FloWatcher-DPDK: lightweight line-rate flow-level
monitoring in software

Tianzhu Zhang, Member, IEEE, Leonardo Linguaglossa, Member, IEEE, Massimo Gallo,
Paolo Giaccone, Senior Member, IEEE, and Dario Rossi, Senior Member, IEEE

Abstract—In the last few years, several software-based solu-
tions have been proved to be very efficient for high-speed packet
processing, traffic generation and monitoring, and can be consid-
ered valid alternatives to expensive and non-flexible hardware-
based solutions. In our work, we first benchmark heterogeneous
design choices for software-based packet monitoring systems in
terms of achievable performance and required resources (i.e., the
number of CPU cores). Building on this extensive analysis we
design FloWatcher-DPDK, a DPDK-based high-speed software
traffic monitor we provide to the community as an open source
project. In a nutshell, FloWatcher-DPDK provides tunable fine-
grained statistics at packet and flow levels. Experimental results
demonstrate that FloWatcher-DPDK sustains per-flow statistics
with 5-nines precision at high-speed (e.g., 14.88 Mpps) using a
limited amount of resources. Finally, we showcase the usage of
FloWatcher-DPDK by configuring it to analyze the performance
of two open source prototypes for stateful flow-level end-host and
in-network packet processing.

Index Terms—Network traffic monitoring, high-speed packet
processing, per-flow packet measurement, Intel DPDK.

I. INTRODUCTION

VALUATING the performance of experimental devices

and network applications requires intensive measurement
campaigns on real prototypes, where multiple variables come
into play. The procedure follows the guidelines indicated by
RFC 2544 on benchmarking network devices, as illustrated in
Fig. 1. In case of open-loop experiments, a traffic generator
(TX) transmits packets to the Device Under Test (DUT)
at a given rate/pattern, typically the worst-case for stress
test scenario (e.g., a stream of 14.88 Mpps 64B-packets
on 10 Gbps Network Interface Controllers). To measure its
performance (maximum sustainable throughput, packet loss, or
latency, etc.), the DUT in turn relies the received packets to a
traffic monitor (RX). In closed-loop experiments, on the other
hand, the traffic monitor captures packets exchanged between
transmission and reception ends of the DUTs (i.e., a client-
server application) and evaluates the performance.

The TX component presents two design approaches. The
first one is leveraging expensive commercial equipments (i.e.,
hardware traffic generators), capable of generating line-rate
traffic with high precision yet providing low-to-none pro-
grammability. The second approach is resorting to software

T. Zhang, L. Linguaglossa and D. Rossi are with the Network and
Computer Science Department, Telecom ParisTech, Paris, France. (e-mail:
{tianzhu.zhang, linguaglossa, dario.rossi} @telecom-paristech.fr)

M. Gallo is with the Nokia Bell Labs, Nozay, France.
massimo.gallo@nokia-bell-labs.com)

P. Giaccone is with Department of Electronics and Telecommunication,
Politecnico di Torino, Turin, Italy. (e-mail: paolo.giaccone @polito.it).

(e-mail:

Open loop

Closed loop
DUT

SWITCH
mirrored

t

X

DUT

of

= (-
. -

(n

Fig. 1: Performance evaluation of a Device Under Test (DUT):
open loop and closed loop

traffic generators, which might generate less accurate traffic,
but provides a higher degree of flexibility at a much lower
cost. A similar discussion also applies for the RX component:
hardware solutions can provide accurate measurements on a
specific set of preset variables. However, monitoring non-
default variables may be challenging if not impossible. In
contrast, software solutions can be programmed to monitor (or
not) any relevant variable, at the cost of possible inaccuracy or
even miscalculation. One further aspect worth stressing is that
RX resources can share the same hardware of the TX (or DUT
in some cases), for which lightweight operation is a desirable
property, especially in the case of scarce resources.

Last decade has witnessed the flourish of high speed I/O
software frameworks such as Intel DPDK [1], PFQ [2],
PF_Ring ZC [3], netmap [4] and PacketShader [5]. By means
of (i) kernel bypassing (which circumvents the general-purpose
network stack and in the meanwhile achieves zero copy), (ii)
batch-processing (which amortizes the overhead of interacting
with network cards and PCI buses), (iii) poll-mode packet
fetching (which eliminates the overhead of interrupts), (iv)
multi-queue Network Interface Controllers (NICs) combined
with Receive Side Scaling (RSS) to distribute loads into
multiple cores to fully exploit parallelism, these frameworks
bestow general purpose hardware the ability to generate,
capture and process packets in excess of 10 Gbps rates per
core. This trend has resulted in the rise of software traffic
generators (TX) [6]-[8], capable of saturating 10 Gbps links
with minimum-size (64B) packets by occupying few cores
on commodity hardware. Despite a variety of choices on TX
side, this is not yet the case for software traffic monitoring
on the RX side, since existing tools either offer simplistic
capabilities (e.g., per-packet operations only), or require a
significant amount of resources to sustain the processing of
more advanced monitoring tasks, hence can hardly be co-
located with TX or DUT (as detailed in Sec. II).

In this paper, we present FloWatcher-DPDK, a light soft-
ware traffic monitor based on DPDK that, beyond the typical

per-flow statistics (e.g., throughput, flow size), is able to
carry out more complex tasks, such as computing advanced
statistics (e.g., percentiles) of more involved metrics (e.g., per-
flow interleaving gap) while employing a minimal amount
of processing resources. As an extension of our previous
works [9], [10], we outline our choices in the design space
(Sec. III), which we experimentally verify (Sec. IV) by sys-
tematically benchmarking FloWatcher-DPDK performance in
a controlled setup (Sec. V). Our results show that by carefully
exploiting the design space (e.g., reusing available flow iden-
tifiers, choosing appropriate data structures), depending on the
required accuracy, packet-level and flow-level statistics incur
negligible overhead (orders of magnitude smaller than the
existing tools [6], [7]). Furthermore, we also perform similar
evaluations with synthetic traffic and showcase FloWatcher-
DPDK capabilities to monitor open- and closed-loop traf-
fic of two open-source prototypes (Sec. VI): ClickNF [11],
[12], a modular stack for the composition of L2-L7 network
functions, and FD.io Vector Packet Processor (VPP) [13], a
packet processing framework for software routers. We release
FloWatcher-DPDK as an open source project on GitHub [14],
which advances the state-of-the-art by providing fine-grained
flow-level statistics at high-speed using a small amount of
computation resources.

II. RELATED WORK

Relevant previous works can be categorized into high-speed
traffic generation (TX), processing (DUT) and monitoring
(RX). Given our monitoring focus, we refer the readers to [15],
[16] for state-of-the-art on TX and DUT, respectively. In
Tab. I, we show our taxonomy for existing RX frameworks
in terms of achievable performance (e.g., packet and data
rates), the amount of resources needed (e.g., the number of
CPU cores utilized), the design choices (e.g., reusing RSS
hash and the adoption of a pipeline workflow) as well as
the main purpose for which the tools are designed. The
literature about Speedometer, MoonGen and pktgen-DPDK
does not assess the minimal number of cores required (hence
we report Not Available “N.A.” in Tab. I): we found it to
be 2, and we will therefore use two cores for our evaluation.
In order to further simplify the comprehension of the related
work we divide the table into packet level and flow level
depending on the monitoring operation. In this section we
focus on the related work about traffic monitoring, and we
purposely breakdown the available literature into basic vs.
advanced tools. FloWatcher-DPDK sits in between of the two,
as it attempts to perform operations pertaining to the latter
class, while using as few resources as tools in the former. In
particular, our goal is to reduce as much as possible the number
of utilized CPU cores, while sustaining both wire-speed and
accuracy in our measurements.

A. Basic traffic monitoring

Traffic monitoring is bundled with TX tools such as Moon-
Gen [6] and pktgen-DPDK [7], which not only support
minimum-size packet generation at line rate, but also of-
fer basic packet-level measurement capabilities. In particular,

MoonGen [6] is a high-speed traffic generator based on the
DPDK framework. In addition to generation, MoonGen takes
advantage of hardware features for rate control and latency
measurement. Since MoonGen scripts are wrapped with the
Lua programming language, the provided APIs are relatively
easy to use for packet capture as well, which makes Moon-
Gen a good candidate for both packet-level and flow-level
monitoring operations. Yet, programmability in a high-level
language allows for rapid prototyping of flow-based measure-
ments at the cost of reduced performance: we complement
the analysis of [6] by measuring the performance of Moon-
Gen when flow-level operations are performed. Alternatively,
DPDK-Speedometer [17] is a DPDK application capable of
packet-level traffic monitoring, and can be used to measure
throughput, making it a good comparison candidate for packet-
level operations. These basic RX monitoring capabilities have
traditionally sufficed for prototype design, especially since
network functions implemented in software have long been
stateless and operating on a per-packet basis. However, recent
emergence of stateful and higher-level functions operating on
flows (e.g., [11], [12], [23], [26], [27]) started challenging
the usefulness of packet-level monitors. As such, with respect
to DPDK-Speedometer or MoonGen, FloWatcher-DPDK ad-
vances the state-of-the-art by providing not only packet-level
measurements, but also fine-grained per-flow statistics with
negligible performance loss.

Instead of offering online statistics, a subset of the available
basic traffic monitoring tools opt for storing packets for
deferred processing. The work in [18] advances packet capture
on commodity hardware, by complementing the well-known
pcap library with additional features such as parallelization
via RSS queues and PFQ support. Authors show that, thanks
to their optimization, pcap is able to capture packets and
perform basic counting on a 10 Gbps link with 64B packets
(using at least 3 different cores). The optimized pcap can even
be used with advanced monitoring tools such as Tstat [28],
with slightly decreased performance. Similarly, the work in
[20] manages to capture 300B packets at 40 Gbps line rate
by exploiting a variety of techniques including Non-Volatile
Memory express and Storage Performance Development Kit.
FlowScope [19] is capable of continuously capturing a sub-
set of flows that can be further dumped into disk through
predefined triggers. In contrast with packet capturing tools,
FloWatcher-DPDK (i) targets minimum-size packets, (ii) aims
to use a smaller number of CPU cores and (iii) keeps the
packet loss ratio in the order of few parts per million.

B. Advanced traffic monitoring

A set of monitoring tools with complementary capabilities
have also been proposed, whose goal is to provide a more
complete analysis of traffic at either local or global network
scale (i.e., single or multiple points of monitoring).

Local network scale: At local level, which is the closest
to this work, a number of sophisticated monitoring tools
are reviewed in [21], [29]. Among them, nTop [30] and
DPDKStat [21] use the least amount of resources in terms
of CPU cores, despite being sophisticated tools designed for

TABLE I: Taxonomy of the related traffic monitoring work

Proposal Achieved Performance Design Space
Name [Ref.] Bit Rate Throughput Cores RSS Pipeline Purpose
[Gbps] [Mpps] required Hash Workflow
Speedometer [17] 10.0 14.88 N.A. VA VA traffic monitor
MoonGen [6] 10.0 14.88 N.A. IV VE traffic generator & monitor
pktgen-DPDK [7] 10.0 14.88 N.A. V4 X traffic generator & monitor
Packet level Bonelli et al. [18] 10.0 14.88 >3 X N.A. traffic capture
FlowScope [19] 120.0 101.35 6 X v traffic capture
R.Leira et al. [20] 40.0 15.63 5 X X traffic capture
FloWatcher-DPDK 10.0 1488, %1\%{%) v Y .
DPDKStat [21] 40.0 ~ 1.59 16 X VA traffic monitor
MoonGen [6] N.A. N.A. N.A. v VE traffic generator & monitor
X. Wu et al. [22] 100.0 148.80 6 X X compare sketch algorithms
Flow level mOS [23] 19.1 28.42 16 X X userspace TCP stack
NetVM [24] 34.5 N.A. 12 X v NFV framework
OpenNetVM [25] 68.0 N.A. 6 VA VA NFV framework
FloWatcher-DPDK | 10.0 148, Nown |V v i

* While the out-of-the box MoonGen is in run-to-completion mode, we can set it up to work with the pipeline workflow.

Internet traffic monitoring [28]. Although Deep Packet Inspec-
tion (DPI) and other advanced analytics can be deactivated,
the TCP-based statistics are deeply entangled in both tools
and would require complex modifications for deactivation. The
advanced monitoring capabilities offered by these monitoring
tools come at the cost of limited performance. For instance,
according to [30] “using a dual core CPU, nProbe can be
used for capturing packets at 1 Gbps with very little loss
(<1%)”, whereas on similar hardware the simpler flow-level
statistics tracked by our proposed FloWatcher-DPDK allow
to achieve 10 Gbps with loss rate in the order of few parts-
per-million. Similarly, DPDKStat achieves 40 Gbps processing
on a NUMA system with 16 physical cores, on real traffic
workload with average packet size in [716,811] bytes range
corresponding to [385,435] kpps. In contrast, FloWatcher-
DPDK achieves operation rates of about 7.4 Mpps per-core, an
order of magnitude more than DPDKStat and several orders
of magnitude with respect to Bro, Snort and Suricata [21].
To overcome the limited performance, alternative traffic
monitors propose to use sketches or probabilistic summaries to
analyze large datasets. The work in [22] benchmarks 3 sketch-
based heavy-hitter detection methods on multi-core commod-
ity servers and evaluates them at 100 Gbps speed. The authors
consider different design choices (e.g., DPDK RX modes, data
sharing scheme), and analyze them in terms of packet drop
ratio, processing time and delay. Compared with FloWatcher-
DPDK, this work is specifically designed for sketch-based
methods which sit between packet/flow-level monitoring, thus
it is not suitable for direct quantitative comparison. Integrating
sketches into FloWatcher-DPDK is part of our future work.
Another class of works worth mentioning is high-speed
NFV frameworks capable of composing local network mon-
itoring functions. In particular, mOS [23] is a modular net-
working stack for stateful middleboxes. It provides high-level
APIs with the objective of concealing the details of flow man-
agement and exposes only packet-/flow-level abstractions to
make developers focus on the application logic. NetVM [24] is
a high-speed NFV framework built on top of commodity hard-
ware. It allows customizable network functions to be deployed

in virtual machines. Such network functions can be chained or
multiplexed to compose network elements with high flexibility.
An extension of NetVM, namely OpenNetVM [25], runs
network functions in Docker containers instead of VMs. It
uses a manager to route packets among multiple NF chains
to achieve load-balancing and high performance. All the
aforementioned frameworks adopt DPDK to sustain line rate
packet I/O. We argue that our work focuses on high-speed
flow monitoring with low resource usage, and is orthogonal
to them. FloWatcher-DPDK can either be exploited to test
the performance of deployed NFs, or be integrated within
an NFV network to realize per-flow monitoring functions.
As such, advanced monitoring tools cannot be used for a
direct quantitative comparison. Conversely, it is useful to
make extensive qualitative comparison of the findings, as the
operational point of simple vs. advanced traffic monitoring
tools are significantly different.

Global network scale: At network level, NetFlow [31] is
an example of network-level monitor with implementations
in custom ASICs and pure software. A NetFlow ASIC is
available only for costly high-end routers capable of dealing
with up to 65k concurrent flows, whereas software solutions
instead heavily rely on sampling, typically less than 1/1000
packets, which we want to avoid. Given its network-wide
nature, data collection is crucial in NetFlow. As such, to reduce
the size of the data to be sent to the collector, FlowRadar [32]
proposes to store each flow counter using a compact data
structure based on counting bloom filters. To further reduce
data size, SketchVisor [33] proposes to split the data collection
into regular and fast paths, which is used on load surges
and only performs updates locally at the switch for a small
portion of the heavy-hitter flows. sFlow [34] is another stan-
dard industry technique for network monitoring. It performs
real-time packet sampling throughout L2-L7. While sFlow
presents better protocol coverage and scalability, it suffers
from the downside of inaccuracy due to sampling. Although
NetFlow and its variants perform operations similar to ours,
they differ from FloWatcher-DPDK in that the collected per-
flow statistics are simpler (e.g., no per-flow percentiles) and

the data-collection stage has a prominent impact (unlike in our
local case), and as such are not worth comparing directly.

III. SYSTEM DESIGN

Flow monitoring can be decomposed into four stages [35],
namely packet capture to retrieve and pre-process packets (if
necessary), flow aggregation to aggregate packets belonging
to the same flow, data collection to store collected statistics,
and data analysis to provide the desired metrics characterizing
different flows. In this section, we briefly review each of
them and describe FloWatcher-DPDK'’s design space that we
explore in Sec. V with the objective of providing lightweight
flow-level statistics at high-speed.

A. Packet capture

The first stage consists of retrieving raw packets from
the NICs, time-stamping and forwarding them to the flow
monitoring engine. To capture and process packets at high
speed, FloWatcher-DPDK builds on top of DPDK, a state-
of-the-art packet I/O framework. We choose DPDK over
alternative frameworks such as [3], [4], etc. because of its good
performance, rich features, and software support, as detailed
in [16]. To effectively take advantage of parallelization, we
enable Receive Side Scaling (RSS) to distribute incoming
traffic into multiple hardware queues, from which packets are
copied into main memory without involving the CPU (Direct
Memory Access) to be later processed in user-space. Besides
fetching and delivering raw packets, DPDK also provides a
wide range of design choices to indulge different use cases. In
this paper, we only consider the most relevant ones, including
programming models, multi-threading libraries as well as CPU
scheduling policies, whose details are elaborated as follows:

Programming models: DPDK provides two alternative pro-
gramming models, namely run-to-completion and pipeline.
In the run-to-completion one, each packet is retrieved and
processed by the same thread, typically pinned to a single
core. As shown in Fig. 2-(a), each thread keeps polling its
associated receive descriptor ring, fetching batches of packets
into user-space for further processing. On the contrary, in the
pipeline model, packet reception and processing logics are
decoupled and distributed to separate threads. As illustrated
in Fig. 2-(b), FloWatcher-DPDK pipeline model consists of
two different types of threads: RX- and monitor-thread. The
former keeps polling descriptor rings to deliver packets to a
shared software ring. The latter fetches packets from the shared
software ring for further processing i.e., collecting packet- and
flow-level statistics. Since the advantages of one approach over
the other are not evident, we benchmark FloWatcher-DPDK
by integrating both models and select the one providing better
performance while maintaining the number of used resources
constant.

Multi-threading libraries: DPDK provides a novel multi-
threading library, namely Ithread [36], as an alternative to
the standard POSIX one (pthread). Unlike pthread, Ithread
embraces Cooperative Scheduling in which a thread, instead
of being preempted, periodically yields its execution to leave
the chance of using CPU cycles to other threads. According

descriptor ring "
TN ¢ POl
i Fquete | DMAS{{” Jy< | DPDK,
@ 1 Q.’ deliver |threa
queue | | pua ST POl
paNC QS nima e
‘Q" deliver thread 1

(a)

descriptor ring

software ring

Frasszeeeannneenn s ST poll I Ndequeue it
i I @\ monitor
B = &
queue | | pma S poll enqueue ST xdequeue| it
2 ['@ namma '@\
............................. i \..’l Jeliver™|thread 2 ‘...' thread 2

Fig. 2: Packet capture under (a) run-to-completion and (b)
pipeline programming models

to [36], lthread guarantees lower scheduling overhead and
provides contention avoidance. In our context where threads
perform relatively simple operations (e.g., few memory ac-
cesses and instructions when hash computation is performed in
software), Ithread seems an appealing light-weighted solution
especially if associated with pipeline programming model.
Furthermore, lthread features efficient coexistence of multi-
ple threads in a single core, which decreases the number
of occupied working cores and is coherent with our goal
of using exiguous processing resources. We thus implement
FloWatcher-DPDK with both models and perform a selection
by benchmarking their performance.

CPU schedulers: In the Linux operating system, the default
CPU scheduling policy is SCHED_OTHER, which is based on
fair time sharing and adopted by most applications. However,
DPDKStat [21] uses SCHED_DEADLINE [37], an alternative
real-time scheduling policy, to share the same cores between
two threads and increase the throughput by 100%. As (i) both
FloWatcher-DPDK and DPDKStat are DPDK programs able
to operate in pipeline model, (ii)) SCHED_DEADLINE enables
two (or more) threads to share the same core, making our
monitor occupy less resources, we therefore opt to benchmark
FloWatcher-DPDK by integrating both SCHED_OTHER and
SCHED_DEADLINE, and compare the performance.

Results of the considered design choices for the packet
capture stage are reported and discussed in Sec. V. Although
specific to FloWatcher-DPDK, we believe these benchmarking
results can provide guidelines for prototype designs beyond the
scope of our work.

B. Flow aggregation

After being captured, packets are aggregated into flows by
means of flow identifiers (typically based on the hash of TCP-
UDP/IP 5-tuple) and stored in a hash table.

Flow identification: Although it is desirable for hash func-
tions to have good entropy properties [38], hash computation
might have a non-marginal penalty in performance [39],
therefore simple hash functions (sum or XOR) are generally
used to compute the flow identifier [28]. We argue that
extracting the 5-tuple elements from the packets incurs a
non-negligible overhead (e.g., memory access, data conversion
and hash computation). As the NIC already computes some

incoming packet entries mxont jncoming packet entry entry incoming packet entries
bucket 0 R I e I L, ~ bucket 0 o> > -
bucket 1 bucket 1 F—H:B—V
RSS|hash RSS|hash cketlf—>l B—>L B> RSS|hash :
0x00FF0040 F 0x00tFG0a0 > Rl M ,00FF6040 _‘TH_H—H_>
bucket65535[| | | bucket 65535 (s [- bucket 65535 [[e}{ > -
() (b) (©

Fig. 3: Flow table implemented with (a) double open-address hash, (b) linked-list hash, (c) combined hash.

hash (i.e., Toeplitz) over the 5-tuple if Receive Side Scaling
(RSS) is enabled', we argue that it is preferable to reuse it
directly, instead of accessing & converting multiple (albeit
contiguous) packet header fields over which to recompute a
hash value. To validate our claim, we evaluate the overhead
of data acquisition and hash computation, which are the main
operations to obtain a hash, in Sec. V.

Per-flow statistics table: The value of the flow identifier
is used to index the hash table storing per-flow statistics.
The most naive solution, which directly accesses an array of
232 entries, requires significant amount of memory, especially
given that the structure should be allocated proactively with
several counters for the tasks at hand (e.g., flow size counting,
flow interleaving gap, etc.). We thus consider three alternative
data structures that we use to reduce FloWatcher-DPDK mem-
ory footprint, and that we (pedagogically) reported in Fig. 3.

I) Double, open-address hash: This data structure is shown in
Fig. 3-(a). Instead of 232 entries, this table contains only 2'6
buckets, each of which consists of two static entries (or more,
depending on the size of the per-flow statistics). Each entry in
the table maintains a set of variables for a specific flow that are
constantly updated upon packet arrivals. To reduce the number
of operations, instead of using two separate hash functions as
it is typically done with a double hash, we use a portion of
the RSS hash (e.g., the lowest 16 bits) to address different
buckets while the remaining portion (e.g., the 16 highest bits)
is used to distinguish flow entries within the same bucket.
The structure is efficient, as typically each bucket is cache
aligned, but not accurate in the presence of several concurrent
flows as only two collisions can be properly handled. Indeed,
according to the birthday paradox, on average, 1.25v/2 - 216 ~
450 concurrent flows can be tracked without collisions. To
alleviate the possibility of miscounting packets, we make each
bucket to contain 2 entries, each of which counts packets for
a specific flow. Thus, packets indexed to the same bucket can
be further distinguished according to their higher portion of
hash values (e.g., the 16 highest bits).

1) Linked-list hash: To resolve hash collisions, one option is
to enable the dynamic insertion of new entries through a linked
list, as in Fig. 3-(b). This approach avoids the saturation of
entries in a bucket and guarantees correct counting for all the
flows. However, it suffers from the overhead of dynamic mem-
ory allocation and non-contiguous memory accesses (increased
cache misses), as well as the time for the linear probing to find

Tn DPDK, we use TCP/IP header fields for NIC’s hash computation. The
32-bit flow identifier is originally used to distribute packets among hardware
queues.

A, =8 packet arrival of flow f
I A —_—
- ~~
| bl Lo ! packet arrival of other
¢1 BRI ¢ __flows_
bobd i v Y
time line

Fig. 4: Example of per-flow interleaving gap.

the appropriate element in the list. We point out that optimized
data structures (e.g., red-black trees) could be used to handle
chaining, making the number of memory accesses logarithmic
in the worst case. Nonetheless, the payoff of these advanced
data structures is low in practice since the overhead of tree
management compensates most of the gain [39].

II) Combined hash: To simultaneously retain performance
and correctness, we combine the previous two data structures,
by appending the double open-address hash with a linked list
in each bucket, so as to resolve all hash collisions, as illus-
trated in Fig. 3-(c). In this way, packet miscounting incurred
by double open-address hash is avoided. In the meanwhile, the
cache miss rate of linked-list hash is effectively reduced.

The performance of these three data structures is evaluated
in details in Sec. V.

C. Data collection

After flow aggregation, the corresponding statistics are
collected for deeper analysis and scrutiny. Data related to
different flows are collected either in a volatile memory (e.g.,
the RAM) or in a persistent device (e.g., a SSD drive). In both
cases, queries about the collected data can be performed online
or offline. Unlike existing works such as nTop [30], DPDKStat
[21], Netflow [31] or FlowScope [19], FloWatcher-DPDK data
collection is very simple (i.e., post-mortem reports of per-
flow statistics or at periodic configurable intervals). Indeed,
FloWatcher-DPDK stores per-flow statistics in the volatile
memory and does not export advanced features. As such, a
thorough accounting of data collection in FloWatcher-DPDK
is outside the scope of this paper.

D. Data analysis

FloWatcher-DPDK supports both per-packet and per-flow
data analysis. At packet-level, it is capable of hardware
and software packet counting. Per-packet hardware counting
simply queries the NIC’s registers and gets a set of basic
statistics, including transmitted/received packets/bytes. Since

Algorithm 1 Update average interleaving gap Ay for flow f

Require: c¢,0¢,9
1: For each incoming packet p:
2: f=RSS-hash(p) > compute the flow identifier

3 Ap—g—oy—1 > calculate current A
4 cfpcp+1 > update number of packets for f
5500 Ay« %;IHAJ? > update average A
6 of g > store the old global counter
7: end

it is very simple and imposes nearly no processing overhead,
we use it as the performance baseline that provides reference
for our analysis on FloWatcher-DPDK. Per-packet software
counting, on the other hand, consists of solely maintaining
per-queue packet counters that are updated upon arrivals of
traffic batches.

Per-flow data analysis is only available in software due
to hardware limitations, and makes use of the previously
outlined flow aggregation structures. Per-flow statistics can
range from simple per-flow packet counting, to more complex
metrics (first and second moment, percentiles of a per-flow
distribution). To make an example of a fairly complex per-
flow estimator, throughout this paper we consider the per-
flow interleaving gap metric. In particular, for a given flow
f, we define its interleaving gap Ay as the total number
of packets received by other flows between two consecutive
packet arrivals belonging to flow f. An intuitive example is
illustrated in Fig. 4. Compared with per-packet time-stamping
that would incur a lot of overhead, this is deemed as a cheaper
solution to reflect the flows’ burstiness.

The computation of the interleaving gap A is performed
as follows and reported in Alg. 1. We denote g as the global
packet counter, and oy as the old global counter upon the last
packet arrival of flow f. For each incoming packet p (starting
from the second packet of each flow) belonging to flow f
(line 1, 2), FloWatcher-DPDK computes A¢ (line 3), updates
the packet counter of flow f (line 4), calculates A + according
to Eq. (1) (line 5) and assigns g to oy (line 6).

ZfX(Cf—l)-l-Af

Z =
f cr

6]

To stress test FloWatcher-DPDK, instead of average or
standard deviation, we monitor the per-flow 99th percentile
of the interleaving gap. In our scenario, the percentile for
each flow keeps fluctuating with arrivals of new packets.
To appraise the percentile of many observations, a naive
method is to record all the samples and construct the cumu-
lative distribution function (CDF). However, this method is
impractical at 14.88 Mpps as it would require a significant
amount of memory. Instead, we quantify the 99th percentiles
of the average per-flow interleaving gaps using the well-known
PSquare algorithm [40], which keeps track of a constant
number of variables and requires only tens of memory accesses
and few floating point operations. Our implementation of
PSquare algorithm is reported in Alg. 2. Note that we omit
the initial sorting operations for the first six packet arrivals

Algorithm 2 Estimate the percentile of interleaving gaps for
flow f

Require: {C]j7 nj, n;-, Dj}
1 n+{1,2,3,4,5}
2n +{1,142x P, 1+4x P,3+2x P,5}
3 D+ {0,%5,P, 4L 1}
4: For each incoming packet p:
f=RSS-hash(p) > extract the flow identifier
Ap—g—op—1 > compute the current Ay

5
6:
7: k< F,(Ay) > maximal k& where g[k] < Ay
8.
9

5

j:laPagaOf

while £ < 5 do > adjust positions
: N1 ¢ Npg1 + 1
10: k<—k+1

11: 1+ 0

12: for i < 5 do > adjust desired positions
13: n; < n; + D

14: 1+—1+1

15: g < Fu(g,n,n") > refer to Alg. 3
16: end

of each flow, for the sake of simplicity. Besides the global
counters g and oy already defined in Alg. 1, PSquare algorithm
requires 15 variables, namely {n;, g;,n}} for each of the 5
per-flow markers j = 1..5. We define n; as the real positions
of the 5 markers, ¢ their heights, n’ their desired positions and
P the target percentile. {g; }?:1 correspond to the minimum
observed interleaving gap (q; = 1), current estimation of g-
(gj = 2), P- (gj = 3), £ -percentiles (¢; = 4), and the
maximum observed interleaving gap (¢; = 5). According to
the description in [40], we initialize n and n’ as the values
shown in the initialization part of Alg. 2 (line 1-2). D denotes
an array of constant values used to adjust the desired markers’
positions (initialized at line 3). For each incoming packet p
belonging to flow f, we compute the current interleaving gap
Ay (line 4 — 6). F), is a simple function to return the highest
index & such that g[k] < Ay (line 7). Based on the output
of F},, we update the positions of the 5 markers (line 8 — 10)
and adjust positions of n’ accordingly (line 11 — 14). The last
step is to update the heights of the 5 markers ¢ using the Fj,
function (line 15), which is elaborated in Alg. 3. According to
[40], the 2 — 4 markers need to be adjusted if their positions
are off to the desired ones by more than 1 unit. Therefore,
for each of the 2 — 4 markers, we compute the distance from
its desired position (line 1 — 3). If the absolute distance is
more than 1 unit (line 4 — 5), the height of this marker is
adjusted in accordance with a piecewise parabolic prediction
formula (line 6). If this height is coherent in ascending order
with other markers, it is saved as the new height (line 7 — 8);
otherwise, the height is updated using linear formula instead
(line 9 —10). Then we adjust once again the marker’s position
(line 11). After inspecting the heights of all the 2 —4 markers,
F}, returns the adapted heights of the markers (line 13).

After executing the described algorithms, the value of
marker g3 is the estimated Pth percentile of A¢. The source
code of the PSquare algorithm used in FloWatcher-DPDK is

Algorithm 3 Fj,: Update the heights of the 5 markers for the
PSquare algorithm

Require: {q;,n;,n}}>_,
1: 141
2: for : < 3 do > for 2 — 4 markers
3: d <+ nf—n; > Compute distance

4: if (d>1andn;oq—n;>1)or(d<—1andn;_1 —
n; < —1) then

5: d< (d>0)71:-1
. /) (nit1—ni—d)x(gi—qi—1) d
é: ¢ <~ ¢+ ni—n;—1 Nit1—Ni—1 X
(ni—ni—14d) X(gi+1—ai)
Ni41— Ny
7: if ¢ > q;_1 and ¢’ < ¢;41 then
8: g <~ ¢ > parabolic formula
9: else
10: qi < q; + W > linear formula
11: n; < n; +d > adjust position
12: 1 1+1
13: return q

available in [41], whose correctness has been verified with
data provided in the original paper [40]. The performance of
FloWatcher-DPDK with the integration of PSquare algorithm
is reported in Sec V-C.

By integrating the PSquare algorithm, our software traffic
monitor is able to estimate the percentile of the distribution of
the interleaving gaps for each monitored flow without storing
all the observations. PSquare algorithm requires significant
computation (calculating Ay, n,n’ and ¢ for each received
packet) and memory accesses (fetch the value of n,n’,q) to
estimate the percentiles. Therefore, while significantly simpler
than the average tasks performed by advanced monitoring tools
such as DPDKStat [21], the estimation of the 99-th percentile
through the PSquare algorithm represents a stressful scenario
for RX tools that aim at using a limited amount of computation
resources.

IV. TESTBED ENVIRONMENT

In this section, we provide hardware and software configu-
rations details used in our experiments. We also introduce TX
side settings, including traffic workload and patterns.

A. Hardware

To better validate our results, we use three testbeds with
different hardware setups:
Testbed 1: Two commodity servers, each of which is equipped
with 2 Intel Xeon 2.60GHz CPUs (each with 20 physi-
cal cores), using 32k/256k/25600k L1-3 caches, and 1 In-
tel 82599ES dual-port 10-Gbps NICs (subsystem: Hewlett-
Packard Company Ethernet 10Gb dual-port 560FLR-SFP+
Adapter). Both servers run a Linux 4.4.0-based distribution.
Testbed 2: A commodity server running a Linux 4.8.0-
based distribution, equipped with 2 Intel Xeon E5-2690 v3
@ 2.60GHz CPUs (each with 24 physical cores), using
32k/256k/30720K L1-3 caches, and 2 Intel 82599ES dual-port

10-Gbps NICs (subsystem: Intel Corporation Ethernet Server
Adapter X520-2).

Testbed 3: This commodity server runs a Linux 4.15.0
kernel and is equipped with 2 Intel Xeon CPU ES5-
2650 v3 @ 2.30GHz (each with 20 physical cores), using
32k/256k/25600k L1-3 caches, and Intel 82599ES dual-port
10-Gbps NICs (subsystem: Intel Corporation Ethernet Server
Adapter X520-2).

For each testbed, the traffic generator (TX) is directly
connected to FloWatcher-DPDK. Such configuration allows
us to precisely measure the amount of losses due to the
RX, without incurring losses caused by packet processing
at intermediate DUTs. According to [13], we configure the
servers to isolate cores for the exclusive usage of FloWatcher-
DPDK. The CPU frequency scaling governors are set from
“on demand” to “performance” for all the active cores to
maximize the processing speed. We ran our tests (without
integrating PSquare algorithm) on all three testbeds, and only
observed packet loss on Testbed 1. This paper mainly shows
conservative results obtained on it. A sensitivity analysis of
the performance discrepancy between the three testbeds is
discussed in Sec. VI-B.

B. Software

For our tests, we use MoonGen as TX, FloWatcher-DPDK
as RX, and experiment with the different design choices out-
lined earlier. As main RX performance metric, we compute the
Packet Drop Ratio (PDR), i.e., the average drop probability;
we consider PDR to be the primary metric to assess RX
performance, as losses at the monitor alter the accuracy of any
other flow-level metrics. After having accurately estimated the
PDR, in Sec. VI we additionally consider the throughput with
ClickNF [12] and VPP [13] deployed as DUT, to showcase
the practical usage of FloWatcher-DPDK.

C. Traffic workload

For the initial experiments to evaluate the performance of
FloWatcher-DPDK, we adopt open-loop traffic. In particular,
MoonGen (TX) is used to generate synthetic traffic. Under
synthetic traffic (Secs. V, VI-A), all packets are 64B and in-
jected at 10 Gbps (which corresponds to 14.88 Mpps). A flow
is identified by the standard TCP/IP 5-tuple and the identifiers
are generated according either to a uniform distribution or a
Zipf law (with a = 1) across a set of 2!6 flows, corresponding
to a hash load factor of 1.0. To measure the loss rate with high
precision (reported in a 10~° scale, i.e., part-per-million), each
experiment lasts around 6 minutes (generating and processing
approximately 5.2 billion packets), and all the graphs show
the average and 95% confidence interval on 50 repetitions
of the same test. For the final experiments with open source
prototypes, in Sec. VI-C we adopt closed-loop DUT traffic,
generated with a fast TCP server/client implementation. In
particular we use ClickNF [11], [12], a modular network L2-
L7 stack for end-host and middlebox functions. A given pool
of ClickNF clients connect to the ClickNF server using random
TCP source ports in the range [1,65535], i.e., 65k flows as in
the previous scenarios. Once the connection is established, the

G 35 < Vynl 20 T T T T

S 30 = o Packet level ! Flow level

s 25 ° S 15| :

g 20 & & !

& =9 o, 10 r '

s 15 3 s '

S w0 < 9 * *

- A a) I !

< s * 2 2 .

K & g 1]
64 128 256 512 1024 1 2 1 2

Batch size [packets]
(@)

Number of RSS queues
(b)

Total number of mempools

(©

Fig. 5: Impact of (a) batch size (b) number of RSS queues, and (c) of mempools. Optimal parameters are denoted with *.

client sends a 512B packet that is echoed back by the server.
When the client receives the echo message, the connection is
closed and the procedure repeated.

As for open-loop traffic, in Sec. VI-C we consider a
software router using the stack provided by the FD.io Linux
Foundation project [42]. In particular, we consider the case in
which the VPP router employs a per-flow scheduling algorithm
to enforce bandwidth fairness among flows [27]. Packets
belonging to flows exceeding their fair rate are dropped while
packets belonging to flows sending less than their fair rate
are forwarded without any drop. The traffic is again injected
by MoonGen (TX) at full rate, and the number of concurrent
flows is 1000 with variable rates, where the rate of the k-th
flow is k times slower than the first one (i.e., the fastest).

V. SOFTWARE TUNING

As FloWatcher-DPDK aims at using a small amount of CPU
resources, low-level parameters play an important role in the
overall performance. In this section, we carefully validate our
system by contrasting the different alternatives. We begin by
conducting a set of experiments to tune the packet capture
stage, and then detail the performance of the flow aggregation
and data analysis stages. Tab. II reports values yielding the
best performance i.e.,“tuned” that are hence adopted unless
otherwise specified.

A. Packet capture stage

In the packet capture stage, there are several relevant
parameters to tune, including the batch size, the number of HW
queues and the configuration of memory pool. Since this is the
initial stage of packet processing, we also detail the optimal
design choices such as the programming models and CPU

TABLE II: Optimal FloWatcher-DPDK parameters

Value

double hash

4096 packets

256 packets

2 queues

4 cores (no HT)

one for each RSS queue
disabled

pipeline with pthread
per-flow packet counting
SCHED_OTHER

Parameter

Flow table structure
RX queue size

Batch size

Number of RSS queues
Number of cores
Number of mempools
Hyper-threading
Programming model
Flow analytics

CPU scheduler

schedulers. To tune the parameters in this stage, we configure
MoonGen to generate 64B packets at 14.88 Mpps rate, and
run FloWatcher-DPDK to perform packet monitoring at both
packet-level (software packet counting) and flow-level (per-
flow packet counting), whose PDRs are reported respectively.
By varying one parameter while fixing the others, we derive
the set of optimal ones.

Batch size: The batch size is the maximum number of pack-
ets fetched through one poll-mode query in DPDK. Similar
to [43], we evaluate the impact of batch size ranging from
64 to 1024 packets. With small batches FloWatcher-DPDK
cannot properly handle RX bursts and this leads to losses in
the NIC, whereas too large batches may take longer to process
thus also yield to losses in the RX. Fig. 5-(a) shows that losses
are minimal for 256 packets batches — an operational point at
which the Direct Memory Access (DMA) operations are likely
optimized and that we adopt for the following experiments.

Number of HW queues: By enabling Receive Side Scaling
(RSS), the load of incoming traffic is distributed into multiple
queues, associated with different threads (or cores). While
increasing the number of RSS queues is beneficial for load
balancing purposes, it can lead to severe contention on the
PCI bus, which in turn degrades the overall performance [44].
Fig. 5-(b) reports the PDR with increasing the number of RSS
queues, from which we infer that 2 queues are optimal to
handle worst-case scenario on our testbed (we thus use 2 RSS
queues in what follows). Conversely, given the lightness of our
tasks at hand, increasing the number of RSS queues further
yields to performance degradation due to increased PCI bus
contention. Note that this phenomenon does not appear in tools
performing more complex analytics [21] on bigger packets,
where CPU is a more stringent bottleneck.

Per-queue memory pool: DPDK reserves descriptor pools to
associate incoming packets, avoiding the overhead of runtime
memory allocation. Most of the DPDK sample applications
use a single memory pool for multiple queues, which might
increase contention, even in the presence of per-core mempool
cache. An interesting point to check is whether the perfor-
mance can be improved by allocating a separate mempool for
each RSS queue. As shown in Fig. 5-(c), our intuition proves
correct for both per-packet and per-flow operations. Per-queue
mempool is heavily beneficial in both cases, reducing the loss
rate by roughly one order of magnitude, and we thus only
consider per-queue mempool henceforth.

Cycles Per Function Call
268 92 71 47 47 47 5 78

Cycles Per Packet

_
(= S

Maximal packet rate]
(14.88 Mpps)

Hash Rate [106 ops/s]

Packet Drop Ratio [10°°]

SN B O

toeplitz Spooky Murmur3 ADD XOR toeplitz_be

(@ (b)

92 94 o ‘
10 Software Hardwale
2T
O‘E 10
E 1 ()4 Miscounted-flow-packets
]
2403 1%
Ain2
g 101
£10
10° ;
RSS 1P IP+TCP 5-tuple toeplitz Spooky Murmur3 ADD XOR toeplitz_be RSS

(©)

Fig. 6: Performance dissection of online hash computation: (a) absolute computation rates of different hash functions; (b)
incurred PDR of memory access and data conversion when receiving packets at 14.88 Mpps, (c) Average PDR with online
hashing. “RSS-HASH” represents the reference PDR by reusing the pre-computed RSS hash of the packet descriptor.

Programming models: We implement two flavors of
FloWatcher-DPDK following different programming models.
The first one adopts the run-to-completion model while the
other is based on the pipeline model. As shown in Tab. III,
the pipeline model outperforms the run-to-completion one (for
the sake of space, we report only results for POSIX thread).
With the pipeline model, the retrieved packets are staged in
a big software ring before being processed by the monitoring
threads: the software ring acts as a buffer that absorbs the
processing delays of packet monitoring threads, thus achieving
higher throughput. We thus adopt the pipeline model and
all the results of FloWatcher-DPDK shown in the following
sections are based on it.

CPU schedulers: As discussed in Sec. III-A, we implement
two versions of FloWatcher-DPDK using SCHED_OTHER
and SCHED_DEADLINE respectively. Both versions adopt
pipeline model with 2 RSS queues, namely two pairs of (RX,
monitor) threads. Note that we enable SCHED_DEADLINE
according to the instructions in [37]. Each pair of (RX,
monitor) threads is pinned to the same core, by map-
ping logical cores to physical ones. As shown in Tab. III,
FloWatcher-DPDK using SCHED_DEADLINE loses approx-
imately three orders of magnitude more packets than the
case of using the default SCHED_OTHER policy. Hence, even
if SCHED_DEADLINE manages to boost performance for
DPDKStat [21], it fails to do so for FloWatcher-DPDK. We
thus consider SCHED_OTHER as the optimal scheduling policy
for FloWatcher-DPDK.

B. Flow aggregation stage

For the flow aggregation stage, we begin by quantifying
the performance gain of directly utilizing RSS hash available
inside packet descriptors. Then we characterize the perfor-
mance of the three data structures for hash table described
in Sec. III-B and discuss other implementation dtails.

TABLE III: Packet drop ratio for different programming mod-
els and CPU schedulers. A x sign denotes optimal parameters.

Parameter Average PDR [x10~°] 95% C.L
Run-to-completion 4.8 0.57
Pipeline with pthread * 2.6 0.56
SCHED_DEADLINE 2500 300
SCHED_OTHER * 2.6 0.56

Using RSS hash: For evaluating the cost of hash computa-
tion, we choose 6 state-of-the-art hash functions and measure
their absolute rates. In particular, we select DPDK’s toeplitz
and its enhanced toeplitz_be [45] version. Since these func-
tions are used by the NIC to compute RSS hash, their achiev-
able throughput can reflect the overhead directly. In addition,
we consider other hash functions, including simple addition
(ADD), exclusive OR (XOR), SpookyHash [46] (Bob Jenkins)
and Murmur3 [47]. The absolute hash rates of the considered
functions are illustrated in Fig. 6(a). We also report, on the top
X-axis, the average number of CPU cycles consumed during a
single function call. In particular, toeplitz fails to run beyond
10 million/s due to its complexity, making it unpractical
for on-line processing (i.e., 14.88 Mpps at 10Gbps). Other
hash functions, even though with different performances, can
be potentially used to compute flow identifiers at line rate.
Furthermore, all functions consume extra CPU cycles (around
[47 - 268] cycles/call), which can be saved if the RSS hash
computed by the NIC is used.

Another source of overhead while computing the hash
in software is accessing memory to read packets’ headers
and retrieve the 5-tuple fields. To evaluate this overhead,
we configure FloWatcher-DPDK to access packets’ headers,
convert their data formats to CPU byte order and compute
the resulting rate. In particular, we consider the following
cases for flow identification: (i) reuse RSS hash, (ii) IP (use
IP src/dst addresses, 8 bytes), (iii) IP + TCP (in addition
to the previous case, use TCP src/dst ports, 12 bytes) and
(iv) 5-tuple (use all the 5-tuple fields, 13 bytes). The packet
loss ratio and number of consumed cycles per packet are
illustrated in Fig. 6(b). Note that there is a sharp increase
of the packet drop ratio (x3.98) between RSS and 5-tuple,
this is mainly due to the overhead caused by memory access.
Although all the considered cases incur low Packet Drop Ratio
(PDR), accessing memory and converting header fields already
consume up to 100 cycles/packet, which can be avoided using
RSS hash value that is already available in DPDK metadata.

Finally, we further quantify RSS efficiency in the context
of online high-speed packet reception (i.e., RX) by evaluating
PDRs. For online hash computation, we extract the 5-tuple
from incoming packets and calculate the 32-bit hash value.
The hash is then used as flow identifier to index the entries
in the flow table. Similar to the previous tests, FloWatcher-

oo [[o1 [o |

.....pthread (HT)

Per-flow (size) [
Per-flow interleaying [N
Per-flo;

(size + interleaving 99th percentile)

R,

,. —=]thread

oy [a]_Jer]]

Packet Drop Ratio

T 1
08 I\ < 0.8
g
o9 0.6 || = o, 0.6
a ‘q:)‘ . 1 phy [R,
© 04§35 +double hash -~~~ 1 Qo4 log | 71
ag' ! . SW pkt count — - - i
0.2 o 0.2 F 7.7 HW pkt count 0.2
! Pd . ,
R0 SR U R S AV) 0 R
20 40 60 80 100 120 140 160 0 10 20

Packet Drop Ratio [1076]
(@

30

Packet Drop Ratio [10_6]

(b)

40 50 60 70 256 32K 65K 131K

Number of flows

(©)

196K

Fig. 7: Design choices of packet aggregation stage: (a) CDF of packet drop ratio for different data structures, (b) CDF of packet
drop ratio for configurations for the combined structure. Data analysis stage: (c) CDF of packet drop ratio for performance
comparison for simple (per-flow packet counting/interleaving gap) and complex (per-flow 99th percentile of the interleaving

gap) statistics with increasing number of flows

DPDK is configured to receive 64B packets at 10 Gbps line
rate for 6 minutes. Experiment for each function is repeated 10
times. The results for all the functions are detailed in Fig. 6(c),
with the approach of reusing the RSS hash depicted here as a
reference. As we can observe, DPDK’s toeplitz hash function
incurs a PDR of 30%, which is coherent with our previous test
of absolute hash rate (10 Mpps vs. 14.88 Mpps). Murmur3 has
the minimal PDR among the hash functions we compare, yet
it incurs a flow miscounting rate of 11%. Similarly, Spooky
hash also incurs 13% of flow miscalculation. We believe such
miscounting can be avoided by carefully choosing the seed for
each hash function, but this is outside the scope of our work.
Add, XOR and toeplitz_be all incur PDRs in ~ 10~°, which is
small but still around 5 times worse than the case of RSS. Note
that simple functions such as ADD and XOR are not suitable
for flow aggregation under more complicated traffic patterns
due to potential hash collisions. Toeplitz_be, as illustrated in
Fig. 6(c), loses more than 5.4 times the packets compared
with RSS. Based on the observations above, we argue that
FloWatcher-DPDK presents the best performance (in terms of
PDR) by exploiting the available RSS hash already computed
by the NIC.

Data structure: Fig. 7(a) compares the performance of
FloWatcher-DPDK with different data structures and shows
HW/SW packet counting as baseline references. Per-flow SW
counting performance is significantly affected by different data
structures. In particular, losses of double hash are comparable
with those of SW packet counting, although double hash can
incur miscounting and should be avoided in case of huge
number of flows on the hash table. Conversely, single hash
with linked lists offers precise counting but incurs a non-
negligible overhead due to non-contiguous memory allocation.
This translates into a precision decreased by orders of magni-
tude for the same amount of CPU resources, and should thus
be avoided in case of high input rates.

Finally, combined hash sits at the intermediate point in
the performance tradeoff, achieving precise counting for a
limited overhead. Per-packet SW and HW losses are very
close, and provide a lower bound for the PDR of flow-level
measurement, settling around a measurable 2:10~% on average.
It should be noted that packet losses with HW, SW packet

counting are negligible? and mainly due to software generation
inaccuracy [15], [48].

Multithreading implementation: The performance of flow
aggregation stage also depends on the selection of libraries
for thread implementation. Considering the double-hash data
structure (for the sake of simplicity) and limitedly focusing on
the pipeline model (similar results holds for run-to-completion
model), we compare the [thread vs. pthread implementations.
As explained in Sec. III-A, the pipeline model consists of two
different types of threads, an RX-thread (R) and a monitor-
thread (M), for each pipeline, i.e., for 2 RSS queues, 4 dis-
tinct threads (R;, Ra, M1, M>) in total. The binding between
threads and cores i.e., pinning, is illustrated in Fig. 7(b). Note
that each cells in the first row represents a physical core, while
each cell in the second row represents a logical/virtual core,
usually enabled by hyper-threading. In case of Ithread, coop-
erative multi-threading is implemented within the application
itself: R and M threads of each processing pipeline coexist
on the same core and the application manages their execution.
In case of pthread, threads can be pinned to different physical
cores, or to two logical cores of the same physical one.

We observe that, with respect to Ithread, pthread signifi-
cantly decreases the packet losses; at the same time, there
seems to be a further advantage into separating the receiver
and the monitoring threads across multiple cores, which is in
stark contrast with more complex monitoring software such
as DPDKStat [21]. A plausible explanation is that complex
software requires to perform more memory accesses: in this
case, hyper-threading is beneficial to keep the pipeline full
when the execution of another pipeline is stalled. Conversely,
in our case the lower memory usage, coupled to a cache-
friendly memory structure, may diminish the usefulness of
hyper-threading (similar phenomena are also observed in opti-
mized VPP software stack [13] with high instruction-per-clock
efficiency).

To conclude, we note that even though Ithread configuration
loses nearly one order of magnitude more packets than its
pthread counterpart, it can still achieve 14.88 Mpps throughput
with only 2 cores. Therefore, we believe lthread implementa-

2A loss probability of 2 - 10~6 corresponds to about 30pkts of size 64B
per second, i.e., a throughput distortion <16 kbps for a full 10 Gbps TX-rate.

tions can still serve equal purpose with tolerable packet loss
(e.g., 40 losses per million).

C. Data analysis stage

Finally, we take into account the impact of increasing the
number of flows and two types of analytics: simple per-flow
packet counting (only per-flow packets and byte counters are
maintained) and the more complex per-flow 99th percentile
of the interleaving gap which requires several memory ac-
cesses and state manipulations, as we extensively explained in
Sec. III.

Results are shown in Fig. 7(c), where FloWatcher-DPDK
is used to evaluate simple and complex analytics over an
increasing number of flows. As the number of flows increases,
so does the hash load, and thus the penalties due to the linked
list. It can be observed that the cost of per-flow percentile
estimation increases the losses by an order of magnitude: at the
same time, the distortion remains below 1075 for load up to 1
(i.e., 65k flows for a double hash of 65k entries), which may
yield to tolerable distortion in many use cases. Conversely, in
case of simple analytics, PDR remains on average below 107>
for hash loads up to 1, achieved with only 2 cores. Note that
for higher hash load (> 65k), then the losses are too high for
the targeted scenarios, and hence omitted.

VI. EXPERIMENTAL RESULTS

In this section, we test FloWatcher-DPDK with different
scenarios. Specifically, Sec. VI-A contrasts the performance of
FloWatcher-DPDK to that of other tools (using their optimal
configuration) under synthetic traffic. Next, Sec. VI-B investi-
gates the results obtained over different testbeds highlighting
the reason for packet losses in Testbed 1. Finally, Sec. VI-C
considers two operational scenarios in which we employ our
tool to assist the evaluation of closed-loop and open-loop DUT
(respectively ClickNF and VPP).

A. Traffic monitor precision

Synthetic traffic: Fig.8 shows the performance for hardware
packet counting (left, orange) vs. software packet counting
(center, yellow) vs. software per-flow monitoring (right, vio-
let). For all the chosen tools, we additionally report “default”
and “tuned” settings. In the “default” ones, each tool is used
unmodified, while in the “tuned” ones, we employ the same
optimal parameters chosen for FloWatcher-DPDK as described
in Sec. V, when applicable (i.e., we used the same batch size,
number RSS queues, Hyperthreading, etc. but did not change
the DPDK programming model as it frequently requires a
complete redesign of the software). It is important to notice
that MoonGen, Speedometer and pktgen-DPDK are all used
with two physical cores: in fact, increasing the number of
cores does not bring any advantage to the packet drop ratio.
On the contrary, FloWatcher-DPDK can be used with either
two physical cores (four threads mapped to two physical
cores in hyperthreading) or four physical cores (four threads
mapped to different cores). In this case, in order to obtain

the minimal packet drop ratio we need to assign four physical
cores. However, even the configuration with two physical cores
in hyperthreading is sufficient to provide a packet drop ratio
which is worse than the previous scenario, but better than the
state-of-the-art. At the same time, the two-core configuration
reduces even more the amount of resources needed. Exper-
iments under uniform and Zipf distribution of the flows are
reported respectively. Hardware packet counting is reported
as a reference. In particular, packet-level counting perfor-
mance are reported for Hardware, MoonGen, Speedometer,
pktgen-DPDK and FloWatcher-DPDK. As illustrated in Fig. 8,
FloWatcher-DPDK exhibits at least two orders of magnitude
lower PDR with respect to MoonGen and pktgen-DPDK,
which approximately reflects the overhead of wrapping C code
with Lua language. This is mainly due to the careful design
and parameter tuning of the packet capture stage described
in Secs. Il and V respectively. Intuitively, FloWatcher-DPDK
performs similarly to Speedometer because of their similarities
when consider packet-level counting statistics.

At last, we consider per-flow counting, contrasting
FloWatcher-DPDK with a custom Lua implementation of the
double hash (without linked list) strategy in MoonGen, taking
advantage of a recent MoonGen feature that allows to directly
access the RSS hash computed by the NIC directly in Lua (thus
also without hashing and memory access overhead). Two main
takeaways can be derived from the picture with this respect.
First, activating per-flow counting in MoonGen increase losses
by one or two orders of magnitude depending on the scenario.
Second, activating per-flow counting in FloWatcher-DPDK has
only a negligible effect as far as packet loss is concerned. We
believe such performance gap is mainly due to the overhead
of the Lua scripting language and to the careful design and
parameter tuning of the four flow monitor stages described in
Secs. IIT and V.

B. Sensitivity analysis

We now investigate the packet loss observed in Testbed 1.
We specifically discuss the difference with the other two
testbeds, which do not suffer from packet losses when running
the same set of tests (if we exclude the case of PSquare
algorithm, which is more computationally expensive, and leads
to some losses in Testbeds 2 and 3 as well). The main
discrepancies in terms of hardware configuration lie in distinct
CPU models, L3 cache sizes, and network cards (all servers
employ Intel 82599 controller but the cards come from with
different manufacturers).

We use Perf [49] (version 4.8.17), a state-of-the-art per-
formance analysis tool in Linux providing statistics on CPU
cache misses, CPU cycles, etc. to profile FloWatcher-DPDK
on the different testbeds. To characterize the impact of cache
size and CPU model, we choose CPU cache miss rate and

TABLE IV: FloWatcher-DPDK profiling for different testbeds

Testbed 1 Testbed 2 | Testbed 3
Cache miss rate [%] 0.008 0.011 0.014
Instructions per cycle 2.030 1.810 2.080
Packet loss ratio (PDR) | 3.5 x 106 0 0

Packet level Flow level —

Hardware| Software
107 i

default

default default tuned

3 default
tuned

10
10°
-6

Hardware MoonGen

Packet Drop Ratio
S

tuned

4]—‘

Speedometer

Pktgen-DPDK FloWatcher-DPDK ~ MoonGen

(a)

Packet level Flow level —>

Hardware : Software

default

default
tunied

deftault
tuned

tuneddefault

10 tuned
10
-6

Speedometer pktgen-DPDK FloWatcher-DPDK MoonGen

(b)

Packet Drop Ratio

hardware MoonGen

Fig. 8: Traffic monitoring: performance under Synthetic traffic with (a) Uniform and (b) Zipf patterns

= 10 % 50 &
& 9 =
S 8 z
= 7
) 5 2
- £
=
= 2 Z
3 1 T
=0 0 5
100 200 400 600 800 1000 10000 &

Number of concurrent clients

(@)

10° : :

é 10°

% 10*

s 10°

= 10% F TX flow rate

5 1 RX flow throughput —e—

A~ 10 F Fair rate

1 10 100 1000
Flow rank
)

Fig. 9: DUT testing: (a) closed-loop transport function in ClickNF (with the line points representing the total throughput in
Gbps and the histogram representing the per-flow throughput in Mbps) and (b) open-loop scheduling function in VPP.

instruction per cycle as main metrics. The profiling results of
Perf when FloWatcher-DPDK is used for packet-level counting
(i.e., same test executed in Sec.VI) are listed in Tab. IV.

As we can observe, on Testbed 1, FloWatcher-DPDK incurs
lower cache miss rate and comparable instruction rate, with
respect to the other two. So neither CPU model nor cache
size is the main contributor to packet losses. Thus, we derive
that the packet losses are due to Testbed 1’s network card,
produced by a different manufacturer with respect to the other
testbeds.

C. Traffic monitor usage

After evaluating the PDR, we proceed to demonstrate the
practical usage of FloWatcher-DPDK considering two use
cases namely ClickNF and vpp closed- and open-loop.

ClickNF transport: Fig. 9-(a) shows the per-flow (bars) and
total throughput (line) measured in the ClickNF client-server
scenario described in Sec. IV-C in which clients connect to
a ClickNF server using random TCP source ports in order
to send a single 512B packet that is echoed back by the
server. Surprisingly, when the number of concurrent clients
is small (i.e., < 400), total and per-flow throughput are far
from line rate. This can be explained by the fact that, in this
scenario, ClickNF cannot completely exploit the performance
bonuses given by batch processing and poll mode, due to the
low amount of packets that need to be transferred. Indeed it
is known [50] that, when processing small batches, DPDK
exhibits poor performance mainly due to congestion on the
PCIx bus (the same behavior can be observed with small batch
size, as discussed in Sec. V). Conversely, when the number of
concurrent clients is bigger (i.e., > 400), ClickNF throughput

achieves close to line rate (i.e., 9.8 Gbps) and FloWatcher-
DPDK provides a handy complement to the ClickNF log,
allowing to check fairness and efficiency of the TCP server
implementation.

VPP scheduling: We use FloWatcher-DPDK to monitor
both the TX and the DUT traffic, achieving the performance
reported in Fig. 9-(b). It can be noticed that (i) the first 200
most aggressive flows observe a decrease in their rate because
they exceed their fair share of the link, while (ii) the output
rates of the remaining flows match their input ones, since
their rates are lower than their fair share. As such, the per-
flow fair sharing mechanism implemented in [27] operates as
expected. Note that, to reliably monitor low-rate flows, and
thus check the correctness of the implementation, the accuracy
of FloWatcher-DPDK is of uttermost importance.

VII. CONCLUSIONS

In this paper we design, tune and experiment FloWatcher-
DPDK, a high-speed lightweight software traffic monitor capa-
ble of providing fine-grained per-packet and per-flow statistics
at 10 Gbps line rate with 64B packets, using only 2 CPU cores.
In particular, FloWatcher-DPDK manages to conduct more
complex tasks (e.g., per-flow interleaving gap, percentile, etc.)
with tolerable packet loss. The tool leverages the RSS hash,
which is computed beforehand by the NIC and available as
packet metadata, as flow identifier to avoid extra computation
and memory access, and employs a careful design where
flow-tables are aligned with cache line boundaries. Thanks
to its careful design and to the extensive parameter tuning
we performed, FloWatcher-DPDK outperforms state-of-the-art
alternative solutions and provides researchers with a precise,

flexible, and open-source tool for monitoring the performance
of their high-peed prototypes. Moreover we believe parameter
tuning and design choices can also provide guidelines for
implementing other applications in the high-speed domain.
Finally, to demonstrate its usage, we further expound two
use cases in which FloWatcher-DPDK is used to derive the
performance of other open source prototypes. We make the
tool available at [14]. Although we only consider 10 Gbps
monitoring rate at this moment, we argue that it is only a
matter of horizontal expansion of CPU cores to reach 40 Gbps
or beyond, and in this paper we focus on traffic monitoring
with low usage of resources.

ACKNOWLEDGMENTS

This work has been carried out at Laboratory of Infor-
mation, Networking an Communication Sciences (LINCS)
and benefited from the support of NewNet@Paris, Cisco’s
Chair “NETWORKS FOR THE FUTURE” at Telecom ParisTech.
(http://newnet.telecom- paristech.fr).

REFERENCES

[1] http://dpdk.org/.

[2] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, “On multi—
gigabit packet capturing with multi—core commodity hardware,” in PAM.
Springer, 2012.

[3] https://github.com/ntop/PF_RING.

[4] http://info.iet.unipi.it/~luigi/netmap/.

[5] S. Han, K. Jang, K. Park, and S. Moon, ‘“PacketShader: a GPU-

accelerated software router,” in ACM SIGCOMM Computer Commu-

nication Review, vol. 40, no. 4, 2010, pp. 195-206.

P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and G. Carle,

“Moongen: A scriptable high-speed packet generator,” in ACM Confer-

ence on Internet Measurement Conference, 2015, pp. 275-287.

[7] Intel Pktgen-DPDK. https://github.com/pktgen/Pktgen-DPDK.

[8] TRex: Realistic traffic generator. https://trex-tgn.cisco.com/.

[91 T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, and D. Rossi,

“FlowMon-DPDK: Parsimonious per-flow software monitoring at line

rate,” in 2018 Network Traffic Measurement and Analysis Conference

(TMA). IEEE, 2018, pp. 1-8.

——, “High-speed per-flow software monitoring with limited resources,”

in Proceedings of the ACM SIGCOMM 2018 Conference on Posters and

Demos. ACM, 2018, pp. 138-140.

R. Laufer, M. Gallo, D. Perino, and A. Nandugudi, “Climb: Enabling

network function composition with Click middleboxes,” ACM SIG-

COMM Computer Communication Review, 2016.

M. Gallo and R. Laufer, “ClickNF: a modular stack for custom network

functions,” in USENIX Annual Technical Conference, Boston, MA, 2018,

pp. 745-757.

https://wiki.fd.io/view/VPP.

https://github.com/ztz1989/FloWatcher-DPDK.

P. Emmerich, S. Gallenmiiller, G. Antichi, A. W. Moore, and G. Carle,

“Mind the gap: A comparison of software packet generators,” in

ACM/IEEE ANCS, 2017.

T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet process-

ing,” in ACM/IEEE ANCS, 2015.

https://github.com/hpcn-uam/.

N. Bornelli, S. Giordano, and G. Procissi, “Enabling packet fan-out in

the libpcap library for parallel traffic processing,” in IEEE TMA, 2017.

P. Emmerich, M. Pudelko, S. Gallenmiiller, and G. Carle, “FlowScope:

Efficient packet capture and storage in 100 Gbit/s networks,” in Inter-

national IFIP TC6 Networking Conference, 2017.

G. Julidan-Moreno, R. Leira, J. E. L. de Vergara, F. J. Gomez-Arribas,

and I. Gonzilez, “On the feasibility of 40 Gbps network data capture

and retention with general purpose hardware,” in ACM Symposium on

Applied Computing, New York, NY, USA, 2018, pp. 970-978.

M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi, “Traffic

analysis with off-the-shelf hardware: Challenges and lessons learned,”

IEEE Communications Magazine, vol. 55, no. 3, pp. 163-169, 2017.

[6

=

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17
[18

[19]

[20]

[21]

[22]

[23

[t

[24]

[25]

[26]

[27]

(28]

[29]

(30]
(31]
[32]

(33]

[34]
[35]

[36]
[37]

[38]

(39]

[40]

[41]
[42]
[43]

[44]

[45]
[46]
[47]
[48]

[49]
[50]

X. Wu, P. Li, Y. Ran, and Y. Luo, “Network measurement for 100 GbE
network links using multicore processors,” Future Generation Computer
Systems, vol. 79, pp. 180-189, 2018.

M. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mOS: A reusable
networking stack for flow monitoring middleboxes,” in USENIX NSDI,
Berkeley, CA, USA, 2017, pp. 113-129.

J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: high per-
formance and flexible networking using virtualization on commodity
platforms,” IEEE Transactions on Network and Service Management,
vol. 12, no. 1, pp. 3447, 2015.

W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “OpenNetVM: A platform for high
performance network service chains,” in ACM Hot topics in Middleboxes
and Network Function Virtualization, 2016, pp. 26-31.

G. Liu, Y. Ren, M. Yurchenko, K. Ramakrishnan, and T. Wood,
“Microboxes: High performance NFV with customizable, asynchronous
TCP stacks and dynamic subscriptions,” in ACM Special Interest Group
on Data Communication, 2018.

V. Addanki, L. Linguaglossa, J. Roberts, and D. Rossi, “Controlling
software router resource sharing by fair packet dropping,” in IFIP
Networking, 2018.

A. Finamore, M. Mellia, M. Meo, M. M. Munafo, and D. Rossi,
“Experiences of Internet traffic monitoring with Tstat,” IEEE Network
Magazine, vol. 25, no. 3, pp. 8-14, May 2011.

Y. Zhou, O. Alipourfard, M. Yu, and T. Yang, “Accelerating network
measurement in software,” ACM SIGCOMM Computer Communication
Review, vol. 48, no. 3, 2018.

https://www.ntop.org/.

B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes. (2004)
RFC3954 Cisco Systems NetFlow Services Export Version 9.
http://www.ietf.org/rfc/rfc3954.txt.

Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better NetFlow for
data centers,” in NSDI, 2016, pp. 311-324.

Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang,
“SketchVisor: Robust network measurement for software packet process-
ing,” in ACM Special Interest Group on Data Communication, 2017, pp.
113-126.

https://sflow.org/.

R. Hofstede, P. Celeda, B. Trammell, 1. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with NetFlow and IPFIX,” I[EEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037-2064, 2014.
http://dpdk.org/doc/guides/sample_app_ug/performance_thread.html.
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.
txt.

M. Molina, S. Niccolini, and N. Duffield, “A comparative experimental
study of hash functions applied to packet sampling,” in /[EEE ITC, 2005.
G. Nassopulos, D. Rossi, F. Gringoli, L. Nava, M. Dusi, and P. M. S. del
Rio, “Flow management at multi-Gbps: tradeoffs and lessons learned,”
in IEEE TMA, 2014.

R. Jain and I. Chlamtac, “The P2 algorithm for dynamic calculation of
quantiles and histograms without storing observations,” Communications
of the ACM, vol. 28, no. 10, pp. 1076-1085, 1985.
https://github.com/ztz1989/p2-algorithm.

https://fd.io/.

S. Gallenmiiller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of frameworks for high-performance packet 10,” in
ACM/IEEE ANCS, 2015.

M. Manesh, K. Argyraki, M. Dobrescu, N. Egi, K. Fall, G. Iannaccone,
E. Kohler, and S. Ratnasamy, “Evaluating the suitability of server net-
work cards for software routers,” in ACM Workshop on Programmable
Routers for Extensible Services of Tomorrow, 2010, p. 7.
http://dpdk.org/doc/api/rte__thash_8h.html.
http://burtleburtle.net/bob/hash/spooky.html.
https://github.com/PeterScott/murmur3.

A. Botta, A. Dainotti, and A. Pescape, “Do you trust your software-based
traffic generator?” IEEE Communications Magazine, vol. 48, no. 9, pp.
158-165, May 2010.

https://perf.wiki.kernel.org/index.php/Main_Page.

R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. Lépez-Buedo,
and A. W. Moore, “Understanding PCle Performance for End Host
Networking,” in Proceedings of the 2018 ACM Special Interest Group
on Data Communication, ser. SIGCOMM, 2018.

Tianzhu Zhang (M’14) obtained his Bachelor of

Science degree in June 2012, from the Computer

Science and Technology Department of Huazhong

University of Science and Technology (HUST) in
{ ‘Wuhan, China. In October 2014, he obtained his
master of science degree from Politecnico di Torino
in Turin, Italy. From November 2014 till November
2017, he was a Ph.D candidate under the supervision
of Prof. Paolo Giaccone. He also did an intern-
ship at Nokia Bell Labs, under the supervision of
Dr. Massimo Gallo. From October 2017, he has been
working as a research engineer at Telecom ParisTech, under the supervision
of Prof. Dario Rossi. His main research interests are high-speed packet
processing and topics related to NFV/SDN.

Leonardo Linguaglossa is a post-doctoral re-
searcher at Telecom ParisTech (France). He received
his master degree in telecommunication engineering
at University of Catania (Italy) in 2012. He pursued
a Ph.D. in Computer Networks in 2016 through
a joint doctoral program with Alcatel-Lucent Bell
Labs (nowadays Nokia), INRIA and University Paris
7. Leonardo’s research interests focus on architec-
ture, design and prototyping of systems for high-
speed software packet processing, future Internet
architecture and SDN.

Massimo Gallo is a member of technical staff at
Nokia Bell Labs, Paris, France since May 2013. He
received the Bachelor and the Master of Science
degrees in Computer and Communication Networks
from Politecnico di Torino in 2006 and 2008. He
obtained the Ph.D. in Networks and computer sci-
ence from Telecom ParisTech, Paris, France in 2012,
performing his graduate research at Orange Labs,
France Telecom, Paris, France. His main research
interests are on the performance evaluation, sim-
ulation, design and experimentation on networked
systems with particular focus on Programmable networks, Traffic generation,
and Network Function Virtualization.

Paolo Giaccone (M’99, SM’16) received the Dr.Ing.
and Ph.D. degrees in telecommunications engineer-
ing from the Politecnico di Torino, Italy, in 1998
and 2001, respectively. He is currently an Asso-
ciate Professor in the Department of Electronics and
Telecommunications, Politecnico di Torino. During
the summer of 1998, he was with the High Speed
Networks Research Group, Lucent Technology-Bell
Labs, Holmdel, NJ. During 2000-2001 and in 2002
he was with the Information Systems Networking
Lab, Electrical Engineering Dept., Stanford Univer-
sity, Stanford, CA. His main area of interest is the design of network control
and optimization algorithms.

Dario Rossi (SM’13) is a Professor at Telecom
ParisTech and Ecole Polytechnique, and is the holder
of Cisco’s Chair NewNet@Paris. He served on the
board of several IEEE Transactions, and in the
program committees of over 50 conferences includ-
ing ACM ICN, ACM CoNEXT, ACM SIGCOMM
and IEEE INFOCOM (Distinguished Member 2015,
2016, 2017 and 2019). He has co-authored 9 patents
and over 150 papers, receiving 7 best paper awards,
a Google Faculty Research Award (2015) and an
IRTF Applied Network Research Prize (2016)

