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Abstract—Quality of Experience (QoE) inference, and particu-
larly the detection of its degradation is an important management
tool for ISPs. Yet, this task is made difficult due to widespread
use of encryption on the data-plane on the one hand so that
measuring QoE is hard, and to the ephemeral properties of the
web content on the other hand so that changes in QoE indicators
may be rooted in changes in properties of the content itself, more
than being caused by network-related events. In this paper, we
phrase the QoE degradation detection issue as a change point
detection problem, that we tackle by leveraging a unique dataset
consisting on several hundreds thousands browsing sessions span-
ning multiple months. Our results, beyond showing feasibility,
warn about the exclusive use of QoE indicators that are very
close to content, as changes in the content space can lead to false
alarms that are not tied to network-related problems.

Index Terms—Changepoint detection; Web; Quality of Expe-
rience

I. INTRODUCTION

The ultimate goal of any provider is to serve its users an
enjoyable experience: this has given rise to studies defining
application-specific metrics apt at capturing user quality of
experience (QoE). For instance, in the context of web appli-
cations, recent work [1], [2] has shown the feasibility of ac-
curately inferring QoE metrics, online and on a per-page visit
basis, even in the presence of encrypted traffic. The inference
is not limited to simple Page Load Time (PLT), but includes
as well more advanced indicators of page rendering, such as
SpeedIndex and variants [3], that are better correlated with
user experience [4]. This is good news for network operators
since they can finally closely monitor, despite encryption, the
evolution in time of their users’ web QoE. However, whereas
most work focus on accurately inferring such QoE metrics
at a session level, to the best of our knowledge, none of the
prior work has tackled the problem of automatically detecting
relative changes in these QoE metrics over time, which is the
object of this work.

This problem, simple at first sight, hides several challenges.
First and foremost, QoE degradation and network related
degradations relate to each other in subtle ways. Indeed, not
every network degradation induces a QoE degradation and
QoE degradations are not necessarily due to network issues:
e.g., when it comes to the web, other factors such as the page
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content, or its sources of distribution may impact user QoE
even if the network is not experiencing any issue. Additionally,
the proper evaluation of any degradation detection mechanism
is complex in the absence of ground truth and appropriate
evaluation metrics, that we also tackle in what follows.

In this paper, we consider the QoE degradation as a change-
point detection problem. In particular, we instrument a Web
View [5] measurement campaign to automatically collect ac-
tive browsing towards a set of target webpages during several
months: given the long duration of the collection, the target
pages contents change during the measurement period. This
allows us to collect several months worth of L7 web QoE
related time series (e.g., PLT, SpeedIndex, etc.) together with
other indicators of how page characteristics evolve over time.
To mimic the real-world heterogeneity, we record a large set of
browsing sessions from a multitude of devices using different
browsers (Firefox, Chrome) and viewport configurations (SD,
HD, FHD), exploiting different protocols (HTTP2, QUIC, etc.)
and connected via different access technologies (ADSL, WiFi,
fiber). Finally, we carefully build a synthetic ground truth
by controlling network related changes while keeping all the
other properties constant. We use this ground truth to evaluate
our change point detection methods and oppose changes in
network related features with those related to content related
features. Summarizing our main contributions:

o Dataset construction: We propose a novel way of hand-
crafting network ground truth, and make our dataset available
to the community [6], to provide researchers with a playground
for investigating alternative methods to ours.

e QOF degradation: Although appealing at first for an ISP,
we find that L7 web QoE indicators yield poorer detection per-
formance of network-induced changes with respect to classic
QoS indicators such as L4 transfer rate — which is due to the
fact that L7 QoE indicators often correlate with changes in the
content space, that are generally neglected in the literature.

The rest of the paper is organized as follows. Sec. II
reviews existing change point detection methods and con-
textualizes them in the case of web user QoE degradation.
Sec. III describes the collected datasets and the ground truth
construction methodology. Next, Sec. IV presents our change
point detection approach and Sec. V presents our experimental
results. Finally, Sec. VI concludes the paper.



II. PROBLEM DESCRIPTION

Network data is intrinsically a multivariate time series: ISP
operations and management requires to process this continuous
stream of data to detect and pinpoint few specific events that
correspond to operational disruption, which possibly nega-
tively affect the quality of experience (QoE) of their customers.
A plethora of techniques exist for data processing, that can
mainly be ascribed into two main areas of: Anomaly detection,
that focuses on detection of outliers, defined as “an observation
(or subset of observations) which appears to be inconsistent
with the remainder of that set of data” [7]; and Change
point detection (CPD), whose focus is on “detecting various
changes in the statistical properties of time series (such as
mean, variance, or spectral density)” [8]. Algorithms in the
above areas are suited to capture specific types of discrepancies
and are hardly interchangeable. For instance, consider two
example time series from our dataset, depicted in Fig. 1. The
top signal represents the Page Load Time (PLT) while the
bottom signal reports the number of objects in the webpage.
For the PLT series, readers can intuitively notice two change
points (variance shift at ¢;, mean shift at ¢3, annotated with
vertical blue lines) and several outliers (particularly visible
when ¢t € [t1,t3], annotated with black crosses). Webpage
objects time series also exhibits mean and variance shifts at
to, t4: while the first PLT change point is unrelated to webpage
changes, subsequent change points are likely related.

In this paper, we take the point of view of an ISP interested
in tracking significant events for which the network it manages
is responsible (to trigger appropriate actions in response), as
opposed to changes that are outside its reach (e.g., as in
case of content-related changes) — where by “changes” we
mean variations of statistical properties of the distribution (i.e.,
including mean, variance, skew and higher moments) of any
variable of interest (i.e., page load time, page size, etc.). We
thus leverage changepoint techniques to detect events affecting
a large population of individuals for a sustained duration,
having thus major management consequences, as opposed to
detecting punctual outliers, with a transient impact limited to
few individuals.

A. Related work on CPD

It is useful to distinguish between online and offline CPD
methods: while the former are useful for real-time detection,
we are more interested in building a reference optimal solution
and hence only consider offline methods. At high level, we
can identify two families of algorithms, depending on whether
(1) they exploit the temporal dependence among samples or
(i1) merely focus on the statistical properties of sample inter-
vals. Examples of the first class include Bayesian methods,
with Dirichlet process Hidden Markov Multiple change point
model [9] being the most popular. This model assumes a
Markovian dependence from any instant ¢ to the next tx1, in
addition to the existence of multiple change points over time.

In our case, as samples come from many independent enti-
ties, it is reasonable to assume independence of the samples on
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Fig. 1: Example time series from our dataset: Page Load Time (top) and
number of objects in the page (bottom) in http://lefigaro.fr website. Vertical
annotations (blue lines) are obtained with change point algorithms described
later in this paper. For the sake of illustration, we mark with crosses outliers
that deviate over 3¢ in each interval.

each regime, so that algorithms in the second family are more
relevant. Due to space limitation, we refer the interested reader
to [10] for a structured overview of these methods. Briefly,
most of this family’s algorithms are based on maximizing a
likelihood, with penalties to prevent the detection of too many
change points. In a machine learning context, this is equivalent
to minimizing a cost function with regularization, and many
algorithms [11]-[14] exist that just differ in the selected cost
function, optimization and regularization methods. We select
state-of-the art method most fit to our problem in Sec. IV.

B. Related work on QoE degradation

While much valuable research has targeted the issue of web
quality of experience, the focus has been mainly on proposing
metrics to capture the accuracy of these proposals in capturing
human Mean Opinion Score (MOS) [3], [15], [16] or methods
to learn these indicators from the network [2], [17], either by
conducting large scale active experiments campaigns [18]-[21]
or passive measurement studies involving real users [16], [17],
[22]. In all the above work, the focus is on improving the
inference quality in absolute terms and for a single session.

This work takes a complementary viewpoint and, leveraging
any QoE indicator, aims at identifying points of rupture in
its distribution, in relative terms across multiple sessions. To
the best of our knowledge, despite web content evolution is
regularly tracked [23] with longitudinal cartographies [24],
[25] that also cover mobile web [26], and despite some of
the above work [18] do measure content-related statistics, the
issue that content changes can impact QoE indicators and thus
be mistaken for network-related performance degradation has
never been pointed out in previous literature.

III. DATASET

We use the Web View platform [27], which is described
in [5], to collect web browsing session measurements from real
end-user environment. We perform a large-scale measurement
campaign collecting datasets (Sec.IlII-A) that we augment with
synthetic ground truth (Sec.III-B). For repeatability purposes,
we make our dataset available at [6].



A. Data collection

Overall, we collect 222k samples during 2.5 months. Each
sample corresponds to a browsing event identified by (i) a
target webpage and a timestamp, (ii) a set of fixed config-
uration parameters describing the browsing session, (iii) a
set of performance metrics describing the webpage loading
experiment, and (iv) a set of page related features.

1) Target webpage and timestamp: The dataset contains
browsing sessions directed to a small but representative sam-
ple of 8 popular target webpages (lefigaro.fr, sina.com.cn,
twitch.tv, baidu.com, yahoo.com, tumblr.com, wikipedia.org,
youtube.com) pertaining to different categories (news, gaming,
search, etc.). Each session is associated with a timestamp
defined as the navigation start time recorded by the browser.
Note that due to measurement budget limitations, there is a
trade-off between the number of webpages to track and the
diversity of configuration parameters and the measurements
frequency. Since our focus is on the evolution in time, we opt
for having a smaller, yet representative, number of pages and
a finer-granularity evolution in time.

2) Configuration: The probe configuration is a set of fixed
parameters determined before each experiment. In terms of
hardware probes, we use 17 identical machines, spread in three
different locations worldwide (Lannion, Paris and Mauritius
Island). In terms of network access, the machines cover
different ISPs and access technologies (ADSL, WiFi and fiber)
for a total of 9 combinations. In terms of software appliances,
each machine can use up to 12 browser versions, which
include various versions of Chrome and Firefox. Each machine
can request a different browser viewport size among the 3
most popular configurations, and can enable or disable the
AdBlock plugin to emulate different user preferences. Finally,
in terms of networking stack software, a total of 6 experimental
combinations are obtained by configuring a specific network
protocol (HTTP/1, HTTP/2 or QUIC) and caching policy (by
keeping or flushing the browser cache before the experiment).

3) Performance metrics: During each experiment, browser-
level and network-level metrics are collected. Browser-level
performance metrics include classic metrics such as Page Load
Time (PLT), Time to The First Paint (TTFP), Document Object
Model time (DOM), and more advanced indicators such as
Time for Full Visual Rendering (TFVR) [5]. These objective
metrics are all correlated with user Quality of Experience
(QoE) [3], [15] and we are interested in detecting relative
changes of any of them. Without loss of generality, we
consider PLT, which is the most popular metric, in what
follows. The methodology can still be applied to any QoE
indicator. Finally, network-level measurements include transfer
rate, the share between HTTP and HTTPS protocols and the
share between HTTP/1, HTTP/2 and QUIC protocols (as not
all servers support HTTP/2 or QUIC yet, and can fall back to
legacy protocols [28]).

4) Page features: Page-related features include a number
of characteristics that only depend on the content provider,
such as the page size, the number of objects of the page and
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Fig. 2: Quasi-experimental methodology for building a synthetic network
ground truth. Given a pair of time series (top), two synthetic series are com-
puted (bottom). Solid black line indicates ¢y, dashed gray lines correspond
to the [a, b] range.

the number of domains that are required to fully download
the page. As early introduced, these characteristics also evolve
over time and allow to build a time series whose change points
can in part explain perceived performance differences tied to
content-related changes.

B. Ground truth

Evaluating any algorithm on data requires to compare
algorithmic output with a ground truth, i.e., some reference
solution provided by independent means. To build a reliable
ground truth for network-related events, we artificially control
the system conditions. We point out that the most commonly
used option consists in altering the network characteristics at
experiment time, by e.g., delaying, dropping or shaping the
access bandwidth. While such a methodology is often used in
networking studies, it poorly fits our use case: first, its resulting
ground truth is emulated (so realistic, but not real) and only
partially controlled (as those induced delays and losses are
additional with respect to uncontrolled losses in the Internet);
second, this would spread even further the combinatorics of the
experiments (especially if combinations of the above settings
are tested) and third, due to our focus on major changes, this
would require to sustain the altered characteristics for a long
time (trading off with the ability to test multiple combinations).

A second option, that we follow in this paper, is to perform
quasi-experiments, by pairing time series a posteriori, in the
database of globally available time series. A (semantically)
similar technique was used by Akamai [29] by contrasting
experiments where all parameters except one were identical,
to study the relationship of video performance and user
engagement. In our context, instead, we propose to build a
synthetic ground truth by “cutting and sticking” pairs of time
series together, where we pivot the network interface at a
known timestamp as in the following steps:

o Take configurations ¢ and j which differ only by the
network interface and machine, e.g., for instance consider the
case where ¢ has slow network interface (ADSL) while j has
fast network interface (fiber, WiFi),

o Multi-dimensional time series X; spans over [t;,t;] and
X over [t;,1}]. Cg)mpute [a,b] = [t;, t;] N [t;,t}] and cut the

series at to = %32,



o Extract two synthetic series with known change ., by

sticking together {Xi}if”t with {XJ’}ZM and {Xj}ij“” with

{Xi}iiut respectively.

This process yields two time series for which the time
instant ., is objectively a change point : for the sake of
clarity, this process is illustrated in Fig. 2, by depicting the
PLT component of two such series, with ADSL and a fiber
access technology coming from two machines both located
in Lannion. Notice that change point at ¢.,; has a different
semantic in series A (amelioration) vs B (degradation) and that
our methodology can capture both, which is desirable to e.g.,
trigger alerts (B) or confirm benefits of new deployments or
network optimizations (A). Overall, by pairing quasi-identical
configurations, we generate a set of 2568 series' with synthetic
network-related ground truth.

IV. METHODOLOGY

The input data to our problem is a heterogeneous collection
of real-valued multivariate time series. Each point in the
dataset can be indexed by a triplet (c,t, f), where ¢ repre-
sents the current configuration, ¢ the timestamp of the event
and f the specific feature under observation. The prediction
algorithm should provide an output in {0, 1} for each triplet,
where 1 indicates events of interest, a change point in our case.
The ground truth introduced in the previous section can be
formalized in a similar manner. From a modeling perspective,
we individualize time series in our dataset by considering
each of them independently. Given a configuration, the data is
modelled as a piecewise independent series: each measurement
can be assumed to be the result of a random variable following
a certain distribution, which can only change at some unknown
change points. From a networking perspective, each individ-
ualized time series comprises samples of browsing events to
the same target webpage, coming from a homogeneous user
population (e.g. ADSL, or WiFi, etc).

To annotate events of interest in the time series, we use
as we discussed earlier offline CPD algorithms that minimize
a cost function with regularization. Formally, the input of
the CPD algorithm is a multivariate series ;.7 belonging to
RT*F with T the number of timestamps and F' the number of
features. The aim of the CPD algorithm is to find a number of
change points K and instants of changes 0 = tp <t; < ... <
tx 11 =T, giving K+1 segments (ys, ¢, , )kefo,x]- Adopting
prior characterization [30] for offline CPD algorithms, given
a cost function ¢(-) which measures the cost of a segment
Ya:o (With @ < b € [1,T]) and a penalty pen(-) to avoid
finding too many change points, the change points are found
by minimizing the following function over K and ¢;,...%x:

K

Kitr,ti i —1 c(Ytu:tiys) + pen(K, yrr). (1

'As early observed, data may not be evenly spaced in time, for which
more precisely we should refer to them as sequences instead of time series.
However, by abuse of language we disregard this technicality in what follows.

Overall, to define a CPD method three choices need to be
made: selecting a (i) cost function, an (ii) optimization method,
and (iii) a regularization method. We now specify our selection
of a state-of-the art method along these three aspects.

A. Cost function

Varying the cost function allows to detect several types
of changes in the underlying data distribution. The most
common choice is to assume that each regime ¢ is parametrized
by a parameter #;, and that each sample in the regime i
is distributed independently according to a density function
f(-|6;). This general ¢; ; 4. cost function is precised depending
on the constraints on the parameters 6 and on the choice of the
density function f. For example, with ¢,.; (respectively ﬁ?a;b),
the empirical mean vector (respectively empirical covariance
matrix) on the interval a:b, the cost function

b
cLy = Y119 — Gall3 )
t=a

allows identification of changes in the mean, whereas

b
Cy = (b —a+ 1) log det Eot:b + Z(yt - ga:b)/z;ll)(yt - ga:b)

t=a
3)
allows identification of changes of both mean and variance.
The cost function (3) is a coherent choice for our dataset,
since we can assume independence on each regime and we
previously observed changes in mean and variance in Fig. 1.
We point out that we do not need to assume the distribution
of each regime to be Gaussian, as shown in [31], [32].

B. Optimization method

Regarding optimization method, several choices are pos-
sible, but most do not fit the settings of QoE degradation.
Exhaustive search gives exact minimization of the parameters
but it has prohibitive cost in our case as we apply the algorithm
to thousands of synthetic input series. Dynamic programming
methods give the optimal solution when the number K of
change points is known, which again does not fit our settings.
Whereas in our dataset the number of network change points
is known (and equal to K=1), the number of content change
points is not. As content changes more frequently that network
outages, and as they also affect the QoE indicators, focusing
only on a single change point can lead to both low recall of
outages and high false alarm rate. We thus select the Pruned
Exact Linear Time (PELT) [13] algorithm, which provides
optimal detection of change points, with a linear computational
cost under the assumption that change points do not gather
around a short time interval. The latter assumption is reason-
able in our settings, since major network problems affecting
a large population base are expected to be infrequent (and
otherwise close change points would likely be tied to the same
networking problem). Thus PELT bounds the computational
cost, while providing provably optimal result at the same time.
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Fig. 3: Example of parameter-free vs a-margin metrics on a single series
(PLT feature). For each metric, the precision (resp. recall) is defined as the
average of red numbers (resp. blue number).

C. Regularization

Finally, a penalty function is necessary only when the
number of change points is unknown, which is indeed our
case. The most common choice is to take a linear penalty, i.e.
a function proportional to the number K of detected change
points [13]. However, since we want to analyze thousands of
series with different lengths under the same penalty function,
we account the size variability by making the penalization
proportional to log(7") with T' the series length, as suggested
by the Bayesian Information Criterion (BIC) [33]. Thus, we
define our penalty function as:

pen(K, y1.7) = K log(T) (4)

with 5 > 0 a smoothing parameter hereafter referred as
penalty value. The selection of the penalty value is done
by maximizing the agreement between the predicted and the
ground truth change points according to an evaluation metric
over various values of 5. Such methodology has been used
for example in [34] with a domain-specific evaluation metric.
We perform a similar fitting of the free hyperparameter S in
Sec.V, showing that 3 can be chosen in a large range without
compromising detection accuracy.

V. EXPERIMENTAL RESULTS

We perform a thorough performance evaluation by exploring
over 9 millions combinations (2568 series x 28 features x 128
penalty values /3) by appling our CPD method (implemented
in R using the changepoint package) to each feature
independently. For each combination, we report results using
different evaluation metrics: a-margin metrics (where a margin
of error « is tolerated) and a parameter-free metric (a novel
smoother alternative [35]). We first examplify the evaluation
metrics (Sec. V-A), then illustrate the predictions obtained on
the PLT series (Sec. V-B) and finally extend to a larger set of
parameters, features and metrics (Sec. V-C).

A. Illustration on a single time-series

Fig. 3 presents an illustration of CPD execution (with a
penalty 5 = 10) on the PLT time series of a popular page
(YouTube), resulting in 4 predicted changes (in red) and 1
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Fig. 4: Result of precision/recall for all series, for a 8 = 10 penalty value
(PLT feature).

ground truth change (in blue). The performance is evalu-
ated with three different precision/recall metrics to illustrate
how each metric works. First, a commonly used metric that
generalizes the precision and recall in the context of time
series is represented by a-precision/recall, that allows a certain
margin of error « in the time-axis. Second, a parameter free
metric [35] results are presented in top plot. The latter has
a simple intuitive interpretation: a global precision around
50% indicates that predicted values are as bad as random;
in the example, global precision is 0.495 (as bad as random)
and recall 0.66 (only slightly better than random). Individual
precision and recall offer finer granularity: low individual
precisions correspond to predicted values which are far from
any true value, whereas the low individual recalls correspond
to true values for which no predicted values are located
nearby. Bottom plots report a-margin metrics for two values
« (blue shaded region): clearly, while for o = 0 precision and
recall would be null (since the intersection between predicted
and true instants is empty), for very large « both precision
and recall increase to 1 by definition — so that performance
evaluation is deeply affected by the value of a.

B. Result on PLT series

We aggregate all the PLT series and observe the precision
vs recall scatterplot in Fig. 4, obtained fixing 5 = 10. For
series where no change has been predicted, precision and
recall are not defined but conservatively set to zero, whereas
points on the diagonal correspond to cases where a single
change point is predicted. Overall, we find that PLT change
point prediction has a median recall and precision of 97% and
83% respectively. Moreover, as the marginals in Fig. 4 help
identifying, we detect the ground truth change point in more
than two thirds of the series (precision and recall of one), do
not find any change for about 20% of the series (precision and
recall of zero), and are worse than random for 5% of the series
(precision and recall in the open interval (0,0.5)). Thus, the
method is able to produce a relevant output, capturing many
network-related changes detected and raising few false alarms.

C. Result for all series and penalties

We now extend the analysis, contrasting in Fig. 5 detection
performance for several features and penalty values. We pur-
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posely choose features that are either related to (i) classical
network QoS performance (transfer rate), (ii) web QoE-related
performance (PLT, TFVR) or to (iii) content (page size, visible
portion). Clearly, since our purpose is to detect network-
induced change points, we use content-related features as a
“control group”, which is expected to have bad detection
performance. The rest of the performance metrics cover dif-
ferent network levels. The classic transfer rate is influenced
by the ISP network but as well other networks including the
content ones, whereas PLT and TFVR are application-related
performance indicators that are closer to user experience.
Furthermore, whereas PLT is usually considered a relatively
rough L7 performance indicator, TFVR is a more sophisticated
one that captures the end of the webpage rendering process
and is expected to better correlate with user QoE [4], [15].

Contrasting Fig. 5-(a,b) vs (c,d), notice that parameter-free
metrics [35] allow a smoother interpretation of the results:
on the contrary a-margin metrics induce sharp quantized
transitions as a function of the penalty, while still depending on
arbitrarily set thresholds (ov = 5 in the figure). For simplicity,
we focus on parameter-free metrics in what follows.

Considering control group features, we observe as expected
a poor detection performance that degrades with increasing
penalty. Considering performance group features (TFVR, PLT,
transfer rate), we see that: (i) penalty 8 > 0 is beneficial in
suppressing false alarms as precision initially increases; (ii)
detection performances are smoothly varying on /3, whose
setting is thus non critical in a fairly large range; (iii) although
appealing at first, tracking web QoE-related changes, com-
pared to transfer rate, leads to more false alarms, with TFVR,
albeit closer to user experience, being worse than PLT.

The last point requires a careful discussion. Our results
do not imply that transfer rate is a better indicator of user
QoE than PLT or TFVR on an absolute scale: rather, they
state that network-induced relative changes in user QoE are
better captured when change point detection methods are
applied to transfer rate as opposed to PLT or TFVR. Otherwise

stated, when an ISP considers a single session in isolation,
application-related indicators such as PLT, and especially more
sophisticated ones such as TFVR, are likely better correlated
to QoE of a single user. Yet, when considering sequences of
sessions, especially when contextual information on content-
related changes are missing, using lower-layer network-related
features seems to have more discriminative power to detect
network-induced changes in the QoE of a pool of users.

Finally, note that gains are quite consistent: e.g., not only
transfer rate has higher precision and recall than PLT (or
TFVR), but also that its performance are stable for a wider
range of penalty settings (median of precision and recall are
equal 1 for 5 € [8,22]) with respect to PLT (whose precision
never attains 0.9 and both precision and recall significantly
degrades already for S > 15). This result has positive
implication, as it lowers the barrier for ISPs to implement
a simple method such the one we propose in this paper, as
transfer rate measurements are already widespread.

VI. CONCLUSIONS

We present an optimal change point detection method to
reveal network-induced changes of web user QoE, that we
apply to a carefully collected dataset and ground truth. Albeit
preliminary, our results give interesting insights for the ISP
who sets out to track QoE changes using L7 metrics: While
PLT and TFVR detect network changes with a high recall,
they are also prone to false alarms, as pages are likely to
exhibit multiple changes in the content-space, which concur in
altering the user experience. We observe that classic network-
QoS features like transfer rate remain better suited than more
advanced QoE indicators like PLT to detect network-induced
changes. As future work we plan to (i) exploit online change
point detection algorithms, (ii) explicitly detect content-related
changes (e.g., on page size, number of objects, etc.) to suppress
false alarms and (iii) adopt multi-variate techniques (e.g., to
jointly leverage PLT, TFVR and transfer rate).
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