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Abstract—Internet Service Providers (ISPs) have a lot to gain
from estimating the Web browsing quality of their customers.
However, unlike Content Providers (CPs) who can easily access
in-browser computed application-level metrics to estimate Web
browsing quality, ISPs come short mainly because of traffic
encryption. In this paper, we use exact methods and machine
learning to estimate well-known application-level Web browsing
QoS metrics (such as SpeedIndex and Page Load Time) from raw
encrypted streams of network traffic. Particularly, we present and
open-source a unique dataset targeting a large set of popular
pages (Alexa top-500), from probes from several ISPs networks,
browsers software (Chrome, Firefox) and viewport combinations,
for over 200,000 experiments. Our results show our models to be
accurate, and we particularly focus on their ability to generalize
to previously unseen conditions, giving guidance concerning their
retraining.

I. INTRODUCTION

With the generalization of encryption [1], [2], ISPs are
struggling to get insights from data flowing within their
networks. When it comes to the Web, encryption forced ISPs
to walk out early on services like transparent caching and
redundancy elimination. Today, it is also threatening their
ability to understand Web traffic, not to talk about estimating
the quality of experience (QoE) their users witness when
accessing it. Nowadays, when a user complains that browsing
is slow and sluggish, an ISP has no objective way to verify it.
Besides, human operators doing troubleshooting for the ISP
can barely tell if the problem originates from the application,
the user home-network, the transport network or because of
a change in one of the many content delivery networks that
contribute today to the delivery of a single Web page [3].

Although directly collecting subjective Web QoE is expen-
sive [4]-[6], it is possible to measure objective Application-
level Web Quality of Service (AppQoS) metrics as a proxy
of user QoE. The scientific community has come up with a
plethora of such metrics in the recent years, each measuring
a different aspect of the page load process. Some metrics for
example are time-based [7] and measure the time of particular
events like the Time to the first byte (TTFB), the Document
Object Model load time (DOM), the Above the Fold time
(ATF) [8] or the entire Page Load time (PLT). Others are
integral-based and measure the visual progression speed like
the SpeedIndex (SI) [9] or the object or byte progression speed
like Objectindex (OI) or Bytelndex (BI) [10]. Nonetheless,

computing these indicators needs access to application or at
least HTTP-level information — an information that the ISP
has not anymore access to in the nowadays widespread case
of TLS encryption.

In this paper, we tackle the problem of AppQoS metrics es-
timation from streams of encrypted network traffic in the case
of a single session. In particular, we estimate a set of popular
metrics collected at the application-level from Timing APIs
(DOM, PLT) or javascript code (SpeedIndex and variants).
Among these indicators, the ByteIndex (BI) serves as a bridge
between network traffic and AppQoS metrics. It is defined
as the cumulative progression in time of the downloaded
objects sizes in bytes. This metric has been shown to have
high correlation with more complex visual metrics such as the
SpeedIndex (SI) [10]. Intuitively, information similar and more
fine-grained than the application-level BI is still present in
encrypted network data at the packet-level: by simply tracking
the packet size (or total bytes downloaded every AT ms), the
cumulative byte progression of a Web session can be measured
at the network-level (net-BI). Machine learning techniques
can then be additionally leveraged to devise estimators of
the remaining AppQoS metrics, using time series of byte
progression as input.

To do so, we collect a large dataset of Web page load con-
trolled experiments in which we measure both the application
view, from which we gather the groundtruth AppQoS metrics,
as well as the nerwork view, i.e., packet-level traces. When
constructing the datasets, for the sake of generalization, we
collect experiments pertaining to a large variety of conditions.
We then evaluate the accuracy of our estimators compared to
groundtruth AppQoS metrics and study how they generalize
to different conditions (different types of pages as well as
different network conditions). Our contributions are as follows:

o First, we define exact (net-BI) or data-driven models

of AppQoS metrics that are able to operate directly on
encrypted network traffic.

¢ Second, we show that net-BI approximates well the

application-level app-BI (6% median relative error, fur-
ther down to 3% using machine learning models) and
further that any other AppQoS metrics can be accurately
learned from encrypted packets (less than 14% median
error across all metrics).

o Finally, we systematically study the transferability of



the data-driven models to previously unseen conditions
at multiple levels (from browsers, to environment, to
viewport settings, location, browser family and version,
to L7 and L3 protocols, network conditions, etc): this
not only quantifies the expected degradation, but also
provides a ranking of the generalization capabilities, so to
prioritize retraining along the most varying aspects, and
thus carefully plan measurement campaigns.

The remainder of the paper is organized as follows. Sec. II
introduces various AppQoS metrics and related work. Sec. III
formulates the problem, overviewing our methodology and
datasets. Sec. IV describes exact and data-driven models,
whose accuracy and ability to generalize is evaluated in Sec. V.
Finally, Sec. VI and Sec. VII respectively discusses and
summarizes our findings.

II. BACKGROUND AND RELATED WORK

AppQoS metrics. Web Quality of Experience is generally
assessed with the browser using objective application-level
metrics (AppQoS metrics). The most prominent metric used
in the industry is Page Load Time (PLT) [11], corresponding
to the time for loading the page contents from the start of
the navigation. In recent years though, additional metrics have
been devised: several ones capture a precise event during the
page rendering process, such as Time to First Byte (TTFB)
that is the time at which the first byte of payload is received,
Document Object Model (DOM) time that corresponds to the
time for loading the DOM content, Above the Fold (ATF)
defined as the time for the browser to entirely render the
viewport area (Visually Complete in [8], Time for Full Visual
Rendering in [12]). These metrics are generally accessible
by W3C APIs such as Navigation Timing [7]. Another kind
of metrics, referred as time-integral metrics [10], leverage the
whole waterfall of page loading. The intention is to better
represent actual user experience and to improve robustness.
The best-known metric is SpeedIndex [9] (SI), based on the
visual progress of the page rendering process. ByteIndex [10]
(BD) is an approximation that replaces the visual rendering
progress by the byte progress, where bytes come from the size
of objects requested by the browser. Other metrics requires the
collection of position and area of the different elements on
the page, such as RUM SpeedIndex [13] (RSI) and Readyln-
dex [14]. In this work, we propose a method to systematically
learn any of these metrics, from encrypted traffic.

Measuring Web performance in the wild. Recent work has
measured AppQoS metrics in the wild based on browser-based
active experiments [15]-[19]. In particular, [15] performed a
six-months long measurement campaign to study how known
AppQoS metrics vary depending on various conditions. Sim-
ilarly, [18] performed 2 million visits from mobile networks
of four different countries measuring TTFP, PLT and RSI of
7 pages, whereas [16] tracked eight websites for a duration
of two weeks and [17] tracked 3 websites during 3.5 years.
While very valuable, however each study focuses on a limited
subset of the most important aspects that can affect AppQoS

performance — whereas heterogeneity of the experimental
conditions is a particularly important aspect of our work.

User Experience. All the AppQoS metrics represent slightly
different attempts at quantifying the loading speed of the page,
with the assumption that the quicker the content is loaded, the
higher the user QoE, which has been ascertained by studies
involving real users (see [5], [20]-[22] and references therein).
We remark that correlations exist between different AppQoS
metrics pairs: for instance, observed correlation [10], between
SI and PLT is 0.79, whereas correlation between SI and
BI reaches 0.82. This suggests monitoring of any objective
AppQoS metrics relevant as a proxy of user experience.

It should be noted that while monitoring the aforementioned
AppQoS metrics is straightforward for CPs (which have direct
access to the application side, see e.g., at [23]) it has become
impossible for ISPs (which only have access to the network
packets). Indeed, a decade ago encryption was hardly the
norm, and it was possible for ISPs to leverage HTTP logs
to develop (rather complex) algorithms to detect the differ-
ent page loading events [3]. In recent years however, TLS
encryption has become pervasive, preventing ISPs accessing
payload content, practically defeating valuable approaches
similar to [3] and leaving ISPs without tools — such as those
that this work provides to fill this gap.

Measuring Web performance from the dark. To date, with
few exceptions [24], [25], work in the literature assumes to
have access to HTTPS header information [5], [10], [11], [13],
[14], [20]-[22], which makes it unfit to be deployed by ISPs,
which is the issue we address in this paper. Under this light,
closest to our work is [24], that deals with (i) isolating a single
Web session from the network stream, containing potentially
background traffic and several concurrent web page sessions as
well as (ii) defining indicators of Web browsing quality from
passive measurement. Particularly, authors define the PAIN
index (as well as a supervised indicator called BestCheckpoint)
which correlates with basic Page Load Time (PLT) metrics.
A preliminary version of our effort was briefly demonstrated
at [25] — in this work, we systematically analyze the accuracy
of our approach and the portability of the models across
a very wide range of conditions, ranking their impact and
providing guidance in the measurement campaign to further
ensure model generalization capabilities.

III. METHODOLOGY AND DATASET

We provide a brief overview of the methodology we use in
this paper with the help of Fig. 1. We automate execution of
data collection by instrumenting several workers (either public
or private instance) based on two tools, namely Web Page Test
(WPT) [27] and Web View (WV) [19]. Web View is a user-
oriented measurement tool whose main objective is to perform
automated web browsing sessions, measuring representative
information of web pages in order to better qualify and under-
stand web browsing, both in terms of performance and deliv-
ery. The probes emulate end-users’ web browsing within a real



TABLE I
SUMMARY OF THE DATASETS IN THIS WORK (WPT, WV) VS RELATED WORK. DATASETS WILL BE OPEN SOURCED AT [26] UPON ACCEPTANCE OF THE PAPER.

Factor Web Page Test (WPT) Web View (WV) Literature
Generally in EU [15], [18]
Locations {Asia, EU, US} x {Public, Private} EU

Target pages Top-500 x {world, China} x {main, subpages}

Network conditions 50% native + 50% (FIOS, DSL, 4G, 3GFast, ...)

EU, US and others in [17]

Limited (3-20) in [16]-[18]

50 main pages from Top-500 Up to Top-10K main pages in [15]

Fiber, ADSL Ethernet, mobile broadband [18]

Mainly Chrome only [6], [16]

Browsers Chrome Chrome, Firefox Chrome and Firefox in [15], [18]
. Default or not specified [14], [16]
Viewports Default 1920 1080, 1440900 Five viewports in [15]
From HTTP/1 only [17] to
Protocols {HTTP/2} x {IPv4} {HTTP/2, QUIC} x {IPv4, IPv6} {HTTP2, QUIC} x {IPv4} [15], [18]
Metrics BI, PLT, SI, OI, DOM BI, PLT, RSI, OI, DOM PLT, RSI, SI, ATF [15], [18]
Samples no. 119,395 111,171
Campaign & Worker pools L7/L3 Datasets that we plan to release at [26] upon paper acceptance. We per-
settings . .
. > WebView (W) L7 Inference form a large set of controlled experiments with both W.V. and
Private . ?rowser € models  WPT, varying a number of relevant parameters and conditions,
- 0gs . .
=8 ¢ S for a total of 200K+ Web sessions, roughly equally split among
Pu‘::fbpag”e“ (WPT) ;iw ] WV and WPT. Tab. I gives an overview of our measurement
1c Private etwor! . . . . .
999 o6 6 traces campaign put in perspective with the closest datasets in the

Fig. 1. Synoptic of the workflow in this paper

end-user environment: real web browsers, residential access
network, etc. Each of the worker is tasked with execution of
multiple Web sessions, consisting of opening a browser under
specific conditions and loading a web page until the end of
network activity. For each session, we collect simultaneously
(i) application level information from the browser and (ii) raw
network packet traces. The remainder of this section details
the collected datasets.

Given an AppQoS metric of interest, we then build a labeled
dataset from the collection of controlled experiments: each
network packet trace is associated with the corresponding
value of the AppQoS metric. This labeled dataset feeds a
machine learning model, with as input a function of the
encrypted packet trace, and as output the value of the AppQoS
metric, as detailed in Section IV.

Once the model has been trained, we test its prediction
ability on new samples. One of the main fallacies for a
successful application of supervised machine learning in real
network deployment is represented by the possible lack of
generalization capabilities. In other words, the model work
well on the collected dataset, but performance significantly
degrade in other network settings. Since we are well aware of
this fallacy, we particularly stress-test the generalization ability
of our models in Section V.

A. Datasets

To stress test model generalization capabilities, we pur-
posely collect two distinct datasets with two different tools,

literature in terms of scale: compared to existing ones, our
dataset is unique in terms of geographical coverage, scale,
diversity and representativeness (location, targets, protocol,
browser, viewports, metrics).

About half of WPT experiments is performed using the on-
line service www.webpagetest.org at different locations world-
wide (55967 experiments in Europe, Asia, USA), the other
half uses private WPT instances of WPT in three locations in
China (63428 experiments in Beijing, Shanghai, Dongguan).
The list of target URLs comprises the main pages and five
random subpages from Alexa top-500 worldwide and China.
We vary network conditions by leveraging WPT traffic shaping
capabilities: half of the experiments uses native connections
and the other half is apportioned among 4G, FIOS, 3GFast,
DSL, and custom shaping/loss conditions. The other elements
in the configuration are fixed: Chrome browser on desktop
with a fixed screen resolution, HTTP/2 protocol and IPv4.

Using the Web View (WV) platform, we further collect
111171 experiments from three machines located in France.
Compared to the WPT experiments, we select two versions
of two browser families (Chrome 75/77, Firefox 63/68), two
screen sizes (1920x1080, 1440x900), and employ different
browser configurations (one half of the experiments activate
the AdBlock plugin) from two different access technologies
(fiber and ADSL). From a protocol standpoint, we use both
IPv4 and IPv6, with HTTP/2 and QUIC, and perform repeated
experiments with cached objects/DNS. Given the settings
diversity, we restrict the number of websites to about 50 among
the Alexa top-500 websites, to ensure statistical relevance of
the collected samples for each page.

We remark that, different effort in the related work has a
different focus. For instance, on specific L7 protocols HTTP/1



vs HTTP/2 [6] or QUIC vs HTTP/2 [15], [18], but lower layer
protocols such as the impact of IPv6 that we also consider
in this work is disregarded to the best of our knowledge.
Similarly, the vantage point location is typically representative
of few location in few continents [15], [18]. With few excep-
tions [15], [18], most related work focus on a single browser
(typically Chrome), with the default viewport. In this work, we
carefully balance all conditions to build datasets that contain
variability in all the factors mentioned in Tab. I. By doing so,
we are able not only to study the ability of machine learning
models to forecast user QoE from encrypted traffic, but also
to stress-test the generalization properties of such models to
very heterogeneous conditions.

IV. NETWORK-LEVEL INFERENCE OF APPQOS METRICS

In this section, we illustrate how to approximate in-browser
AppQoS metrics directly from encrypted traffic. We first show
how BI metrics (Sec. IV-A) can be computed from packet-level
data, and then describe how to extend generalize the inference
to other AppQoS metrics (Sec. IV-C).

A. Bytelndex (BI) metrics

Whereas BI considers the object sizes as seen by the
browser, net-BI instead takes the packet size as seen by the
network. Is is useful to recall the ByteIndex (BI) definition:
given a session consisting of loading a single Web page, let
x(t) the percentage of bytes already retrieved at time ¢. By
definition, x(¢) is a monotonic non-decreasing curve, going
from O at the initial time ¢ = O of the session to 1 after the
time to last byte is retrieved. The BI is the area above the curve
(and below 1), formally defined as BI := 0+°°[1 — z(t)]dt.

The numerical evaluation of this formula depends on the
timescale used for populating x(¢). In the rest of this section,
we use different time granularity, yielding to different sizes of
individual events, that yield to (slightly) different BI metrics.

o app-Bl Having access to HTTPS header, the original
application-level BI [10], denoted as app-BI in this work,
is computed at object arrival times ¢;, using the size s; of
the received i-th object , so that x(¢) is incremented at ¢;
by si/ >, s;j. i-e., the proportion that object s; represent
of all objects . s; in the page.

o net-BI At the finest granularity, network-level BI can be
computed from individual packets: whereas the formula
to compute net-BI remains the same as in the previous
case, now t; and s; correspond to the reception time and
size of the i-th packet. Since the navigation start time is
not available from the network side, we select the first
DNS query time as initial time of the session.

o Time-aggregated net-BI A more convenient granularity
is to aggregate packets received during windows having
fixed duration W. Without loss of generality, we consider
W = 100ms in this work, that was shown to provide
accurate results [25]. In this case, the size s,, cumulates
the size of packets received during the window 3, s,
represented by the time ¢,, of the w-th aggregate (centered
in the window, so t,, = (w — 1)W 4+ W/2).

B. Application vs Network views of Webpage rendering

For the sake of illustration, we visually compare in Fig. 2
the three different set of events for the same single session,
from top to bottom: application BI, time-aggregated net-BI,
and packet-level net-BI. Pictures on the left represent events
by segments with different times and sizes. Pictures on the
right cumulates events, depicting x(t) curves with black lines
and BI metrics with colored areas. To avoid cluttering the
picture we do not attempt at differentiating all events (domains
or flows), and only highlight the top contributor: the DNS
domain contributing the most to app-BI is colored in pink
(top picture), while the IP contributing the most to net-BI is
colored in orange (middle and bottom). Dark-gray segments
and areas correspond to the remaining domains/servers.

Several interesting remarks can be gathered from the pic-
ture. First, the time-series of events cannot be directly com-
pared: few objects are loaded in the browser, that correspond to
a long sequences of packets. However, the cumulative curves
look similar, and the areas of app-BI and net-BI directly
annotated in the pictures give remarkably similar values in
this anecdotal example (a thorough and statistically relevant
analysis is reported in Sec. V-A). Second, it is clear that
aggregation of packets in windows or objects levels changes
the nature of the events, but the cumulative curve and the BI
values remain almost identical. It follows that time-aggregation
is a simple method for reducing the amount of data to store
in memory while keeping the same shape for x(t), providing
a lightweight yet accurate view of the traffic.

C. Learning AppQoS metrics

1) High level idea: The aggregated network view addition-
ally provides a more homogeneous view of the traffic, that can
be leveraged as input for learning various AppQoS metrics in
addition to BI, such as those annotated as vertical lines Fig. 2.
We also remark that, according to the definitions of app-BI and
net-BI, we expect these alternative formulations to be similar,
with small discrepancy even in degraded network conditions
(this is confirmed in Sec. V-A). In addition, application-level
BI is known to have high correlation [10] with the most
important AppQoS metrics (such as SI, PLT, etc.). As such, it
is reasonable to resort to supervised machine learning to learn
the just illustrated similarities between application-layers and
the network-level views.

In a nutshell, given any AppQoS metric of interest y
available in our dataset, our methodology is to train a su-
pervised model y = f(z) from sessions of Web browsing,
of which application labels y and network features x are
simultaneously gathered (recall Sec. III). To ensure that the
models are portable (across types of web pages, different
network conditions, etc.) we test our models in a wide range
of conditions (recall Tab. I).

2) Inputs z vs Output y: Our methodology works with
different set of inputs gathered at either packet or flow level.
For lack of space, in this paper we only discuss inputs based
on the time-aggregated () shown in the middle plot of Fig. 2.
In particular, we sample z(t) every 100ms from O to 10s, i.e., a
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Fig. 2. Tllustration of application (top) and network views (middle and bottom) for Byte Index metrics, i.e., the colored area on top of the z(t) progress
curve (black continuous line). Several other AppQoS metrics (DOM, SI, PLT) are annotated in the picture.

vector of length 100 (discarding z:(0) = 0). Then, we compute
the net-BI value, which is the area above the curve z(t). The
input z is the fixed-size vector of length 101 consisting of
the discretized time series and net-Bl. For each output y (i.e.,
the PLT and SI metrics shown as vertical reference lines in
Fig 2), we then train a specific model. We focus on a subset
of important AppQoS metrics out of overall collected ones:
Bytelndex (BI), SpeedIndex (SI), RUM SpeedIndex (RSI) and
Page Load Time (PLT). Since results are qualitatively similar,
this allows us to report results in a more concise way.

3) Regression y = f(x): Without loss of generality, in this
paper we only report results gathered with the LightGBM
implementation of Gradient Boosting [28] implemented in
scikit learn, and in which, we tune the hyperparameters using
Bayesian optimization. A satisfactory set of hyperparameters
is given by an ensemble of 1700 estimators where each tree
has a depth of 7, and with at least 21 elements in each leaf. We
point out that we obtained similar results with Random Forest
and 1D-CNNs. At the same time, LightGBM training time is
significantly faster, which is essential to the main goal in this
paper: indeed, as we shall see in Sec. V-B, a thorough eval-
uation of the model transferability requires to systematically
retrain the models to stress-test their generalization capability
— which requires fast training methods.

V. EXPERIMENTAL RESULTS

We now report results of AppQoS estimation from en-
crypted network traffic. We first provide a bird-eye view,

summarizing the performance results for each of the met-
rics on the whole collection, and illustrate the main reasons
behind the good performance (Section V-A). We next dig
the generalization capabilities at a deeper level, providing
operational suggestions concerning the need for retraining
along the different dimensions (i.e., pages, browsers, protocols,
etc.) in our dataset (Section V-B).

A. Bird-eye view: Results at a glance

We start by quantifying the accuracy of machine learning
models in inferring the range of AppQoS metrics in our WPT
and WV datasets. As typically done in the literature, we split
the whole set of experiments into five equally-sized subsets
to perform 5-fold cross validation. Fig. 3 depicts the AppQoS
metric estimation error in both absolute (bars) and relative
(annotated percentage over the bar) terms, with metrics ranked
on the x-axis by increasing amount of median error. Bars
report the median error, and error bars extend to the Ist and
3rd quartile of the error distribution: it can be seen that the
median error is below 300ms (14%) for all metrics, including
SpeedIndex (SI computed on WPT) and RUM SpeedIndex
(RSI computed on WV).

Additionally, notice that for one metric (app-BI), the plot
reports the error when its estimation is carried out through
feature engineering only (gray shaded background) as well as
when its estimation is carried out using machine learning from
the periodic time-series (white shaded background). While
app-BI estimation with the time-aggregated net-BI is already
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Fig. 4. Spearman’s correlations among AppQoS metrics and between net-BI
and AppQoS metrics for the WV (left) and WPT (right) datasets.

fairly accurate (about 100ms error or 6%), it can be seen
that machine learning enhances app-BI forecast, lowering the
median error to about 50ms (3%).

Particularly, the fact that app-BI correlates with the other
metrics, coupled to the low error in app-BI estimation ex-
plains the good performance in estimating any time-related
performance indicator. This is further expressed in Fig. 4, that
depicts the Spearman correlation between AppQoS metrics
in both WPT and WV datasets. Two important remarks can
be gathered from the picture. First, from the top-row it can
be seen that net-BI is highly correlated with all the other
metrics, and additional dependencies are further captured by
ML models. Second, it can be seen that the exact value of the
correlation can vary depending on confounding factors in the
measurement campaigns: particularly, notice that RSI vs SI
metrics measured respectively in WV and WPT have different
definitions, and hence correlation values; also interestingly,
whereas RSI (WV) correlation is lower than SI (WPT), for
all remaining metrics that are identically measured by WV
and WPT, it is generally the opposite, i.e., correlation is
higher in WV than in WPT. This reinforces the need to widen
the boundaries of the investigation beyond those of a single
environment. Otherwise, the risk is that the gathered results
may limitedly apply to a dataset, and may not generalize to
other environments or real deployments.

We further visualize the just exposed differences in the VW
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Fig. 5. Scatter plot for 1000 sampled points. x-axis denote the proportion of
elements having app-BI < ¢ for each dataset.

vs WPT datasets by focusing on the SI/RSI metric, which is
among the most important to assess Web QoE. Fig. 5 reports a
scatter plot of app-BI vs SI (WPT) or RSI (WPT) for the two
datasets. Particularly, it can be seen that points in the scatter
plot align well around the y = x intercept, which explains the
high Spearman correlation. At the same time, notice that, as
encoded in the x-axis label, only 12% of WPT (40% of WV)
samples have an app-BI up to 1sec. Also, whereas all WV
samples have an app-BI of less than 10 sec, there are 14% of
WPT experiments having app-BI in excess of 10sec. While
the underlying reasons of these differences are multiple (e.g.,
this can be due to remote Asian locations used in WPT, or
public dataset instances of WPT, etc.), it is more important
to study in which conditions the ML models that have been
exposed to only part of these conditions during training, can
generalize to previously unseen conditions — our main focus
in the remainder of this paper.

B. Deeper view: Model generalization

The previous section has shown that machine learning
models provide a satisfactory forecast of AppQoS metrics from
encrypted traffic. Whereas this is a positive fact for ISPs,
drawing such a conclusion would be naive in our opinion.
Despite the large scale of the experiments, the variability of
the dataset and the use of methodologically sound cross-fold
validation, the models have so far been tested in quite homo-
geneous conditions: i.e., they were exposed, during training,
to a random sample of all tested conditions.

For instance, the previous section has shown that our models
work well for two major browsers (Firefox and Chrome,
that make up for 70% of the market share according to
https://gs.statcounter.com/), yet it is unclear to what extent
such performance would generalize to the remaining (non-
chromium based) browsers in the market, or can general-
ize across browser versions or to future browser releases.
In the above case, the model generalization capability (aka
portability in the remainder of this section) can be answered
by purposely avoiding to expose the training process to a
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Fig. 6. Model generalization: leave-one-out tests, where models are purposely built so that conditions in the test fold are not exposed during training.

particular browser B, and testing the model accuracy on
exactly that left-out browser B.

More formally, in this section we systematically stress test
the model generalization capabilities by exposing it, during
training, to only part of the conditions in our dataset. To
do so in a principled way, we resort to leave-one-out testing
where we systematically exclude each time one condition (e.g.
Firefox) from the training and test on this excluded condition.
This allows us to quantify, in a fine-grained way, what are the
most difficult factors that limit the model portability. In turn,
this knowledge can be useful to prioritize retraining (e.g., when
new browser versions are introduced, or new protocols, etc.)
and more efficiently guide future measurement campaigns.

Fig. 6 shows at a glance our portability results across some
of the most important dimensions in our datasets. The figure
shows the results for three metrics (PLT, BI, SI/RSI) using the
lightGBM models. The results for each left-out condition are
represented by a boxplot showing the median, first and third
quartiles of the relative error when testing the inference model
on the left-out condition. From top to bottom, left to right,
we present portability across the (1) measurement tools (WPT
vs WV), as well as the (2) collection environment (Public vs
Private) and (3) probe location. Content plays undoubtedly
an important role, for which we break down portability per

(4) cluster of pages (World, China, Subpages of the same
page) and (5) portion of the visible page, as not all content is
rendered above the fold. We also consider user heterogeneity
by contrasting (6) viewports that stems from different user
devices, as well as (7) browser families vs (8) browser
versions, and (9) the use of Ad blocker plugins. Finally, from
the network viewpoint, we consider (10) L7 Protocols (QUIC
vs HTTP2, with/without caching of HTTP/DNS responses),
(11) L3 Protocols (IPv4 vs IPv6) and (12) different network
conditions. Several remarks are in order.

(1) Measurement tools, (2) Environment and (3) Location.
The first subplot in the figure shows the effect of leaving out
the entire WV or WPT datasets from training, which allow
us to understand whether a single measurement campaign is
sufficient to build AppQoS estimators that generalize well
to unseen conditions. We observe that when it comes to
PLT, omitting WPT from training (i.e. training on WV only)
and testing on WPT, results in higher relative errors (larger
inter-quartiles), compared to omitting WV from training. The
explanation is that WPT experiments have much higher PLTs
(recall Fig. 5) and that learning PLTs of slow-loading pages
from examples containing mainly fast-loading pages yields
higher errors. Overall, it can be remarked that while median



PLT and BI generalize well (median error on previously
unseen conditions on the order of 10%) however the error can
grow large for the 3rd quartile (up to 70% for PLT). Similarly,
it can be seen that median error for SI/RSI estimation on
previously unseen conditions roughly doubles (up to 30%
whereas it was 14% when training on both WV and WPT
datasets). It is thus clear that there is a benefit in exposing
models to an as heterogeneous as possible set of conditions,
so that hopefully the estimation accuracy does not degrade in
operational deployment. We will come back on this aspect in
Sec. VL.

Variability extends also to public vs private instances of
the same tool, as well as different locations of the private
instances. Particularly, whereas BI estimation remains precise
in both cases, we notice that environment and location have a
roughly similar impact on PLT and SI estimation.

(4) Target pages and (5) Visible page portion. The variability
across groups of pages show that the model generalization
capability to unseen pages of different part of the world
(World, China), or different subpages (Sub) remains on par
with the environmental variability. This is reassuring as it
suggests that there may be no need to provide a very fine-
grained per-page modeling.

Conversely, the visible portion of the page plays a significant
role and better explain the root of the error. It is well known
that not all the page is visible immediately after download,
and the portion of the visible page is generally referred to as
“Above the Fold” [8]. We first compute for each experiment
the ratio between the height of the screen and the total length
of the page. This ratio represents the proportion of the page
which is above-the-fold. Based on this ratio, we separate the
experiments into 3 bins of equal sizes.

Notice that the behavior is non monotonic in the visible
portion: this is intuitive since in the case where we are testing
visible portion in [30%,85%), the model has been fed with
both extremes, containing pages with either a [0%,30%) or
[85%,100%) visible portion. As such, the model can generalize
by interpolating to intermediate visible portions in [30%,85%)
based on the extreme examples, while the opposite is not
possible with the same accuracy level.

(6) Device viewport, Browser (7) family / (8) version and
(9) AdBlock. User devices (hardware), browser (software) and
preferences (AdBlock) are clearly expected to affect model
generalization capability.

Intuitively, for any given page, a larger viewport increases
the portion of the visible page. This is symmetrical to the
previous case where the visible portion was intrinsically due
to the page content, and is equally important due to the large
variety of user devices. Results show that models generalize
well across the two popular 1440x900 and 1920x1080 view-
port sizes.

Conversely, as it can be expected, models generalize poorly
across browsers families: this is due to the fact that browsers
differ in the rendering engine, so that exactly as viewing

TABLE 11
SUMMARY OF MODEL GENERALIZATION PERFORMANCE.

Factor WPT WV  Rel. Err. Rank
Measurement tool v v 31.6% 1
Visible page portion v 29.1% 2
Browser family v 28.8% 3
Probes environment v 23.8% 4
Target page set v 22.9% 5
Probe location v 22.1% 6
Ad blocker v 20.3% 7
Network conditions v 19.0% 8
Browser version v 17.4% 9
L7 Protocols and caching v 13.5% 10
Viewport v 11.7% 11
1Pv4 vs IPv6 v 10.8% 12
All v v 14.0%

performance differs across browsers, AppQoS models should
include samples from all browsers of interest. On the positive
side, models’ performance is largely portable across major
versions within the same browser family, which means that
retraining should not happen on a timescale of nowadays
(agile) software evolution.

Similarly, we see that performance estimation can be af-
fected by presence of Ad blocking plugins, for which including
both options in model training seems relevant, particularly for
the RSI metric.

(10) L7 protocols, (11) L3 protocols and (12) network condi-
tions. Another aspect influencing performance pertains to the
servers configuration (HTTP2 vs QUIC), as well as whether
DNS responses or HTTP objects happen to be in the device
(or proxy) cache. Interestingly, we see that models generalize
well across these different settings. Similarly, the use of IPv4
or IPv6 at the lower layer of the networking stack is only
minimally affecting model portability.

Finally, given the abundance of related literature on the
topic, it is not a surprise that protocol performance is affected
by the bandwidth resources available in uplink/downlink. As
such, it is vital that multiple network conditions are included in
the model, as this would otherwise hamper the model accuracy,
limiting its relevance from an operational standpoint.

VI. DISCUSSION

In this work, we have shown that (i) learning AppQoS
metrics from encrypted network traffic is possible (ii) that
machine learning models have a generally satisfactory ac-
curacy for a broad range of metrics and that (iii) machine
learning models generalize quite well to unseen conditions,
with accuracy degradation that are however highly variable
depending on the considered condition.

Whereas the previous section has delved into each condition
in detail, it is now worth to relatively compare the impact of
each condition. To this purpose, Tab. II compactly reports the
model generalization ability. Specifically, each of the subplots
in Fig. 6 gathered by leave-one-out validation is summarized
as a single scalar value, namely the weighted mean of the
median relative error over the whole set (and not only the left
out condition) for SI/RSI. By considering the most critical



metric, we gather a conservative analysis of the relative error
in the estimation. The table also reports the average median
relative error for SI/RSI on the bottom gathered by 5-fold
cross-validation, which is useful as a reference. Based on this
table, we now make the following recommendations.

The main takeaway from the table is that pooling datasets
from heterogeneous sources is extremely beneficial: i.e., when
models are trained over both datasets, the model is exposed
to a larger variety of conditions, which significantly help
in reducing the estimation error (14% vs 31.6%, rank 1).
Including public vs private instances (23.8% error, rank 4)
from multiple locations (22.1% error, rank 6) is also desirable,
although this clearly has a large infrastructural cost.

Second, stratified sampling of pages with different visible
portions is a good criterion for target page selection: in
particular, failing to do so can yield a larger error 29.1%
(rank 2) that cannot be simply offset by selecting pages from
different geographical areas (error 22.9%, rank 5). This is
trivial as it boils down to a more careful selection of the target
set, and does not add any further deployment cost.

Third, models generalize poorly across browser families
and plugins that alter the page rendering process. Including
multiple browser families (28.8% error, rank 3) and AdBlocker
configurations (20.3% error, rank 7) is a necessary price to
pay to increase model generality that is difficult to offset
otherwise. Including multiple browser versions is instead far
less important (17.4%, rank 9).

Fourth, and rather interesting, it seems that network condi-
tions (19.0%, rank 8) and protocols have a smaller impact on
the model generalization. As shown earlier, network conditions
have a measurable effect on the performance. As such, it is
recommended to expose models to new transport technologies
and network vantage points. At the same time, especially for
what concerns L7 (13.5%, rank 10) or L3 protocols (10.8%,
rank 12), it seems that ISPs should not worry much about the
ability to capture their users’ Quality of Experience in spite of
the fast-paced changes in the application domain that happen
outside their control.

These considerations are both reassuring, and hopefully
helpful for the research community, in giving a clear view
for the most important aspects that are relevant from an
operational perspective.

VII. CONCLUSION

In this paper, we propose a methodology to infer
application-level objective Quality of Experience metrics of
Web browsing directly from raw network encrypted traffic.
Our method leverages standard machine learning models, fed
with the curve of byte progression, to gather popular metrics
such as SpeedIndex, ByteIndex and Page Load Time.

To train and validate the models, we perform a large
set of experiments, where we have collected simultaneously
network traces and application-level information on a disparate
set of conditions. Our experiments show (i) that supervised
machine learning models accurately approximate application-
level metrics; (ii) that such models further generalize rather

well across a large diversity of experimental conditions, and
finally, (iii) we provide guidelines about the most important as-
pects to ensure successful deployment in operational settings,
for which we hope that releasing our dataset to the scientific
community is a hopefully valuable contribution.
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