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Abstract—Whereas most of the literature employs classic ma-
chine learning techniques (such as C4.5 trees, Random Forest and
Support Vector Machines) to improve forecast accuracy of QoE
models, in this demo we explore the use of an information filtering
system (Factorization Machine) to get fundamental insights and
explain the relationship between QoE and different features.

I. INTRODUCTION

Management of users’ Quality of Experience (QoE) has
become an important asset in the commercial war among In-
ternet Service Providers (ISPs), to engage and keep customers
locked in their userbase, especially given the smaller revenue
margins with respect to Content Service Providers (CSPs). On
the one hand, user QoE is notoriously difficult to measure, part
of which is due to the continuous evolution of services and
applications, which require to specialize QoE models to partic-
ular applications. Consider the World Wide Web for example:
in recent years, a plethora of objective application-level QoS
metrics have been proposed beyond Page Load Time (PLT),
such as those normalized at the W3C Navigation Timing or
newer ones proposed in the industry such as SpeedIndex [1]
(SI) and variants [3], [5]. To assert whether such QoS metrics
might have predictive power of the user QoE, a number of
work started polling real users opinions (e.g., collecting and
aggregating MOS [3] or user perceived page load times [5],
[8]) to develop models linking objective application-QoS met-
rics to subjective user-QoE (such as simple ITU-T G1030 or
more advanced models [3]-[5]). Generally, the goal of the
above work is to propose accurate models to forecast QoE
scores from a feature vector QoS which may contain tens
to hundreds of variables QoE = f(QoS), possibly using
machine learning techniques [3], [S] to maximize the model
prediction accuracy. These models may have high prediction
power, but nevertheless are obscure in nature: we argue that a
complementary approach is also desirable, such as employing
collaborative filtering systems like Factorization Machines
(FM) [6], to systematically explain the relative importance of
the different dimensions that the QoE problem involves.

Particularly, in this demo we apply FM on the dataset made
publicly available by [3] to investigate with a scientifically
principled approach, very practical yet relevant questions such
as the following: (Q1) What is the relative contribution of
network (protocol, delay, loss) vs application-level (PLT, TTI,
ATF, SI) metrics in the prediction accuracy? (Q2) To what
extent webpage-agnostic models are accurate?

(Q1) is motivated by the fact that, whereas CSPs can
relatively easily collect such application-level metrics, ISPs

generally can only collect network-level metrics: one crucial
question is thus whether ISPs and equipment vendors should
invest into developing inference techniques able to approxi-
mate rather complex objective application-level metrics [1],
[5], or whether the development cost is not justified as
easily accessible objective network-level metrics could already
provide most of the discriminative power.

(Q2) is motivated by [3], which suggests that given the wide
diversity among pages of the world “wild” web, one could
expect to have better accuracy by developing webpage-specific
models. This could be manageable for a set of particularly rel-
evant websites (e.g., top-100) and could assist ISPs to develop
fairly accurate and scalable models to proactively detect QoE
degradation: since the top-100 websites are frequently visited,
they would offer ISPs a continuous and statistically relevant
stream of QoE samples.

Clearly, (Q1) and (Q2) are just to illustrational examples
out of the different possible questions that can be answered
through the FM model: the aim of this demo is provide
intuitive answers to (Q1-2) and similar practical questions,
and to further let scientists, researchers and practitioners
interact with the provided FM models, by either altering inner
parameters of the FM model (e.g., number of latent factors,
capping SGD iterations, altering regularization, etc.), or by
altering the variables that are given as input to FM (e.g.,
network-level vs application-level, binning strategies, etc.). An
(early stage) prototype of the demonstration is available at [2].

II. FACTORIZATION MACHINES (FM)

We leverage Factorization Machines (FM) [6] to quantita-
tively study the different embedding dimensions of the QoE
problem. FM is a kind of recommender system which is well-
suited for our experiment: (i) it allows estimation of parameters
under very sparse data, without loosing information by aggre-
gating samples into mean scores; (ii) it seamlessly integrate
arbitrary contextual features such as application vs network-
level metrics; (iii) finally, it has linear complexity in the overall
number of classes n of the contextual features.

For example, let consider a user U navigating on webpage
W experiences a measurable application-QoS performance A
and a network-QoS performance N, rating his QoE with a
grade y € [1,5]. Without loss of generality, in the following
we quantize application-level QoS A by discretizing the value
of PLT (or SI, etc.) into 5 gquintiles of the populations.
The different features U, W, A, N are encoded into one-hot
vectors (though this is not a hard constraint of the model)
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Fig. 1. Illustration of Factorization Machines on the QoE dataset provided in [3] (interactive demo interface accessible online at [2])

and concatenated into a vector x = (x1,...,x,) of length n.
The resulting sparse matrix is illustrated in the left of Fig. 1,
where m rows correspond to the number of collected user
grades, and the n columns to the features collected during
each experiment. For instance, the first row consists of a QoE
grade y = 4 given by the first user U = (1,0,...,0), for the
page with the last index W = (0,..., 1), with measured QoS
values for application A falling in the [20%,40%) range, and
a certain configuration N of network-QoS performance.
The FM model is defined as:
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where w; represents the weight of the j-th feature, (v;,v;) :=
Zl}'zl v;, s, ¢ is the factorized interaction weight of the
feature-pair (7,j), and k > 0 is a hyperparameter defining
the number of latent factors in the model. The FM model
weights to be estimated are thus wo, w;, and vjy € R for
j € [1,n],f € [1,k]. The gradient of the FM model with
respect to each parameter is straighforward to get and allows
estimating weights via Stochastic Gradient Descent (SGD)
with low computational complexity (cfr. Sec. III-C of [6]).

III. ASSESSMENT OF WEB QOE FACTORS

Dataset We leverage the dataset of [3] consisting, after
sanitization, of over 2000 Web browsing sessions from 188
volunteers. Each session collects QoE feedback (1-Bad to 5-
Excellent) along with various contextual features (user ID,
visited website, several application and network QoS features).
For the sake of illustration, we consider one application QoS
feature (PLT) and three network QoS features (HTTP protocol,
additional delay, presence of loss). PLT values are separated
into 5 bins of equal sizes indexed from 1-Fast to 5-Slow.

Methodology We train FM models with 1ibFM [7] using
SGD for 64 different feature selections (including or not user
ID, webpage, PLT, HTTP protocol, presence of delay, presence
of loss) and 16 different sets of hyperparameters (latent space
of dimension, number of iterations and L2 regularization). For
each set of parameters, we compute Root-mean-squared error
(RMSE) using 5-fold cross-validation, and separately extract
final weights using the whole data set. RMSE is computed
between true grades y and estimated grades g, without any
intermediary aggregation (for brevity, RMSE and weights are
discussed only in the best configuration of hyperparameters).

Demo highlights The demo interface [2] allows (i) interac-
tive selection of features to be integrated into the FM model,

as well as (ii) tuning of FM hyperparameters. For a selected
model, the demo outputs a description of the corresponding
model, model accuracy and RMSE, and a visual summary of
weights w; as illustrated in the right of Fig. 1. Interestingly,
weights have a direct physical interpretation as they linearly
add to the forecasted grade, so that the magnitude of their
dispersion immediately conveys the relative importance of the
feature under investigation.

Answer to (Q1) The two rightmost weight plots of Fig. 1
clearly show that, once application-level QoS information
is provided to the model, additionally providing network-
level information only brings limited benefits: indeed, while
the weights vary drastically depending on the PLT bin, the
weights associated with network-level measurement are very
small. This clearly answers (Q1), prioritizing the inference of
accurate L7 application-level measurement, as opposite as to
just collecting L3 network-level measurement — which opens
new challenges for operators, since these statistics are not
easy to collect at layer L3/L4 that are oblivious to encrypted
application requests of Web browsers.

Answer to (Q2) The two leftmost weight plots of Fig. 1
additionally show that knowledge of the webpage has a dra-
matic impact as well: notice that weight dispersion has about
the same magnitude than the user or the L7 application QoS
metrics. This fact alone answers (Q2), suggesting that page-
oblivious models such as those proposed by ITU-T G1030 are
largely simplistic and not sufficient to faitfully represent user
QoE - an interesting question that remains open is to what
extent webpage properties related to page complexity (e.g.,
number of objects, javascript and domains) can be leveraged
to further harness and explain QoE.
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