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Abstract—Today’s Wireless Local Area Networks (WLANs)
rely on a centralized Access Controller (AC) entity for managing
a fleet of Access Points (APs). Real-time analytics enable the
AC to optimize the radio resource allocation (i.e. channels) on-
line in response to sudden traffic shifts. Deep Reinforcement
Learning (DRL) relieves the pressure of finding good optimization
heuristics by learning a policy through interactions with the
environment. However, it is not granted that DRL will behave
well in unseen conditions. Tools such as the WiFi Dynoscope
introduced here are necessary to gain this trust. In a nutshell, this
demo dissects the dynamics of WLAN networks, both simulated
and from real large-scale deployments, by (i) comparatively
analyzing the performance of different algorithms on the same
deployment at high level and (ii) getting low-level details and
insights into algorithmic behaviour.

I. INTRODUCTION

IEEE 802.11 WLANS are the ubiquitous communication
medium for a variety of corporate and campus networks. For
many medium to large scale deployments of Access Points
(APs), the high density makes the allocation of scarce radio
resources even more challenging. Luckily, the emergence of
big data analytics allows for dynamic WLAN channel and
bandwidth reconfiguration policies that are capable of adapting
to sudden demand shifts. This is mediated by a centralized
Access Controller (AC) that is responsible of APs real-time
monitoring and control.

Such channel management is a combinatorial optimization
problem [1] where current state of the art solutions make
use of heuristics [2]. Recently, Deep Reinforcement Learning
(DRL) techniques [3] have fashioned a new trend in solving
such combinatorial optimization problems. However, since
training on real networks is impossible —as this would be
utterly slow and cause serious operational disruptions— the
only option is to train on simulators. Such learning approach
faces thus two challenges: (i) as for any algorithm, the
DRL solutions must generalize, i.e., exhibit good transfer
learning capabilities across different networks and scenarios;
(ii) additionally, unlike simple man-made heuristics that are
interpretable by design, DRL decisions are inherently opaque
and lack explainability, an important factor that ultimately
affects deployability of the solution.

To counter the above two problems, as a side-product of
our research on dynamic WLAN Radio Resource Management
(RRM), we developed the WiFi Dynoscope, an interactive
dashboard that allows experts to: (i) compare performance of
dynamic DRL reconfiguration policies to traditional heuristics

and (ii) gather interpretable insights on the decisions of each
algorithm.

Such comparison can be seamlessly done on simulated
traffic, as well as from real data collected in real-time from
operational large scale WiFi networks, where each day we
let the AC employ a different algorithm for performance
benchmarking. In particular, we always oppose two dynamic
WLAN RRM algorithms at a reconfiguration timescale of 10
minutes, that we pick among two families:

e ML-based our DRL solutions that Dynoscope helps
interpreting.

e Heuristics among which, a static configuration optimized
for peak AP traffic and never changed throughout the day; our
dynamic local search heuristic that is interpretable out of the
box; and finally TurboCA [2], the Cisco Meraki algorithm as
the current dynamic RRM state of the art.

The remainder of this extended abstract overviews the
capabilities of the platform and outlines the demonstration.

II. WIF1 DYNOSCOPE
A. System overview

The WiFi Dynoscope is composed of a front-end, which
we will show in the demonstration, and a back-end. To put
it simple, the front-end is an interactive web-interface, built
over Voila and Plotly and fed by aggregated data from
our backend. The latter is a pipeline that continuously collects
telemetry data leveraging Kafka, Logstash, and Spark ,
and pushes them into an Elastic Search engine. It has
also an interface built on Kibana technologies to visualize
simple statistics about the live network.

This choice allows to seamlessly support both simulated
data (fed directly), as well as real operational data (exported
by the products as kafka streams). For the latter, real tests
are performed over weeks worth of real traffic using a busy
34 AP WLAN deployed in a Huawei campus canteen in
Nanjing, attended daily by thousands of employees. Each day,
a different algorithm of those listed above is run in the AC.
For repeatable simulation over statistically similar scenarios,
we use the same topology and traffic load profiles of the APs.
We also generate synthetic challenging workloads.

As such, supporting both simulated and real data gathers
the best of both methodologies. On the one hand, simulated
data allows to compare different algorithms on the same exact
scenario and input (since traffic pattern is controlled), which
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Fig. 1. Performance at a glance: Side-to-side comparison of different
algorithms execution on multiple KPIs (the figure annotates the real dashboard
screenshot)

is desirable from a scientific standpoint, but that suffers from
lack of realism. On the other hand, the use of real production
network allows to statistically compare the execution of
different algorithms on the same network, but on different
input (since the traffic patterns change from day to day).

We now mainly discuss the front-end, through which the
INFOCOM attendees will be able to interact.

B. Performance at a glance

The Performance View (Fig. 1) allows to absolutely evaluate
and relatively compare the configuration performance. In case
of simulated traffic, it is possible to display side by side the
results of two competing algorithms on the same input data.
In case of real traffic, the comparison is done over multiple
aggregated days.

The user can select two algorithms to be compared,
and sliders allow to cycle through the different data
instances (highlighted in green in the picture). Several Key
Performance Indicators (KPIs) are included to fully elucidate
the comparison (areas highlighted in gray in the picture). The
comparison is carried out using KPIs such as reconfiguration
cost, interference, channel utilization, as well as the network
congestion index. The latter is our in-house metric which
uses an approximation of user throughput to derive an overall
network performance score. For instance, load profiles of the
APs are always reported in the first row, the 2nd and 3rd
row report KPI of interest respectively aggregated over the
whole network (2nd row), or in percentiles over all APs (3rd
row). Aggregation is flexible in that any metrics can be used
(average, median, higher moments or percentiles). Finally,
4th row compares directly the performance (e.g. relative or
absolute difference) of the algorithms. The central bar plot
completes the visualization (highlighted in red in the picture),
aggregating the results in the second row over the entire day.
To ease interpretability, a short textual headline summarizes
this aggregated output clearly stating and quantifying the
winner (also highlighted in red in the picture).

Fig. 2. Operational view: Real-time map of APs configuration load and
interference (the figure annotates and zoom in a real dashboard screenshot)

C. Detailed View

The Operational View (see Fig. 2 right) displays a spatial
view of the WLAN topology for any desirable reconfiguration
moment, that can be selected by the user (by simply hovering
over the point in time to zoom on). In this view, hovering
over a specific AP highlights the AP neighboorhood properties
and brings a zoomed view of the AP configuration. Each AP
is represented as a “butterfly” symbol, where the left and
right sides stand for the previous and the new configurations,
respectively. In particular:

o The channel configuration translates to the colors of the
inner triangles (here at most two channels are bonded),

e The AP load is reflected in the size of the inner triangles.

o The (estimated) channel utilization upper bound is
proportional to size of outer triangles (dark grey),

As we will demonstrate, this Operational View aids in
analysing the behaviour of the a policy, which is especially
useful for ML-based algorithms. Gathering intuition, and
addressing the explainability of the algorithm behaviour allows
network engineers to confidently approve their deployment in
production environments.

D. Demo outline

Ultimately, WiFi Dynoscope allows to directly compare
RRM algorithms in a scientific manner, as well as gather
statistically relevant performance comparison of the real
deployment over time. The demo will guide the user through
(i) an apple-to-apple comparison of algorithms in simulated
settings, (ii) a detailed view of the operations of each algorithm
and (iii) a statistically significant comparison of algorithms
based on real results from our deployment.
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