
The long and winding road to Deep Autonomous
Networks: Lessons from real WLAN deployment

Ovidiu Iacoboaiea, Jonatan Krolikowski, Zied Ben Houidi, Dario Rossi
Huawei Technologies France SASU

{ovidiu.iacoboaiea, jonatan.krolikowski, zied.ben.houidi, dario.rossi}@huawei.com

Abstract—Deep Reinforcement Learning (DRL) techniques
have recently gathered much attention for their ability to learn
taking complex decisions in different fields: as such, they are
an appealing candidate for network Operation and Management
(O&M). In particular, DRL can become a fundamental item in
the toolbox of the so called “self-driving networks”, especially
for tasks such as dynamic resource allocation, that is generally
formulated and solved as complex optimization problems. Yet,
training and deployment of DRL agents in real-world scenarios
face important challenges, that we illustrate in this article using
Wireless LANs as a relevant deployment example.

I. INTRODUCTION

Recently, artificial intelligence (AI) techniques that train AI
agents to interact with an environment to complete complex
tasks with unprecedented skills have gained considerable press
attention. Top stories include Google’s AlphaGo [1] beating
the world champion Lee Sedol in 2016, or OpenAI Five [2]
winning online computer-game DOTA2 tournament in 2017.
While this is not the first time that AI accomplishes such
prowess – it is sufficient to recall that IBM DeepBlue defeated
Chess world champion Garry Kasparov in 1997 [3] – there has
been important progress in the AI algorithms under the hood.

DeepBlue attained super-human playing capabilities
essentially via unprecedented search capabilities [3], resulting
from a single-chip chess search engine with massive
parallelism (capable of scanning 700,000 positions per
second), a complex evaluation function (relying on 8000+
features to assess the move quality), and effective use of
a Grandmaster game database (essentially, a book of 4000
openings hand-coded by chess Grandmaster Joel Benjamin
that acted as consultant to the DeepBlue team).

Instead, tools such as AlphaGo and OpenAI Five use a
radically different technology, based on a specific branch of
Reinforcement Learning (RL), namely Deep Reinforcement
Learning (DRL). However, while RL theory dates back
to the early 70s (see [4] for a historical perspective),
the recent astonishing advances of DRL have been made
possible by unprecedented computing capabilities. Given the
blending between the network and the cloud – which make
such computing capabilities available – as well as the
emergence of low-power deep-learning accelerators known as
Tensor Process Units (TPUs) – which make such computing
capabilities also cost-effective –, the field of communication
networks is now actively seeking to exploit techniques such
as DRL to automate the complex task of network Operation
& Management (O&M).

Ultimately, while DRL technologies are a promising
candidate to become a cornerstone for optimal decision
making in network O&M, it is not without challenges. For
instance, it is worth stressing that OpenAI Five [2] learned
by playing over 10,000 years worth of games against itself
and that AlphaGo-Zero [1] was trained with 29 million games
of self-play during 40 days using 4 TPUs, each of which is
capable of 90 Tera operations per-second (TOPS). The sheer
volume of interactions is key to learning taking successful
actions, through a broad and thorough exploration process:
while this poses only a computational challenge in the virtual-
world of computer games, successfully deploying DRL in
communication networks poses additional challenges that are
rooted in complexity of learning in the real world.

This article provides a background on DRL (§II-A),
illustrating the challenges of DRL deployment in real-world
scenarios (§II-B). Next, it focuses on a relevant example use
case in the field of networking, namely resource management
in Wireless LANs (§III-A), describing the necessary steps
to deploy DRL in operational networks (§III-B) before
briefly summarizing real-network results (§III-C). It finally
summarizes the lessons learned, whose usefulness applies
beyond the scope of the illustrated use-case (§IV).

II. CHALLENGES OF DRL DEPLOYMENT

A. RL Background

We provide bacgkround on Reinforcement Learning (RL)
and Deep RL (DRL) with the help of Fig. 1. In RL [4], an
agent learns from interacting with an environment: the agent
obtains a perception of the environment through a measurable
state (e.g., parameter configuration, environment properties,
etc.) and selects an action (e.g., changing some configuration)
based on a policy that it is learning. After enforcing the action,
the agent observes an updated state and receives feedback
about its action, in the form of a reward (or a regret). Unlike in
supervised learning (where the feedback reflects some distance
from the optimum), the feedback in RL can be rather seen
as praise (or critique) of the action (without any explicit
information about the optimal action). Based on this feedback,
the agent updates its policy, observes the new environment
state, enforces a new action and so on.

While the idea behind RL has been reported since the
1950s [4], the classic RL and DRL literature is significantly
more recent. Fig. 1 illustrates the most popular learning
strategies that have been devised over time. Broadly speaking,

Policy iteration Policy based

REINFORCE (1992)

A3C (2016)

DQN (2013)

Q-Learning (1989)

SARSA (1994)
On-Policy

Off-Policy

Model based (DP, etc)

Value based

Model free (MC,TD)

Value iteration

MCTS (2006)

Action
selection

Probability
distribution
over actions

Value for all
potential
actions

Value
function
approach

Policy
function
approach

Tabular Learning

Function
Approximation

Learning

Deep
Learning

State Action value / probability

Action
Environment

Reward
State

Agent

Fig. 1. Reinforcement Learning overview and taxonomy.

when RL techniques learn actions with rewards but without
state (e.g. slot machines used in casinos), then the problem
can be formulated as a Multi-Armed Bandit (MAB), and as
a Markov Decision Process (MDP) otherwise. The MDP
formulation is based on transition probabilities from current
state and action to future states. These probabilities, which
model how the environment behaves, can be either known (e.g.
follow a given model) or unknown: we limit our attention to
the latter case, known as model-free RL, as it is also the most
common in practice.

In model-free learning, the agent needs to learn not only
the policy, but also a model of the environment. In its Monte
(MC) Carlo variation, the agent runs its policy for a given
period of time (called episode), collecting the raw rewards: at
the end of each episode, the policy is updated. Model-free RL
can be further sub-divided into value-based and policy-based
methods.

1) Value-based: Roughly speaking, value-based approaches
pick actions based on learned estimates of the values of their
returns. Such a value associated to a state-action pair is often
based on the estimated sum of future rewards (or regrets),
with possibly a discount factor that is used to regulate the
importance of instantaneous vs long-term rewards. Different
approaches in this space use (a) different value functions and
(b) different ways to estimate them.

a) On-policy vs Off-policy: We distinguish first between
on-policy and off-policy learning. The most popular on-policy
technique is SARSA (1994), whose name reminds of the
State–action–reward–state–action quintuple used to learn its
value function, namely: the current state and action as well as
the next reward, state and action. In doing so, SARSA couples
policy evaluation with the policy decision: the SARSA agent
learns indeed the value function associated to the policy it is
itself following (which is different from the optimal policy).

Conversely, off-policy mechanisms decouple the learned
policy from the policy followed during learning. In Q-learning

(1998), the most popular of such techniques, the agent follows
an exploration/exploitation policy while learning an estimate
of the value function (aka Q-function) that corresponds to the
optimal policy: after convergence of the training phase, the
learned policy consists in picking the actions maximizing the
expected value function.

b) Tabular methods vs. approximations: RL methods
also differ in the way value functions are estimated. Classic
tabular Q-learning iteratively updates a Q-table with Q-values
for each state-action pair in the entire space. It faces clear
scalability problems as soon as the state-action space is large.
One way to counter this problem is to learn an approximated
Q-function. In this case, theoretical convergence guarantees
do not hold anymore, but results are acceptable in practice.
One recent approach is Deep Q-learning (DQN, 2013), that
uses deep neural networks to learn the Q-function. DQN
successfully learned to play simple Atari games (2014) and
later more complex first person shooters such as Doom (2016).
In this case, the neural network architecture must be adapted
to the problem and nature of state at hand. For example, in the
above video games, the use of Convolutional Neural Networks
(CNNs) is particularly helpful since the state is represented by
frame images, an input that CNNs excel at processing.

2) Policy-based: Policy-based model-free RL approaches
aim at learning directly the policy function, as opposed to
learning the expected reward: in simple terms, the policy
maps a state directly to a given action, without the need
to go via an estimation of the state-action value. Generally
the policy is stochastic: i.e., for each state, a probability
distribution over actions is preferred over a single deterministic
action. In the learning process, the stochastic policy is
often parameterized and gradient-based methods are used to
approximate it. The REINFORCE (1992) algorithm is one of
the earliest and most famous incarnations of such methods:
subsequent improvements in convergence speed and stability
were recently obtained with A3C (2016) by using an Actor-
Critic architecture employing two entities, where the output of
the Critic (learning a state return estimate) guides the Actor
(essentially learning and producing the action).

3) The D in DRL: Deep learning offers new perspectives
to leverage the power of reinforcement learning. In practice,
beyond the specific reinforcement learning strategy, the
decisive factor is the neural network architecture that learns
the value (i.e. DQN, A3C critic network) or the policy (e.g.
A3C actor network). Such neural network architectures must
be adapted to learn the right representations depending on the
nature of the input state: as seen earlier, a CNN is suitable
when the input state consists of images, whereas a DRL-based
chatbot would better use a transformer network. Similarly,
various DRL based approaches to solve combinatorial graph
problems used suitable neural network architectures such as
Graph Neural Networks, pointer networks and graph attention
networks [5]. We get inspiration from the latter architectures
to design our own deep learning solution.

B. DRL deployment challenges
Most highly publicised successes of DRL do not illustrate

well the complexity and challenges of applying such
technology in real world systems. Unlike algorithms such
as AlphaGo [1] or OpenAI Five [2] which evolve in the
safe virtual environment of computer games, many DRL-
based candidate systems need to interact with the physical
world. A self-driving vehicle, or a self-driving network, cannot
employ a trial-and-error learning strategy on the field: if things
go wrong during exploration, it may have serious business
(network) and potentially fatal (vehicle) consequences. The
same problem applies to other domains, including industry 4.0
control systems, financial trading systems and in general any
system whose actions can lead to harmful consequences. Seen
from this angle, it becomes evident that applying DRL in
the physical world comes with a set of additional challenges
which we briefly overview in the following and that need to
be accounted for in real-world usecases.

1) Training safely: The first and likely biggest challenge to
overcome is the curse of failure during state exploration: DRL
agents must explore the space and in doing so, it is inevitable
that they sometimes fail in order to learn from the resulting
regrets; however, in reality, one does not need to literally fall
off a cliff to learn that it is not a good thing to do. A commonly
employed safe training strategy is to learn by interacting with
a digital twin, i.e., a computer-simulated model of the real
environment. Simulator realism thus becomes a key aspect for
deployment.

2) Data availability: A complementary approach is
imitation learning, where instead of interacting with a real or
simulated environment, a database of state-action traces is used
for offline batch-based agent training. For instance, thanks to
its fleet of several hundred thousand self-driving-ready cars,
Tesla now has a huge amount of state-action pairs (over 1
billion miles with auto-pilot on alone [6]), which might be
used to learn to mimic human driver behavior. However, data-
driven approaches in general are vulnerable to data scarcity
and quality issues – as not all actors can access such volumes
of data. This fact limits the potential of training DRL agents
in a data-driven way in real-world usecases tremendously.

3) Training duration: Training duration is a clear
bottleneck: as earlier exemplified for games, agents need
several “lifetimes” of interaction with the environment, e.g. the
10,000 years equivalent for OpenAI Five [2], which clearly is
unrealistic for training on real systems. Even training offline
with real data or digital twins can take a significant amount
of time: for instance, it takes 70,000 GPU hours to train the
full self-driving Tesla pilot prototype [6], which is around one
year for a single node with 8 GPUs. In practice, training needs
to be offloaded to a large fleet of data center servers equipped
with GPUs and TPUs, which may be only affordable for a few
big players.

4) Generalization: Another real-world challenge that DRL
systems face is generalization to unseen conditions. For
instance, when digital twins are used for training, realism of
the simulation is of primary concern – the less faithful the

simulator, the lower the quality of the agent. To overcome
this problem, several techniques can be used that mitigate
simulator shortcomings. For example, one way to enhance
generalization is to share experience across multiple learners,
as e.g., used when training multiple robots in parallel to
perform tasks such as grasping1. Another approach is to
complement simulation with emulated realistic environments.
For example, AWS deepracer2 provides an environment to
train DRL driving models on simulator and, to lower the
transfer gap, it also relies on 1/18 scale prototype cars with
near-real conditions. A further path is to enhance model-driven
simulation with data-driven complements – for example in [7],
the physics-based simulator of Light Detection and Ranging
(LiDaR) point clouds used for the training of self-driving
vehicles is augmented with real data – a relatively low hanging
fruit with potentially significant payoff.

5) Explainability and Trust: Finally, human operators need
to be convinced of trusting and using DRL systems to
allow their deployment. Explainability of the algorithm output
helps lowering the adoption barrier. Trust may then be
gained step-by-step: for instance, instead of acting directly on
the real system, DRL can provide interpretable suggestions
together with explanations for their triggers for the operator
to validate. Google DeepMind adopted this strategy for data
center cooling, where the first RL algorithm version3 acted
as a recommendation engine for the operator. Only later they
moved to a fully autonomous version4, maintaining failsafe
option to revert back to human control at any time, in addition
to rule-based heuristics as backup.

III. DEPLOYING DRL FOR WLAN CONTROL

A. WLAN Background
We apply DRL to the real-time configuration of Wireless

Local Area Networks (WLANs), aiming at automating the
configuration of the network to maximize the performance
under changing traffic conditions. WLANs are defined in
the IEEE 802.11 standard and its amendments. The most
popular setup is infrastructure-based, where user devices
(called stations or STAs) such as smartphones or laptops
connect to a fixed Access Point (AP) that typically acts as
a gateway to the Internet. In office buildings or on university
campuses, STAs can access a fleet of APs distributed over
a large area. The APs are governed by a central Access
Controller (AC) that coordinates AP configurations. The left
portion of Fig. 2 shows a schematic representation of such a
campus WLAN. Learning optimal AC decisions is the DRL
usecase we focus on in this paper. In the following, we
describe the most important actions in WLAN management,
with examples of classic WLAN management algorithms
(generally based on heuristics) that exploit these actions.

1https://ai.googleblog.com/2016/10/how-robots-can-acquire-new-skills-
from.html accessed on 13.04.2021

2https://aws.amazon.com/deepracer accessed on 13.04.2021
3https://deepmind.com/blog/article/deepmind-ai-reduces-google-data-

centre-cooling-bill-40 accessed on 13.04.2021
4https://deepmind.com/blog/article/safety-first-ai-autonomous-data-centre-

cooling-and-industrial-control accessed on 13.04.2021

Deployment
cycle

Training
cycle

Current Environment State Input Output

AP id Load Neighbors Channel, Bw State Regret

AP1 0.2 {AP2, AP4} 36, 20MHz Load=0.3 0.23

AP2 0.4 {AP3, AP4} 44, 40MHz Load=0.3 0.15

AP3 0.1 {AP1, AP2} 40, 20MHz Load=0.2 0.07

Simulator environment

A

B

t

A BB
interfere idle

A

Real network
environment

(2) Data issues
Use synthetic simulator

due to lack of data

(3) Training duration
Fast computation of

simulator output

(1) Train safely
Learn from simulator,

no effect on real network

ActionNetwork reconfiguration

Network monitoring

Dynamic WLAN
DRL agent

(4) Generalization
Simulator realistic enough

for transfer to real network

(5) Explainability and trust
Only trusted algorithm output
will be applied to real network

State, regret

Fig. 2. Background on WLAN environment, and overall schema for the DRL training and deployment cycles.

1) Primary Channel Selection and Bonding: Each AP is
configured to use a specific primary channel (within the
2.4GHZ or the 5GHz band), performing downlink and uplink
transmissions in a half-duplex manner. In Fig. 2, the channels
are represented by the colors around the respective coverage
areas. Ideally, only one device within receiver vicinity
transmits on one channel at the same time, avoiding collisions
and data loss. This is achieved through the listen-before-talk
mechanism of Carrier-sense multiple access with collision
avoidance (CSMA/CA). As a consequence, APs and STAs on
the same channel share airtime. The time that a transmitter
waits while the channel is busy is called interference (time).
Unfortunately, interference cannot be avoided in highly dense
areas since channels are scarce: depending on the regulatory
region, only 3–4 channels are non-overlapping in the 2.4 GHz
band, and around 20 channels on the 5 GHz band. It is
thus not always possible to put neighboring APs on different
channels. In Fig. 2 for instance, the two lower APs share
the blue channel, whose usage time is split between (uplink
and downlink) communications of STAs A and B, idle time
and interference. Interference is particularly detrimental in
busy parts of the network, such as conference rooms. As
the network conditions evolve over time, it is beneficial to
dynamically adjust the channel allocation.

In modern WLANs, an AP may be configured to allow
the aggregation (aka bonding) of several channels, to increase
bandwidth and consequently throughput: in Fig. 2, the top-left
AP uses two channels (dark and light yellow). While there
are some obvious benefits, bonding increases the number of
neighbors competing for the same channels, complicating the
channel allocation. Real-time channel management in WLANs
is typically done using heuristics acting on channel selection,
as for instance in [8].

2) Power Management: STAs attach to a serving AP based
on criteria that differ by vendor and device generation. The
most important aspect, however, is the received signal strength
indicator (RSSI) that needs at least to exceed a device-
specific threshold. A higher RSSI is generally beneficial for
the user, since it allows for higher data rate and thus better
throughput. Besides environmental factors such as shadowing
through walls and other obstacles, the downlink RSSI is
mainly determined by the distance between AP and STA and

the AP transmit power: in Fig. 2, different transmit powers
are reflected in different coverage ranges. While increasing AP
transmit power would benefit the data rates of closer STAs, it
would also increase the number of attached STAs, and hence
competitors on the radio resource. Additionally, surrounding
low-power APs may be underused and more distant STAs and
APs may see the high-power AP as an interferer, and network
performance may degrade. Hence, an optimal power allocation
needs to provide good coverage in the entire network area
while limiting interference and balancing load among APs.
Power management actions are used for instance in [9], [10].

3) Backoff Timers: When a transmitter (AP or STA) wants
to transmit but finds the channel busy, it backs off and
waits for a certain time (several microseconds) before the
next attempt. The backoff timer, defined through Enhanced
Distributed Channel Access (EDCA), depends on the access
type to which the transmission belongs. It is usually shortest
for time-sensitive traffic such as voice calls, and longer for e.g.
email. Configuring these backoff timers allows to target traffic-
specific quality of service. The EDCA contention mechanism
is for instance exploited in [11].

B. DRL WLAN challenges

We design [12], implement and deploy a DRL-based WLAN
channel management solution (agent), that autonomously
reconfigures (action) a real operational network (environment)
every 10 minutes, based on telemetry data (state) received
at sub-minute timescale. While training and deploying this
system, we faced the same challenges introduced in §II-B
that we tackled as described in the following. Fig. 2 shows
the relation between training, deployment and the various
challenges schematically.

1) Training safely: Obviously, training on the real network
would inevitably lead to the exploration of bad network
configurations harming user experience. As this option is not
viable for business considerations, we are forced to train the
DRL agent using a simulator: the tradeoff we face is that the
simulator needs to be simple enough to allow for reasonable
training time, and at the same time, realistic enough to favor
the transfer of learning to the real deployment.

2) Data issues: An alternative option would have been
to train offline with real network configurations as ground-

0 500k 1M 1.5M 2M [Samples]
1

1.2

1.4

1.6

1.8

0 1.8 3.6 5.4 7.2 [GPU hours]
0 9.5 19.0 28.5 38.1 [Years]

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
AverageA

ve
ra

ge
 r

eg
re

t

Fig. 3. Training duration. Average regret (dashed black line) during training
converges after more than 1 million interactions with the environment: this
would require several years in a real deployment (at the considered timescale)
and already requires about 8 hours worth of GPU time.

truth. Although we have access to live measurements and
long historical data from real networks, since the network
is sparsely reconfigured (once per day), our data lake does
not contain the several hundred thousand samples per network
that DRL would need for training, . We therefore opted for
exploiting the data to enhance simulator realism. For example,
our simulator uses an RSSI threshold to decide which APs
are considered as neighbors: we increase realism by fitting
this parameter to maximize similarity between the interference
estimations of the simulator and those measured in the real
network (which in our case corresponds to an RSSI threshold
of -82dBm).

3) Training duration: Two factors impact the training
duration: (i) the convergence of DRL weights during the
training process which affects the number of interactions,
and (ii) the execution time of each simulated interaction,
during which the DRL training process remains idle waiting
to receive state and regret feedback from the environment.
As for (i), we calibrated the training phase carefully to avoid
getting stuck in local minima, mainly by adjusting the learning
rate during training such that more aggressive updates (e.g.
higher steps) are performed at the beginning, followed by
smaller steps allowing the system to gradually stabilize. As
for (ii), the duration of a simulated interaction can quickly
become a bottleneck, for which we rule out the use of packet-
level simulations (such as ns2 or ns3) and leverage a fast
custom simulator, with negligible computational complexity.
Fig. 3 illustrates the regret evolution over multiple independent
training runs: the x-axis reports the number of iterations, the
GPU training time (including the simulation time, measured in
hours) and the equivalent duration of the training process had
it been performed at the same timescale in a real environment
(measured in years).

4) Generalization: Generalization to conditions unseen
during training means, on the one hand (i) generalizing to
networks of arbitrary size and density, and on the other

N
o

is
e

m
ea

n
 [d

B
]

-1660.1% 58.0% 58.6% 55.6% 54.7% 47.5% 42.8% 43.1% 41.7% 42.9% 41.3% 36.9%

-822.1% 21.9% 21.5% 23.0% 25.7% 29.2% 11.6% 11.3% 12.1% 14.1% 17.7% 22.2%

-4 7.9% 8.0% 8.6% 10.1% 15.0% 23.3% 3.2% 3.6% 3.7% 5.4% 9.3% 16.7%

-2 4.4% 3.9% 4.2% 6.1% 11.3% 18.9% 1.5% 1.6% 1.8% 2.8% 6.3% 13.8%

-1 1.8% 2.2% 2.4% 4.5% 9.2% 18.2% 0.9% 0.9% 1.3% 2.0% 5.4% 12.6%

0 0.0% 0.6% 1.8% 3.3% 8.0% 16.3% 0.4% 0.5% 0.7% 1.5% 4.4% 11.3%

1 0.4% 0.4% 1.0% 2.5% 7.1% 14.8% 0.3% 0.1% 0.3% 1.0% 3.6% 10.0%

2 0.6% 0.7% 0.8% 2.0% 6.3% 14.2% 0.1% 0.1% 0.3% 0.8% 3.1% 9.1%

4 1.2% 1.4% 1.2% 1.7% 4.5% 11.4% 0.0% 0.1% 0.2% 0.4% 2.1% 7.6%

8 2.0% 2.0% 2.2% 2.2% 3.3% 8.9% 0.6% 0.8% 0.7% 0.9% 1.4% 5.5%

16 4.7% 4.6% 4.6% 4.4% 4.0% 6.0% 2.4% 2.3% 2.3% 2.2% 2.0% 3.4%

0 1 2 4 8 16 0 1 2 4 8 16
Noise std. [dB] Noise std. [dB]

s-shaped function (6dB)clear-cut-threshold

Fig. 4. Generalization: Assessment of relative performance degradation for
controlled environmental changes

hand (ii) transferring well to the more complex physics of
the real network. We tackle (i) by a novel auto regressive
sequential decoder whose input features at each step are
engineered to reflect the changing internal state of the
decoder that is described in [12]. As for (ii), we investigate
the robustness of the DRL algorithm by training in an
ideal noiseless environment and testing in a noisy one. We
systematically apply Gaussian noise with controlled means
and standard deviations to the AP neighborhood (i.e., RSSIs
each AP sees from all others) and observe the impact
on the regret. The left-hand side of Fig. 4 reports the
relative percentual increase of the regret with respect to ideal
conditions (noiseless training and testing) when neighborhood
is defined with a simple threshold. Overall, the picture
confirms DRL to be robust for a wide range of additive
noise. Additionally, consider that a negative noise causes the
corresponding RSSI to fall below the neighborhood threshold,
leading to interference underestimation. Unsurprisingly, the
figure confirms underestimation to be more harmful than
overestimation, which validates our conservative simulator
design choice.

Now, in the real network, neighborhood is not exactly a
clear-cut threshold: the right-hand side of Fig. 4 further tests
the algorithm on the same noisy conditions, but using a more
complex neighborhood definition: in particular, neighborhood
interference is smoothly taken into account by using an
S-shaped sigmoid function with a spread of 6dB centered
around the clear-cut threshold. Interestingly, using this “loose”
definition does not degrade the results and leads to even better
resistance to noise, suggesting good generalization abilities for
our algorithms.

5) Explainability and Trust: Last, while the above results
show our DRL algorithm to be capable of closed-loop
WLAN control, as introduced earlier, it is essential that
network engineers develop trust in the algorithm decisions
before letting them run unattended on thousands of customer
deployments. As DRL decisions are intrinsically less
interpretable than heuristics, this can be achieved by human-
understandable explanations of the algorithm decisions and
expected gains [13], to ensure that algorithm decisions are

1 2 5 10 20 50
1

2

5

10

20

50

Individual AP load (DRL)

In
di

vi
du

al
 A

P
 l

oa
d

 (
st

at
ic

)

static > DRL

DRL > static

Fig. 5. Real deployment. Channel utilization heatmap, comparing load of same
AP and same time-of-day slots across different WLAN control algorithms
(static and DRL) running on different days.

perceived as both beneficial and safe by the operator using it.

C. WLAN DRL Real Deployment

Tackling the above challenges lead to a successful DRL
deployment: we briefly report on months worth of tests on real
network deployment, by running the trained DRL algorithm
vs daily static optimization every other week. Fig. 5 contrasts
the channel utilization of a 34 APs deployment where we
observe approximately one thousand STAs on a typical day.
We construct a heatmap from the scatter plot where each point
represents the average channel utilization for the same AP
during 10 minutes at the same time-of-day and day-of-week
for the two algorithms, over all APs: this allows to assess the
impact of dynamic DRL channel management from a spatial
viewpoint, i.e., from the point of view of the same AP. We
can note the tendency of improvements as the center for the
highest density moves above the diagonal.

Clearly, while the traffic is similar in every week due
to seasonal behavior of the users, the traffic conditions are
not identical, which can bias the comparison. We take this
confounding factor into account by comparing in Fig. 6 the
breakdown of the AP utilization (y-axis) for the same average
network load (x-axis): it is easy to see that, as expected,
DRL relieves APs with high channel utilization (notice the
95th percentile decrease) by shifting load to lightly loaded
APs (notice the median increase), which is desirable from the
perspectives of load balancing and fairness.

Overall, these results confirm that by properly taking into
account the main challenges tied to real-world deployment,
DRL can hold its promise to become a fundamental building
block of network O&M.

IV. CONCLUSION

The DRL paradigm when applied to the control of complex
systems such as large networks promises to improve decision
making over human intuition and classic heuristics. While
most network-related DRL research focuses on ideal scenarios
and are evaluated via simulation, we discuss here the
challenges that arise when deploying DRL into the real world.
In particular, we illustrate how DRL can improve real-time
channel management on large-scale operational WLAN.

5 10 15 20
0

10

20

30

40

50

60

70

80
DRL

static

95th percentile

75th percentile

50th percentile

Average WLAN load (%)

In
di

vi
du

al
 A

P
 c

ha
nn

el
 u

til
iz

at
io

n
(%

)

Fig. 6. Real deployment. Statistically unbiased comparison of the breakdown
of individual AP load (y-axis) for same average network load (x-axis).

To successfully extend these promising DRL results to
other network problem and use-cases, and especially ensure
successful deployment in practice, we can generalize our main
lessons as follows. It appears that DRL training requires digital
twins, such as simulators. Indeed, solely learning from existing
network data may not be feasible (given the sheer number
of samples needed for training) nor desirable (as it does
not offer enough action diversity, so missing unsafe actions).
Conversely, learning from simulation provides the best tradeoff
among safety (i.e., to explore also unsafe actions), simplicity
(for training duration) and realism (e.g., as simulators can be
enhanced with real-world data and be used to assess controlled
generalization). Finally, deployment of trained DRL models
for real-time inference still requires a pedagogic effort toward
the human operators interacting with it (in order to gain their
trust), as well as offering failbacks to legacy systems until the
trust is gained in a pervasive manner.

REFERENCES

[1] D. Silver et al., “Mastering the Game of Go without Human
Knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[2] https://openai.com/projects/five/ accessed on 13.04.2021.
[3] M. Campbell et al., “Deep Blue,” Artificial intelligence, vol. 134, no.

1-2, pp. 57–83, 2002.
[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd ed. The MIT Press, 2018.
[5] N. Vesselinova et al., “Learning combinatorial optimization on graphs:

A survey with applications to networking,” IEEE Access, 2020.
[6] A. Karpathy, “Pytorch at Tesla,” in Pytorch DevCon’19, 2019.
[7] S. Manivasagam et al., “Lidarsim: Realistic lidar simulation by

leveraging the real world,” 2020.
[8] A. Bhartia et al., “Measurement-Based, Practical Techniques to Improve

802.11ac Performance,” in ACM IMC, 2017.
[9] N. Ahmed and S. Keshav, “A Successive Refinement Approach to

Wireless Infrastructure Network Deployment,” in IEEE WCNC, 2006.
[10] V. Shrivastava et al., “Understanding the Limitations of Transmit Power

Control for Indoor WLANs,” in ACM IMC, 2007.
[11] D. Deng et al., “Contention window optimization for IEEE 802.11 DCF

access control,” IEEE Transactions on Wireless Communications, 2008.
[12] O. Iacoboaiea et al., “Real-Time Channel Management in WLANs: Deep

Reinforcement Learning versus Heuristics,” in IFIP Networking, 2021.
[13] J. Krolikowski et al., “WiFi Dynoscope: Interpretable Real-time WLAN

Optimization,” in IEEE INFOCOM, Demo session, 2021.

