Removing human players from the loop:
Al-assisted assessment of Gaming QoE

German Sviridov*T, Cedric Beliardf, Andrea Bianco*, Paolo Giaccone*, Dario Rossi'
*Politecnico di Torino, Italy — first.last@polito.it
THuawei Technologies, Co. Ltd., France — first.last@huawei.com

Abstract—Quality of Experience (QoE) assessment for video
games is known for being a heavy-weight process, typically
requiring the active involvement of several human players and
bringing limited transferability across games. Clearly, to some
extent, QoE is correlated with the achieved in-game score, as
player frustration will arise whenever realized performance is far
from what is expected due to conditions beyond player control
such as network congestion in the increasingly prevalent case
of networked games. To disrupt the status quo, we propose
to remove human players from the loop and instead exploit
Deep Reinforcement Learning (DRL) agents to play games under
varying network conditions. We apply our framework to a set of
Atari games with different types of interaction, showing that the
score degradation observed with DRL agents can be exploited
in networking devices (e.g., by prioritizing scheduling decisions),
reinforcing fairness across games, and thus enhancing the overall
quality of gaming experience.

I. INTRODUCTION

The video game industry is skyrocketing, with a market
value that has surpassed that of the film industry and is
expected to exceed 230B$ by 2022 [1]. Due to its booming
users base and the increasing social factor in recent games,
the video game industry is starting to have a significant
influence on society. Single or two-player mode games are
long surpassed: most games today either offer an optional
online mode, or can be exclusively played online with other
users. Due to the necessity of interconnecting different players
and guaranteeing high levels of gaming experience, the gaming
industry has begun to attract significant interest of network
operators. ISPs (such as Comcast [2]) have started to offer
game-specific broadband plans that promise higher Quality
of Experience (QoE) for online games. Equipment vendors
(such as Ciena [3] and Barefoot [4]) put the game use-case
at the heart of their network architecture evolution. Game
service providers (such as Google Stadia [5]) have started
to offer cloud-rendered games directly streamed to the user’s
home. However, initial customer experience appears to be
disappointing [6] at best. This calls for further research to
ensure that networks appropriately handles gaming traffic.

The large spectrum of video game genres, and the large
overall video game catalog, makes the above task very com-
plex [7]. Some games (e.g., first-person shooters or brawlers)
are extremely fast paced and require swift reaction times from
the players, while others (e.g., strategy or turn based games)
are intrinsically less sensitive to latency. Network conditions
clearly play a significant role in the user experience for the
former. Large network latency or packet drops can reduce

the player’s performance to well below the natural score.
Furthermore, among similar interactive games, the effect of
a given amount of latency (or packet drop rate) may have
different impact, significantly hampering playing ability in one
game while and being unnoticeable to the player in another.

Due to the presence of complex in-game dynamics, it is
usually wrong to assume that two apparently similar video
games will lead to similar QoE under the same network con-
ditions. Even different modes of the same first-person shooter
game may lead to different responses from users depending
on network conditions, as shown in [8]. This heterogeneity
precludes any kind of generalization of existing results to
different video games and therefore forces us to analyze QoE
on a game-by-game basis. This analysis is typically done with
the participation of human players and is notably a very time-
consuming and expensive task that cannot keep up with the
steady introduction of new games to the market.

In this paper, we take a completely different approach and
advocate that it is possible to remove human players from the
QoFE assessment loop. While this may seem a bold statement
at first, we base our claim on the observation that player
satisfaction is naturally related to the score they are able to
achieve. Whereas everybody is aware of the famous Pierre de
Coubertin quote “The important thing in the Olympic Games
is not to win, but to take part”, there is little doubt that the
winner of the 2019 Fortnite game competitions that brought
home $ 3M [9] would think the same. We can also understand
the feelings of any player who fails to win the prize or is not
able to compete fairly because of bad network conditions.

Our key idea is to use scores as a proxy for user satisfaction,
allowing us to automate and scale up the game assessment pro-
cess. More explicitly, we propose to exploiting recent advances
in the field of Artificial Intelligence (AI) (Sec. II), whereby
Al agents are able to autonomously learn complex tasks such
as video game playing [10] without any human intervention.
Based on these agents we thus propose and implement a
framework for automated assessment of game scores, and in
particular of game score degradation in presence of network
impairments (Sec. III). We use this framework on three games,
gathering insights on their score degradation characteristics.
These data are then used to explore how network device
packet handling mechanisms might be designed to reinstate
game score fairness, using scheduling as a proof of concept
(Sec. IV). Finally, we discuss the issues raised in this work
(Sec. V) and draw conclusions (Sec. VI).

II. RELATED WORK

A first class of work related to ours concerns QoE as-
sessment in video games, which has been widely studied
throughout the first decade of 2000s. Major effort has been put
into analyzing the impact of network conditions on different
games. (Sec. II-A). A second, and so far separate, class of
work concerns the use of Al for video game playing. This is
a much more recent field with significant contributions during
the last few years (Sec. I1I-B).

A. Assessing video game QoFE

On the track of perceived QoE, the authors of [11] analyze
how the Mean Opinion Score (MOS) for the game “Call of
Duty” depends on network conditions. They show that the
MOS of novice players remains constant even when latency
exceeds 100ms, while it sharply decreases for experienced
players after only 50 ms of latency. More quantitative results
are provided in [8], which evaluates the impact of network
conditions on user score in the “Unreal Tournament 2003”
game. The authors show that, depending on the game mode,
a score degradation of 10 %-25 % is experienced with 250 ms
of latency. This is heavily in contrast with numerous previous
studies which fixed the usability threshold for fast-paced
games at 100 ms [7]. Given the above inconsistencies arising
from human players, the research community has used in-game
bots to estimate the impact of latency on the average score in
“Quake” game [12]. Nevertheless, in-game bots are practically
encoding expert-knowledge concerning a specific game as a
set of human-programmed software heuristics.

The above approaches are thus both time consuming and
cannot be generalized to other games. We seek to avoid these
disadvantages by leveraging self-learning agents.

B. Al for video game playing

More recently, significant research effort has been devoted
by the AI research community to develop artificial agents
capable of generalizing to multiple environments. Whereas it
is out of the scope of this work to provide a full coverage, for
which we refer the reader to a comprehensible survey [13],
we cover here the techniques we use in this work.

In particular, [10] proposes Deep Q-Networks (DQN), an
application of the classic Q-Learning algorithm in the context
of Deep Neural Networks. The proposed algorithm is able to
learn to play Atari games by observing raw pixels and is able
to achieve super-human score levels for most of them. Many
improvements over the original DQN proposal have then since
been proposed in follow-up research [14], [15], [16], [17] with
some of them targeting more complex video games such as
“Doom” game [15] or “Starcraft” game [17]. Yet in the Atari
environment most of the DQN variations perform similarly to
the original algorithm.

Our paper differs from this prior work in that we leverage
the proposed techniques to realize the different goal of esti-
mating QoE under network impairments.

Server
eoee I
l, Dlag, ;:l?ﬁf—j—
Frames e/l €
Fig. 1: Cloud Gaming (CG) emulated system.

Player/agent Emulated
Commands mulate
network

1000~

III. METHODOLOGY

In a nutshell, our methodology consists in (i) emulating a
controlled Cloud Gaming (CG) environment and (ii) training
Al agents to let them play in our environment. We tune the
network conditions and measure the agents’ gaming perfor-
mance.

A. System model of Cloud Gaming (CG)

Although being fairly novel, CG [18] is rapidly gaining
momentum in the gaming community with numerous services
having been released in recent years including the well-known
Stadia platform [5]. Fig. 1 depicts a basic CG model.

The fundamental idea of CG consists in employing remote
rendering of the video game environment and streaming the
high-definition rendering to the clients in the form of real-
time video. This is in contrast with traditional video games
that are rendered on a local machine owned by the player.
In the case of traditional single-player games, the entire state
of the game is kept locally on the local machine, so that the
perceived QoE is influenced only by the performance of the
user hardware. In the case of traditional multi-player games,
only metadata related to player actions are transmitted to the
server, that maintains the entire state of the game.

CG on the other hand delegates the rendering responsibili-
ties to the cloud and clients are no longer required to possess
expensive dedicated hardware for local rendering. Instead, it
suffices for them to be equipped with a device capable of
displaying a basic video stream, such as a smartphone or a
low-end laptop, for instance. CG clients interact by sending
actions (e.g., keystrokes, pad or mouse movements) to the
cloud, that affect the game state. The disadvantage is that,
unlike in traditional video gaming rendered on local hardware,
the streaming of the cloud-based rendering can be affected by
varying network conditions.

From the point of view of the network requirements, CG
gives rise to additional challenges as it combines elements
of bandwidth-hungry applications (such as high-definition
streaming) with highly delay-sensitive applications (such as
real-time communication and control). It is reasonable to
assume that different video games running in the cloud have
roughly the same requirements in terms of bandwidth, as all
require a steady stream of 4K video data. However, when
it comes to latency, under same network conditions user
perceived QoE may vary significantly depending on the nature
of the considered video game.

In our experimental setup, both the agents and the server
are in the same high-performance network, so that we are able

to measure the gaming experience (i.e., Al agent score) in
both ideal conditions (sub-millisecond delay, high-bandwidth,
no loss) as well as under controlled network degradation. In
particular, as depicted in Fig. 1, we can actively control latency
and losses at frame level, with several scenario settings and on
several games, as we detailed later in the experimental section
(Sec. 1IV).

B. Automatizing game playing

In [12] a first attempt has been made to substitute real
human players by in-game bots to assess video game QOoE.
However, bots are not representative of real human behavior
as they can exploit hidden game states, and are not limited
to using only the visual information available to humans.
Additionally, this approach cannot be applied when internal
game states are not available, as in the case of online video
games and for CG.

Recent advances in the field of Al have led to multiple
models of artificial agents having great flexibility in adapting
to different environments. As an example, an Al agent devel-
oped to play Atari games is equally capable of learning to
play almost any Atari game without any human intervention
or modification to the actual algorithm.

Without loss of generality, in this work we consider three
different Atari games, whose screenshot is depicted in Fig. 2.
The choice of using Atari games instead of more complex ones
is due to the (relative) simplicity of training artificial agents.
Furthermore, the Atari suite provides a large variety of games,
which allow us to highlight the aforementioned heterogeneity
in latency sensitiveness. We discuss how our technique applies
to more complex games in Sec. V.

Analogously to real humans, Al agents are built on top of
their ability to directly employ the raw pixels as input to
their decision making process. Furthermore, as in the case
of real humans, the agent decision process is built using a
process of “trial and error”, to progressively improve gaming
performance (i.e., the game score). This allows agents to
generalize to different scenarios by decoupling them from the
actual game engine and makes them a promising technology
for replacing humans in game QoE assessment.

C. Training Al players

More formally, we use Reinforcement Learning (RL) tech-
niques to train our artificial agent. In RL, an artificial agent
interacts with an environment (i.e., our emulated CG system)
by means of a closed loop feedback system. At each time
instant ¢ the agent receives as input a representation of the
environment (i.e., a state s; that in our case is a video frame)
and in turn reacts by performing an action a; (i.e., a keypress).
Following the action, the agent receives a new state s;y; and
the reward r; (in our case, a possible change in the game
score) corresponding to the state transition s N Sty1.

1) Practical limits of RL for games: An ideal agent must be
able to perform actions so that at each time ¢, given the current
state s, the action will lead to a maximum future discounted
reward Gy = >, < V*ri+x. The discount rate v € [0, 1] tunes

Fig. 2: The set of Atari games considered in this work. From
left to right: Beamrider, Seaquest, Breakout.

the decision making process by making a compromise between
immediate rewards (small) and possible future rewards (large
-

As the definition of the future discounted reward depends on
s¢ only, it intrinsically incorporates a notion of agent behavior.
Future rewards r,; are given by the current behavioral model
of the agent, i.e., by its policy function m(als). This function
dictates the probability of taking an action a given the current
state s. In principle, it is then trivial to build an explicit expres-
sion for the optimal policy 7*(a|s) which maximizes E[G}].
However, explicitly computing 7*(a|s) becomes burdensome
when the number of states grows large.

2) Human-like “trial and error” and Q-Learning: A first
practical limitation of RL is that learning the optimal policy
proves to be challenging due to its excessive computation cost.
Thus, multiple approximate algorithms have been proposed,
including Q-Learning, which is among the most widely used
and studied approximate RL techniques. The main concept
behind Q-Learning is finding an optimal state-action function
Q* (s, a), which rewards [E[G,] by performing action « in state
s at time t. Q-Learning employs a fundamental result from the
field of dynamic programming, namely the Bellman equation,
that determines Q* in an iterative fashion. Starting from sub-
optimal) and simply selecting at each time step the action a
that maximizes @, i.e., a = argmax, Q(s,a’), and updating
the new estimate of (), provides guarantees of converge with
probability 1 to optimal @* under non-restrictive conditions.
From Q* it is immediate to define the optimal policy 7*(als).
This allows agents to improve their score over time, learning
to play like humans do.

3) Human-like vision and CNN: A second practical limi-
tation of RL is that approximate methods reach their limits
when the state space becomes very large since building an
explicit) function is then unfeasible. Consider a simple
arcade game whose state is represented by the current frame.
Even a monochrome resolution as small as 64 x64 pixels will
lead to a state space of 264%64,

Deep Q-Network (DQN) [10] has been proposed as a
solution to overcome the limitation of the exploding state-
space, by leveraging recent advances in the field of computer
vision achieved through Deep Learning (DL) techniques. In
particular, instead of employing an exhaustive () function,
DQN employs a Convolutional Neural Network (CNN) to infer
the @ function, starting from the raw pixels of the frames. This
approach allows agents to play any game, as a human would

Training duration [hrs]
5 10 15

o 0 20
] 4 L . L 1 .l —
310 § 'A"\F.d\‘_’-—/"'v./\./ ~
1] ‘\.o—' .
€103 ./
© E
R N A ~————
<] 7 v — Seaquest

2 | /
31073 Beam Rider
-] /I - - Breakout
] 101
> T T T T T T
< 0.0 0.2 0.4 0.6 0.8 1.0

Training epoch Le7

Fig. 3: Training performance of DQN for three Atari games.

do, through a CNN equivalent of a visual interaction with a
rendered CG game.

4) Training in practice: We use OpenAl Gym toolkit to
train agents to play three different Atari games shown in Fig. 2
using the model described in [10]. The agents are trained
on two NVIDIA V100 GPUs, letting them interact with our
emulated CG in unperturbed settings, i.e., with ideal network
performance. We report the training results in Fig. 3 showing
the average score achieved by the agent as a function of the
number of update steps. On average a training time of 22 hours
(equivalent to 10M training epochs) is sufficient to reach the
maximum score for all of the considered games.

IV. EXPERIMENTAL EVALUATION

In this section, we first provide details about the exper-
imental setup (Sec. IV-A). We then use the agents trained
as described in the previous section to assess the impact of
network conditions on score degradation (Sec. IV-B). Finally,
we show how we can exploit our findings to improve the QoE
by acting on network scheduling (Sec. IV-C).

A. Network model

With reference to the CG architecture depicted in Fig. 1,
we model the communication channel between the player
and the game server as an asymmetric link characterized by
the parameters depicted in Table I. Notably, we tune (i) the
probability that a frame is delayed pjq4, (ii) the amount of
latency [and (iii) the keystroke loss probability pg..op. Note
that [is defined in respect to the action taken during the
delayed frame and is usually referred to as lag.

We consider the case where the communication channel is
adequately over-provisioned in terms of bandwidth to support
multiple simultaneous games, thus no network congestion is
experienced. For the sake of simplicity, we assume no inter-
frame video encoding. Thus for each update of the game state
a full frame containing the new state of the visual playing
environment is sent to the client. Frames are sent at a constant
rate of 60 frames per second. This simplistic setting is a
reasonable simplification given that, for the time being, we
do not desire to tackle the problems of bandwidth adaptation
logic in the video streaming portion of the CG (see Sec. V).

Frame delays and losses can thus be synthetically added
to control network conditions. For the sake of simplicity, we

TABLE I: Channel parameters employed in the experiments

Variable Description Range
Pdrop Per-keystroke drop probability [0, 0.5]
Dlag Per-frame lag probability [0, 0.8]
l Lag duration [0, 300] ms

consider simple independent probabilistic models to add delay
or to lose a packet. With probability p;,, we add a given
amount of lag [for each frame transmitted from the server.
At the client side, at time tg, if the received frame relates to
a time instant t > tg, then the frame is rendered, otherwise
the received frame is discarded and the last rendered frame
is re-rendered for that time instant, essentially simulating a
game freezing behavior. Note that for p;,q = 1 every frame
is delayed by [corresponding to the case of a constant lag
scenario. However, emulating correlated delays and losses (as
would happen in the case of transient bandwidth bottlenecks)
can be easily realized by using simple Markovian models. The
delay in the reception of the new frames will alter the agent’s
ability to play, exactly as would happen to humans in the case
of sluggish network conditions.

One last point is worth elucidating: the agent sends back
an action for every received frame in the form of a keystroke.
For the case of pg4.o, > 0, whenever a keystroke is dropped,
the game server interprets it as a no action. The environment
is then advanced by one frame without executing any action.

B. Assessing score degradation

We emulate a game played over synthetic network condi-
tions using the trained agents. As for traditional QoE assess-
ment, our goal is to observe how our agent playing capabilities
are affected by network conditions. As typically done with
human players [8], we quantify the influence of the network
on QoE by considering the average score that the agent is
able to achieve in a perturbed scenario. To compare scores
across games, we normalize the score over the average score
achieved in a non-perturbed scenario: a normalized score ~ 1
corresponds to no noticeable game impairment (i.e., highest
MOS in an Absolute Category Rating scale), whereas a score
~ 0 corresponds to the most severe degradation (i.e., lowest
MOS). We perform a set of experiments with a non-ideal
communication channel and report our findings in Fig. 4.
Furthermore, we report the 95% confidence interval of the
obtained score to show the significance of the results.

1) Fixed latency: We consider the scenario of a communi-
cation channel with an added network latency. We vary this
lag between O and 300ms and observe the score achieved
by the agent. Fig. 4a shows that all three games have a
sharp decrease in the score when additional latency is added.
However, for low lags there is a large discrepancy in the
score degradation across games: Breakout, Beamrider and
Seaquest exhibit a significant, moderate and negligible score
degradation, respectively.

This provides initial insights on the dynamics of three
games. Breakout dynamics are very fast paced, leaving small

g
o
(o]
1]
(0] — -+ Seaquest
8 1.09p~. Beam Rider 1
v\ N
g . —— Breakout N\
0.51 J S,
° Ve SN\
(] _— N
N \ N <
= [T SO ———
L it L ——
§ 030 100 200 300 0.0 0.2 0.
l[ms] Pdrop

(a) Deterministic frame lag. (b) Keystroke loss probability.

(O]
§ |=30ms | =60ms |=120ms
(2]
)
© . . .
gt \"l‘\e/'“- \\“/n/‘ \\
© o T o B L MR \
D 0.5 \ 4\ (2 LA I
8 e N \\\-’“‘
% \h\ \\\‘\ \\ -
E O 0 T T T T T ’-_I T _I‘__-I
S 00 04 0800 04 0800 04 038
=2

plag

(c) Probabilistic frame lag.

Fig. 4: Score degradation under perturbed network conditions

error margins. On the contrary, in Seaquest and Beamrider the
game dynamics are more forgiving, with the agent being able
to easily avoid obstacles and shoot at enemies even in the case
of a delayed scenario. This allows us to conclude that, in the
low lag regime, not all games are equally penalized by the
same network conditions.

Second, it is also clear that after 100 ms of extra latency, the
latter two games become unplayable. This is not different from
the human perception timescale, where 100 ms is typically
considered as a threshold that significantly affects the ability to
retain control in interactive tasks or communication [7]. This
is also found in cloud-based games, which strive to maintain
latency at an even lower level [19]. Games are therefore
unplayable in these conditions and Al agents confirm this
expectation.

2) Random keystroke drop: We repeated the experiment by
this time varying the keystroke drop probability pg;.p. Fig. 4b
summarizes our findings: all three games have a similar score
degradation as a function of pg.., with Seaquest being the
most tolerant among the three. This allows us to deduce that
latency is more important than drops, as dropped actions
are naturally repeated by players, realizing a sort of implicit
Forward Error Correction (FEC) mechanism.

3) Random latency: We perform further evaluations by
considering the case of probabilistic latency. Results depicted
in Fig. 4c show the score evolution as a function of both [and
Diag- These results closely mimic those obtained in Fig. 4a
with similar score degradation for all three games. As in the
case of fixed latency, Seaquest is able to tolerate higher latency,
while Breakout has rapid score degradation even for small [

1.50 S ¢
— Seaques |
© 13(5) ffl‘l}l Breakout
' ERG [\ 110 A)
> 1w Yy \,I\!! W) o\ .
2 0.75 \ Aintte) A
£0.25 .
£0.005 . . : . . ; .
5 0 100 200 300 0 100 200 300
=z Episode ID Episode ID

(a) Deterministic frame lag. (b) Keystroke loss probability.

Fig. 5: Normalized game scores achieved by Al agents under
Blind (left) vs QoE-aware (right) schedulers

and piqq.

The important takeaway from the figures is that our method
is automated and is able to gather very fine-grained score
degradation maps for a combination of parameters. The bottle-
neck is mostly represented by agent training time (i.e., 22 hours
per agent in our scenarios), whereas the experiments for Fig. 4
took less than 30 minutes each.

C. Achieving per-game QoFE fairness

Knowing a fine-grained QoE response to network conditions
as provided by our methodology opens new opportunities for
in-network QoE management such as resource placement, or
QoE-aware packet scheduling.

Building upon the results of Fig. 4a, we make a simple
proof of concept, where we take scheduling decisions that are
aware of the heterogeneous sensitivity of games to network
impairment. ISPs and CG providers need to perform resources
arbitration in the case of multiple concurrent players. The
objective can be formulated loosely as enforcing the inter-
game fairness: in the case of two or more concurrent game
sessions, a QoE-aware scheduler could prioritize the most
latency-sensitive games, as the experience of players of the
other games would be less affected by extra latency.

We thus perform an experiment in which we alter the
scheduling policy for two concurrent sessions of the Breakout
and Seaquest games. Fig. 5 shows the time evolution of the
score of both games. Both sessions share the same bottleneck
link which adds a per frame delay of 30 ms with probability
Dlag = 0.5, and both games are equally treated by a Round
Robin (RR) scheduler. Fig. 5a shows that although both game
flows observe the same latency a big discrepancy is expe-
rienced in the obtained scores. Breakout is heavily affected
by the network impairments, achieving an average normalized
score of 0.35, whereas Seaquest is almost unperturbed, achiev-
ing 0.96 average normalized score.

Using a game QoE-aware scheduler allows us to perform
scheduling based on the expected impact on gaming perfor-
mance. As a proof of concept, we switch the scheduling policy
to Strict Priority (SP) and assign the highest priority to Break-
out flows. In this scenario, as reported in Fig. 5b, the Breakout
agent observes an ideal channel and is able to achieve a

normalized score of 1 while Seaquest sees its normalized score
decrease to 0.65. However, this priority scheduling increases
the average game score which goes from 0.67 in the case
of RR scheduling, to 0.82 in the latter case. The considered
scenario is, of course, only considered as a proof of concept to
show the feasibility of the proposed approach: in practice one
would use advanced weighted scheduling mechanisms, with
weights deduced from results in Fig. 4. The evaluation of this
mechanism is left for future work.

V. DISCUSSION

Our proposal raises some interesting questions that this
paper was not able to solve and which we now discuss briefly.

A. Game stages classification

During our analysis, we considered only games requiring
the same playing style throughout the entire game. Modern
games are typically composed of a series of different stages,
e.g., action stages, exploration stages, dialogue stages, etc.
Identifying different stages would lead to an even finer grained
control over the resources to be allocated to single games. As
previously shown, low lags added in a fast-paced action stage
may lead to catastrophic performance degradation, whereas a
500ms lag in a dialogue stage would be hardly noticed by
the player. Automatic game stages detection and classification
can be achieved using a methodology similar to the one
we presented by observing how the agent reacts to channel
perturbation throughout its play-through. Including more
diversity and newer games is part of our ongoing work.

B. Delay-tolerant agents

Our results show that latency plays a fundamental role for
the performance of the agent. These results are consistent with
other studies performed with real human players [8], [11]. On
the other hand, studies such as [20] showed that, to a certain
extent, experienced players are able to tolerate the effects of
latency on their gaming performance, and incur smaller score
penalties. In the field of DRL, there has been limited interest
in building agents resilient to delayed environment response.
However, there exists a significant body of work in the field
of classical RL that considers these issues [21] and provides
strong theoretical results on model requirements [22]. We are
currently experimenting with delay-tolerant DRL agents to
refine our framework.

C. Agent calibration

Building artificial agents capable of adapting to scenarios
with network impairments introduces another degree of free-
dom in the assessment of QoE by tuning the “experience
level” [20] or the “play style” [23] of the artificial player.
In [23] significant steps have been made towards creating
agents with different play styles, that can make AI perfor-
mance closer to human performance. Validating the results that
we gathered in this paper with a study including real human
subjects is a necessary step in our future work agenda.

VI. CONCLUSION

In this paper we propose a novel methodological approach
for efficient and reliable QoE assessment in Cloud Gaming
scenarios. At its core, the proposed approach employs artificial
players instead of real humans to assess game session QoE
under different network impairments. We show performance
results for three Atari games for different communication
conditions that are in line with related literature employing
human subjects.

We argue that this development yields a versatile and
efficient tool for automating QoE assessment, by employing
artificial players instead of real human subjects. We expect this
to bring a substantial reduction in the cost and complexity of
the entire process, while introducing a rigorous, methodolog-
ical and scalable strategy for the assessment of game QOE.

REFERENCES

[1] https://www.pcgamesn.com/game-industry-revenue-2018.

[2] https://www.xfinity.com/esports.

[3] https://www.ciena.com/.

[4] https://canopusnet.com.

[5] https://stadia.google.com.

[6] https://www.forbes.com/sites/paultassi/2019/11/18/google-stadia-
launch-review-a-technical-conceptual-disaster/.

[71 M. Claypool and K. Claypool, “Latency can kill: precision and deadline
in online games,” in ACM Multimedia Systems Conference, 2010.

[8] T. Beigbeder, R. Coughlan er al., “The effects of loss and latency on
user performance in unreal tournament 2003®),” in ACM SIGCOMM
workshop on Network and system support for games, 2004.

[9] https://www.cnbc.com/2019/07/29/fortnite-world-cup-us-teen-wins-3-

million-at-video-game-tournament.html.

V. Mnih, K. Kavukcuoglu et al., “Human-level control through deep

reinforcement learning,” Nature, 2015.

R. Amin, F. Jackson et al., “Assessing the Impact of Latency and Jitter

on the Perceived Quality of Call of Duty Modern Warfare 2,” in Int.

Conf. on Human-Comp. Inter. (HCI), 2013.

S. Zander, 1. Leeder et al., “Achieving fairness in multiplayer network

games through automated latency balancing,” in International Confer-

ence on Advances in computer entertainment technology. ACM, 2005.

N. Justesen, P. Bontrager et al., “Deep learning for video game playing,”

IEEE Transactions on Games, 2019.

M. Hausknecht and P. Stone, “Deep recurrent g-learning for partially

observable mdps,” in AAAI Fall Symposium Series, 2015.

G. Lample and D. S. Chaplot, “Playing FPS Games with Deep Rein-

forcement Learning,” in Conf. on Artificial Intelligence (AAAI), 2017.

M. Wydmuch, M. Kempka et al., “Vizdoom competitions: playing doom

from pixels,” IEEE Transactions on Games, 2018.

V. Zambaldi, D. Raposo et al., “Relational deep reinforcement learning,”

arXiv:1806.01830, 2018.

W. Cai, R. Shea et al., “A Survey on Cloud Gaming: Future of Computer

Games,” IEEE Access, 2016.

M. Claypool and D. Finkel, “The Effects of Latency on Player Perfor-

mance in Cloud-based Games,” in IEEE/ACM Workshop on Network

and System Support for Games (NetGames), 2014,

L. Pantel and L. C. Wolf, “On the impact of delay on real-time mul-

tiplayer games,” in International workshop on Network and operating

systems support for digital audio and video. ACM, 2002.

T. J. Walsh, A. Nouri et al., “Learning and planning in environments

with delayed feedback,” Autonomous Agents and Multi-Agent Systems,

2009.

K. V. Katsikopoulos and S. E. Engelbrecht, “Markov decision processes

with delays and asynchronous cost collection,” IEEE Transactions on

Automatic Control, 2003.

M. Jaderberg, W. M. Czarnecki et al., “Human-level performance in first-

person multiplayer games with population-based deep reinforcement

learning,” arXiv:1807.01281, 2018.

[10]

(11]

[12]

[13]
[14]
[15]
[16]
(17]
[18]

[19]

[20]

[21]

[22]

[23]

