(t)
curve with a Lebesgue integral (horizontally, by evaluating
the elapsed time corresponding to a given increment of the
visual progress dx). Notice that visual clues about Lebesgue
integration are already given representation of Fig. 3 and
Fig. 9: the colored horizontal stripes indeed cover the full area
above the x(t) curve, exactly as a Lebesgue integral would
compute it.

2) Decomposition of net-BI into flow-level elements: We
decompose the net-BI of a web session into flow-level ele-
ments. To do so, we start from Eq. 3 and rearrange the packets
belonging to the same flow together:

net-BI =
∑
i

p(i)t(i) =
∑
j

∑
i∈flowj

p(i)t(i). (10)

This decomposition into smaller elements is illustrated in
Fig. 10. On this figure, the predominant flow is colored
in orange whereas other ones are in gray. Graphically, the
rearrangement of the packets corresponds to reordering and
grouping elements on the y-axis, as shown in Fig. 10 (b).

Afterwards, we consider the relative proportion of each
flow among all flows by doing a renormalization. Instead
of only normalizing packet size relatively to the session
size, as conveyed by p(i), we first normalize the packet size
contribution over the current flow size, and later normalize
the flow size over the whole session size. To do so, we let
B =

∑
i b(i) the total number of bytes for the session, Bj

the number of bytes for the flow j, where by definition we
have: B =

∑
j Bj . For a packet i belonging to flow j, we

thus rewrite:

p(i) =
b(i)

B
=

b(i)

Bj

Bj

B
. (11)

This multiplicative form separates the contribution of the
packet to the flow j from the contribution of the flow j to
the whole session. Rewriting from Eq. 10:

net-BI =
∑
j

Bj

B

 ∑
i∈flowj

b(i)

Bj
t(i)

 (12)

=
∑
j

Bj

B
BIj . (13)

This introduces the new term BIj , which we call the flow BI
time and which can be computed from (i) the byte progression
of each individual flow and (ii) the start time of the entire
session, similarly to how the net-BI is computed from the
byte progression of the entire session and the start time of the
session in Eq. 3. The net-BI is finally obtained by weighting
this term by the proportion of the current flow size over the
total session size Bj/B.

This rewriting of the session net-BI in terms of a sum of
products is illustrated in Fig. 10-(c), where each rectangle
represents a flow j with height Bj/B and width BIj . In
particular, the orange colored flow has an height of 0.77 and
a width of 3337 ms.

C. Online computation of net-BI metrics

Net-BI metrics can be easily computed online. To do so, we
(i) compute the flow-BI of each flow independently and (ii)
combine BI of all flows of a session a posteriori.

As for (i), we point out that flow BI for a single flow j,
relative to its own start time, which we refer to as BIalone

j ,
can be trivially computed online by a router. Given a flow
consisting of events (ti, bi)i with initial time t0 of the flow,

14

0%

20%

40%

60%

80%

100%

0 2000 4000 6000
Time (ms)

B
yt

es
 p

ro
gr

es
s

0%

20%

40%

60%

80%

100%

0 2000 4000 6000
Time (ms)

B
yt

es
 p

ro
po

rt
io

n

0%

20%

40%

60%

80%

100%

0 2000 4000 6000
Time (ms)

B
yt

es
 p

ro
gr

es
s

(a) (b) (c)

Fig. 10: Illustration of breaking down the Byte Index of a session into the Byte Index of individual flows. Packets of the main
flow is colored in orange while packets of other flows are colored in gray: (a) the original bytes progress curve over time; (b)
individual contribution of each packets are shifted over the y-axis in order to group packets of the same flow together; (c) each
flow is summarized by its mean value relatively to its proportion. In each figure, the total area remains constant and equal to
the net-BI.

at each packet the router updates the computation of the flow
size B and of the absement A:

B =
∑
i

bi (14)

A =
∑
i

bi(ti − t0) (15)

where the flow size B counts each byte equally, whereas
the absement A weights bytes by their arrival time since the
beginning of the section. At the end of the flow, its BI can be
simply derived as the ratio of the absement over the flow size:

BIalone
j =

A

B
=

∑
i bi(ti − t0)∑

i bi
=
∑
i

bi
B

(ti − t0) (16)

As for (ii), a flow j is part of a session consisting of multiple
flows, with mink t0,k the time origin of the session. Then, it
is easy to recognize that the flow BI time in the session, i.e.,
the contribution of this flow on the whole session, satisfies:

BIj = BIalone
j + t0,j − min

k
t0,k. (17)

where the difference corresponds to a translation (adding a
rectangle of height 1 and width t0,j − mink t0,k in terms of
area).

From a practical deployment perspective, this solution offers
the advantage of being online and lightweight, yet providing
the exact session net-BI as computed at the packet-level. For
instance, among the three statistics to be collected, start time
t0 and size of the flow B are already commonly exported
by the router. The novel proposed absement statistic A is
compatible with IPFIX [42] export and has a lightweight per-
packet computation (one multiplication and one sum at each
packet arrival, one division per flow). From those three per
flow statistics, the net-BI is then reconstructed with a simple
weighted-average across flows as in Eq. 13.

Summarizing, flow-level computation of net-BI can be suf-
ficient from a practical deployment, since it closely approxi-
mates app-BI (cf Fig. 4), is correlated with the other AppQoS
metrics (cf Fig. 6) and can further be leveraged to learn other
metrics via ML, depending on the ISP/equipment vendors thirst
for simplicity vs accuracy.

VIII. RELATED WORK

There are three separate lines of work that are related to
ours: namely, (i) definition of AppQoS metrics, (ii) large scale
monitoring of web performance within the browser and (iii)
methods to infer web performance from encrypted traffic.

A. Defining web performance metrics

A lot of prior work [7], [9], [16], [19], [20], [25], [26]
proposed interesting solutions to estimate QoE, that is however
generally fit for browser-based measurements.

Our previous work [9] introduces ObjectIndex and ByteIn-
dex metrics, showing based on experiments of the top-100
Alexa web pages, that they provide simple yet good approxi-
mation of the SpeedIndex. In general, studies proposing new
objective-metrics generally seek agreement with subjective
user-experience metrics, involving users through crowdsourc-
ing. For instance, [16] (resp. [18]) perform a large-scale
campaign to collect user subjective feedback to compare ATF
(resp. SpeedIndex) against MOS (resp. user perceived PLT).
Recent work has proposed several other metrics such as inter-
active Load Time (iLT) and Total Completed interactive Load
(TCiL) [43], First Webpage Time (FWT) [44], the Perceptual
Speed Index [18], or the ReadyIndex [19] to name a few. In
our work, we consider the most popular ones, and especially
focus on those whose code is already available.

In this paper, we do not propose new metrics, but rather a
methodology that is able to learn any already existing metric
from encrypted traffic. Additionally, we show that ByteIndex
can be easily reconstructed in the network without machine
learning, even in the presence of encryption, and from simple
easy-to-compute flow level information.

B. Measuring web performance in the browser

Close to this work is a recent wave of efforts to measure
AppQoS metrics in the wild based on browser-based active
experiments [5], [6], [22], [31], [32], [34], [37].

In particular, Web View [37] is used to perform a six-
months long measurement campaign [32] to study how known
AppQoS metrics vary depending on various conditions to
evaluate the impact of the different conditions on the QoE.

15

In this work, we leverage the same Web View platform to
gather part of the dataset we make available [30]. Next, [22]
proposes a framework able to integrate network measurement
infrastructures with crowdsourcing platforms: the solution is
however relying on DNS information which will be likely less
accessible in the future (e.g., due to DNS over HTTPS) as
well as client IP-geolocation which is defined nowadays as
non-friendly according to European General Data Protection
Regulation (GDPR). Our solution operates on encrypted traffic
and is independent of underlying network protocols or IP-
geolocation, taking into account all types of workers. The
Webget measurement tool is used from 182 SamKnows probes
to study web browsing under fixed-lines and Long Term Evo-
lution (LTE) on 3 websites during 3.5 years [33]. Other large
scale studies include [31], that leverage a dataset of 2 million
visits from mobile networks of four different countries mea-
suring TTFP, PLT and RSI for 7 pages. Complementarily, [5]
focuses on a single services (namely, Wikipedia) and leverage
answers from over 60k real users over several months and
networks. Finally, [34] reports measurement results of eight
websites for a duration of two weeks. While very valuable,
each study focused on a limited subset of the most important
aspects that can affect AppQoS performance.

Our work differs from the above in that we set to ap-
proximate AppQoS from encrypted network packets, assuming
thus that we do not have access to browser information.
Additionally, we take into account a larger set of websites
under a significantly larger set of network conditions and
metrics – heterogeneity of the experimental conditions is a
particularly important aspect of our work.

C. Measuring web performance from the dark

Our work is motivated by the difficulty of QoE estimation
from network traffic. A decade ago encryption was hardly the
norm, and it was possible for ISPs to leverage HTTP logs
to develop algorithms to detect the different page loading
events [3]. TLS encryption has become pervasive in recent
years, preventing access to payload, practically defeating ap-
proaches as to [3] and leaving ISPs without tools – such as
those we propose in this work to fill this gap.

In this domain, work closer to ours has been con-
ducted [45]–[48]. In particular, PAIN [45] deals with (i)
isolating a single web session from the network stream, con-
taining potentially background traffic and several concurrent
web page sessions as well as (ii) defining indicators of web
browsing quality from passive measurement. In more details,
authors define a new passive web performance indicator which
correlates with basic PLT metrics, as well as a supervised
indicator (called BestCheckpoint). Our work is different, as we
do not propose new metrics, and more general, as we learn
any proposed metric. Our work, however, which focuses on
the single web session case, can leverage PAIN’s concurrent
sessions methodology to isolate traffic of single page visits.

Similarly, a two-step approach to evaluate the QoE for
web browsing is proposed in [46]: first, the system classi-
fies the packets generated during the browsing of websites
into clusters; then, an LSTM neural network, using network

information such as the packet size and the packet arrival
times, is used to predict the ATF time. We remark that authors
first classify sessions, as they use different prediction models
depending on the website category. This approach is different
than ours, since it also need to access to the HTTPS header
(or TLS domain name) for the website classification step. Our
approach is simpler, blind to the type of website, and is still
effective and portable as results show.

Recent work [47] propose a method that employs Cauchy
loss to measure the discrepancy between observed and pre-
dicted QoS performance. The authors stress that their method
is resilient to outliers: however we point out that, as web
services (and underlying QoS) relentlessly change over time,
these so-called outliers are prime indicators of poor web qual-
ity of experience. Our models have proven to be accurate over
all conditions, and are also able to generalize to previously
unseen conditions. Finally, recent work [48] focuses on a
similar yet complementary aspect – i.e., notably to which
extent QoE models developed for the desktop web are also
portable to the mobile web. Results show that SpeedIndex
based models are generally portable, which is in accordance
with our findings in this paper.

Shortly, this work is the first to provide methods for an ac-
curate, general, portable and lightweight inference of several
web quality of experience metrics from encrypted traffic.

IX. CONCLUSION

In this paper, we propose a methodology to infer
application-level objective Quality of Experience metrics of
web browsing directly from raw and encrypted network traffic.
Our methods are either able to readily compute specific metrics
such as ByteIndex, or leverage standard machine learning and
deep learning models, fed with the curve of byte progression,
to learn any popular metric such as SpeedIndex, ByteIndex
and Page Load Time. To train and validate the models, we
perform a large set of experiments, where we have collected
simultaneously network traces and application-level informa-
tion on a disparate set of conditions that we release to the
scientific community [30].

Our results show that (i) inferring AppQoS metrics from
encrypted network traffic is possible, and (ii) some metrics
can be accurately inferred from very simple algorithms, di-
rectly at flow level. Shall complexity consideration prime over
accuracy (e.g., deployment constraints), the simple algorithm
we propose limitedly measure a single metric (i.e., ByteIndex),
yet it achieves the best trade-off between simplicity (simple
per-packet operations) and accuracy (provable by design).

Whenever the accuracy and flexibility considerations are
more important than deployment simplicity, it is instead rec-
ommended to exploit data driven models. By leveraging state-
of-the-art machine learning and deep learning models, we have
further shown that data driven models (iii) have a generally
satisfactory accuracy for a broad range of metrics and (iv)
generalize quite well to unseen conditions, although accuracy
degradation depends on the specific environmental condition
– for which we further provide guidelines about the most
important aspects in the dataset collection campaign to ensure
successful deployment in operational settings.

16

ACKNOWLEDGEMENTS

This work was carried out in the context of the Joint
Innovation Project (JIP) on “AI for QoE prediction” between
Huawei and Orange.

REFERENCES

[1] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of the S
in HTTPS,” in ACM CoNEXT, 2014.

[2] L. Vassio, I. Drago, M. Mellia, Z. B. Houidi, and M. L. Lamali, “You,
the web, and your device: Longitudinal characterization of browsing
habits,” ACM Transactions on the Web, vol. 12, no. 4, p. 24, 2018.

[3] S. Ihm and V. S. Pai, “Towards understanding modern web traffic,” in
ACM IMC, 2011.

[4] M. Varvello, J. Blackburn, D. Naylor, and K. Papagiannaki, “Eyeorg: A
platform for crowdsourcing web quality of experience measurements,”
in ACM CoNEXT, 2016.

[5] F. Salutari, D. D. Hora, G. Dubuc, and D. Rossi, “A large-scale study
of Wikipedia users’ quality of experience,” in WWW, 2019.

[6] E. Bocchi, L. De Cicco, M. Mellia, and D. Rossi, “The web, the users,
and the MOS: Influence of HTTP/2 on user experience,” in PAM, 2017.

[7] T. Enghardt, T. Zinner, and A. Feldmann, “Web performance pitfalls,”
in PAM, 2019.

[8] (2012). [Online]. Available: https://docs.webpagetest.org/metrics/
speedindex/

[9] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the quality of
experience of web users,” ACM SIGCOMM Computer Communication
Review, vol. 46, no. 4, pp. 8–13, 2016.

[10] A. Huet, A. Saverimoutou, Z. B. Houidi, H. Shi, S. Cai, J. Xu,
B. Mathieu, and D. Rossi, “Revealing QoE of web users from encrypted
network traffic,” in IFIP Networking, 2020.

[11] J. Brutlag, Z. Abrams, and P. Meenan, “Above the fold time:
Measuring web page performance visually,” 2011. [Online]. Avail-
able: http://conferences.oreilly.com/velocity/velocity-mar2011/public/
schedule/detail/18692

[12] (2021) . [Online]. Available: www.w3.org/TR/navigation-timing-2
[13] (2017) . [Online]. Available: https://www.w3.org/TR/paint-timing
[14] (2021) . [Online]. Available: https://www.w3.org/TR/resource-timing-2
[15] A. Saverimoutou, B. Mathieu, and S. Vaton, “Web browsing measure-

ments: An above-the-fold browser-based technique,” in IEEE ICDCS,
2018.

[16] D. Da Hora, A. Asrese, V. Christophides, R. Teixeira, and D. Rossi,
“Narrowing the gap between QoS metrics and web QoE using above-
the-fold metrics,” in PAM, 2018.

[17] (2018) . [Online]. Available: https://github.com/TeamRossi/
ATF-chrome-plugin/

[18] Q. Gao, P. Dey, and P. Ahammad, “Perceived performance of top retail
webpages in the wild: Insights from large-scale crowdsourcing of above-
the-fold QoE,” in ACM SIGCOMM, Internet QoE Workshop, 2017.

[19] R. Netravali, V. Nathan, J. Mickens, and H. Balakrishnan, “Vesper:
measuring time-to-interactivity for web pages,” in USENIX NSDI, 2018.

[20] (2014). . [Online]. Available: https://github.com/WPO-Foundation/
RUM-SpeedIndex

[21] (2020). Tools ip-label. [Online]. Available: https://tools.ip-label.io/
[22] R. K. P. Mok, G. Kawaguti, and k. claffy, “QUINCE: A unified

crowdsourcing-based QoE measurement platform,” in ACM SIGCOMM
Posters and Demos, 2019.

[23] T. Hossfeld, P. E. Heegaard, M. Varela, and S. Moller, “QoE beyond
the MOS: an in-depth look at QoE via better metrics and their relation
to MOS,” Quality and User Experience, pp. 1–23, 2016.

[24] F. Salutari, R. Teixeira, D. da Hora, V. Christophides, M. Varvello, and
D. Rossi, “Implications of the multi-modality of user perceived page
load time,” in IEEE MedComNet, 2020, pp. 1–8.

[25] (2014). ITU-T G.1030. [Online]. Available: https://www.itu.int/rec/
T-REC-G.1030

[26] T. Hoßfeld, F. Metzger, and D. Rossi, “Speed Index: Relating the
industrial standard for user perceived web performance to web QoE,”
in IEEE QoMEX, 2018.

[27] H. Z. Jahromi, D. T. Delaney, and A. Hines, “How crisp is the crease? a
subjective study on web browsing perception of above-the-fold,” IEEE
NetSoft, 2020.

[28] R. B. Miller, “Response time in man-computer conversational transac-
tions,” in AFIPS’68 Fall, part I, 1968.

[29] J. Nielsen, “Response times: The 3 important lim-
its,” 1993. [Online]. Available: https://www.nngroup.com/articles/
response-times-3-important-limits/

[30] (2020). [Online]. Available: https://webqoe.telecom-paristech.fr/data
[31] M. Rajiullah, A. Lutu, A. S. Khatouni, M.-R. Fida, M. Mellia, A. Brun-

strom, O. Alay, S. Alfredsson, and V. Mancuso, “Web experience in
mobile networks: Lessons from two million page visits,” in WWW, 2019.

[32] A. Saverimoutou, B. Mathieu, and S. Vaton, “A 6-month analysis of
factors impacting web browsing quality for QoE prediction,” Computer
Networks, vol. 164, 2019.

[33] A. S. Asrese, S. J. Eravuchira, V. Bajpai, P. Sarolahti, and J. Ott,
“Measuring web latency and rendering performance: method, tools
& longitudinal dataset,” IEEE Transactions on Network and Service
Management, 2019.

[34] A. S. Asrese, E. A. Walelgne, V. Bajpai, A. Lutu, Ö. Alay, and J. Ott,
“Measuring web quality of experience in cellular networks,” in PAM,
2019.

[35] V. Bajpai and J. Schönwälder, “A longitudinal view of dual-stacked web-
sites—failures, latency and happy eyeballs,” IEEE/ACM Transactions on
Networking, vol. 27, no. 2, pp. 577–590, 2019.

[36] (2008). [Online]. Available: https://www.webpagetest.org/about
[37] A. Saverimoutou, B. Mathieu, and S. Vaton, “Web View: A measurement

platform for depicting web browsing performance and delivery,” IEEE
Communications Magazine, vol. 58, no. 3, pp. 33–39, 2020.

[38] A. Huet, Z. Ben Houidi, S. Cai, H. Shi, J. Xu, and D. Rossi, “Web quality
of experience from encrypted packets,” in ACM SIGCOMM Posters and
Demos, 2019.

[39] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and
regression trees. statistics/probability series,” in CRC Press, 1984.

[40] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu, “LightGBM: A highly efficient gradient boosting decision tree,” in
Advances in Neural Information Processing Systems, 2017.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” ICLR, 2015.

[42] P. Aitken, B. Claise, and B. Trammell, “Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Infor-
mation,” IETF RFC 7011, Sep. 2013.

[43] H. Z. Jahromi, D. T. Delaney, and A. Hines, “Beyond first impressions:
Estimating quality of experience for interactive web applications,” IEEE
Access, vol. 8, pp. 47 741–47 755, 2020.

[44] L. Yongsheng, G. Yu, W. Xiangjiang, W. Xiaoyan, and F. Yufei,
“Measuring QoE of web service with mining DNS resolution data,”
ZTE Communications, vol. 15, no. S2, p. 38, 2017.

[45] M. Trevisan, I. Drago, and M. Mellia, “PAIN: A passive web perfor-
mance indicator for ISPs,” Computer Networks, vol. 149, 2019.

[46] E. Song, T. Pan, Q. Fu, R. Zhang, C. Jia, W. Cao, and T. Huang,
“Threshold-oblivious on-line web QoE assessment using neural network-
based regression model,” IET Communications, 2020.

[47] F. Ye, Z. Lin, C. Chen, Z. Zheng, H. Huang, and E. Yilmaz, “Outlier
resilient collaborative web service QoS prediction,” in arXiv 2006.01287,
2020.

[48] P. Casas, Z. B. Houidi, S. Wassermann, A. Huet, M. Seufert, N. Wehner,
J. Schuler, S.-M. Cai, H. Shi, J. Xu, T. Hossfeld, and D. Rossi, “Are
you on mobile or desktop? On the impact of end-user device on web
QoE inference from encrypted traffic,” in IEEE CNSM, 2020.

Alexis Huet is a Senior Research Engineer on
Network AI at Huawei Technologies Co., Ltd. He re-
ceived his MSc from ENS Lyon in 2010 and his PhD
in 2014 from Claude Bernard Lyon 1 University. He
then worked at Nanjing Howso Technology (2015-
2018) as a data scientist, where he was responsible
for data mining, modeling and implementation for
different machine learning projects. His main re-
search interests include computational statistics and
applied mathematics for machine learning.

17

Antoine Saverimoutou is a data scientist at Orange
Labs. He received his Bachelor degree in Applied
Mathematics at the University of Cambridge, Bach-
elor and MSc degree in Computer Science at the
University of Caen in France. He received his Ph.D.
from Institut Mines Telecom Atlantique in France.
His main interests include quality of service and
experience, web services and AI.

Zied Ben Houidi is a Principal Engineer at Huawei
Technologies. He received his Ph.D. from the Uni-
versity of Pierre et Marie Curie in Paris (2010),
working with Orange Labs on data-driven perfor-
mance analysis of core networks’ routing protocols.
Before joining Huawei, he worked at Nokia Bell
Labs, leading various research projects on network
data valorization (e.g. human-level behavior ana-
lytics, learning from network data to build recom-
mender systems) as well as automated reasoning.

Hao Shi is a Research Engineer at Huawei Tech-
nologies. His research interests include the study of
the Quality of Experience management of multime-
dia services from the perspective of the network and
development of applied algorithms.

Shengming Cai is a Principal Engineer at Huawei
Technologies, Dongguan. He received the BEng
degree in information engineering from Shanghai
Jiao Tong University, China (2009), and the PhD
degree in electrical and electronic engineering from
Nanyang Technical University, Singapore (2015).
His research interests include SDN, network slicing,
SLA guarantee, operations research and AI. He is
the technical leader of related research projects in
Huawei and actively engage in standards.

Jinchun Xu is a Senior engineer in Huawei Tech-
nologies, Dongguan. She received the MSc in Com-
munication Engineering from Harbin Institute of
Technology University, China (2012). At Huawei,
she leads the service experience evaluation research
project. Her research interests include SDN, network
slicing, SLA guarantee and quality of experience.

Bertrand Mathieu is a Senior Research Engineer in
OrangeLabs. He received the MSc degree from the
University of Marseille, the PhD degree from the
University Pierre et Marie Curie in Paris, and the
Habilitation à Diriger des Recherches from the Uni-
versity of Rennes. He is working on programmable
networks, QoS and QoE and new network solutions.
He contributed to 12 national/European projects and
published more than 70 papers in international con-
ferences, journals or books. He is member of several
conferences TPC and an IEEE senior member.

Dario Rossi is Network AI CTO and Director of the
DataCom Lab at Huawei Technologies, France. Be-
fore joining Huawei in 2018, he held Full Professor
positions at Telecom Paris and Ecole Polytechnique
and was holder of Cisco’s Chair NewNetParis. He
has coauthored 15 patents and over 200 papers in
leading conferences and journals, that received 9
best paper awards, a Google Faculty Research Award
(2015) and an IRTF Applied Network Research
Prize (2016). He is a Senior Member of IEEE and
ACM.

