
High-Speed Data Plane and Network Functions Virtualization
by Vectorizing Packet Processing

Leonardo Linguaglossa1, Dario Rossi1, Salvatore Pontarelli2, Dave Barach3,
Damjan Marjon3, Pierre Pfister3

1Telecom ParisTech, 2CNIT and University of Rome Tor Vergata, 3Cisco Systems, Inc.
first. last@ telecom-paristech. fr

Abstract

In the last decade, a number of frameworks started to appear that implement, directly in user-space with kernel-bypass

mode, high-speed software data plane functionalities on commodity hardware. This may be the key to replace specific

hardware-based middleboxes with custom pieces of software, as advocated by the recent Network Function Virtualization

(NFV) paradigm. Vector Packet Processor (VPP) is one of such frameworks, representing an interesting point in the

design space in that it offers: (i) in user-space networking, (ii) the flexibility of a modular router (Click and variants) with

(iii) high-speed performance (several millions of packets per second on a single CPU core), achieved through techniques

such as batch processing that have become commonplace in high-speed networking stacks (e.g. netmap or DPDK).

Similarly to Click, VPP lets users arrange functions as a processing graph, providing a full-blown stack of network

functions. However, unlike Click where the whole tree is traversed for each packet, in VPP each traversed node processes

all packets in the batch (or vector) before moving to the next node. This design choice enables several code optimizations

that greatly improve the achievable throughput. This paper introduces the main VPP concepts and architecture, and

experimentally evaluates the impact of its design choices (such as batch packet processing) on its performance.

Keywords: Software routers, High-speed networking, Vector Packet Processing, Kernel-bypass

1. Introduction

Software implementation of networking stacks offers a

convenient paradigm for the deployment of new function-

alities, and as such provides an effective way to escape

from the network ossification. As a consequence, the past

two decades have seen tremendous advances in software-

based network elements, capable of advanced data plane

functions in common off-the-shelf (COTS) hardware. This

eventually evolved in new paradigms such as Network Func-

tion Virtualization (NFV), which proposes that classical

middleboxes implementing regular network functions can

be replaced by pieces of software executing virtual net-

work functions (VNFs). One of the seminal attempts to

circumvent the lack of flexibility in network equipment is

represented by the Click modular router [30]: its main idea

is to move some of the network-related functionalities, up

to then performed by specialized hardware, into software

functions to be run by general-purpose COTS equipment.

To achieve this goal, Click offers a programming language

to assemble software routers by creating and linking soft-

ware functions, which can then be compiled and executed

in a general-purpose operating system. While appealing,

this approach is not without downsides: in particular, the

original Click placed most of the high-speed functionalities

as close as possible to the hardware, which were thus im-

plemented as separate kernel modules. However, whereas a

kernel module can directly access a hardware device, user-

Preprint submitted to Computer Networks October 19, 2018

space applications need to explicitly perform system-calls

and use the kernel as an intermediate step, thus adding

overhead to the main task.

More generally, thanks to the recent improvements in

transmission speed and network cards capabilities, a general-

purpose kernel stack is far too slow for processing packets

at wire-speed among multiple interfaces [11]. As such, a

tendency has emerged to implement high-speed stacks by-

passing operating system kernels (aka kernel-bypass net-

works, referred to as KBnets in what follows) and bringing

the hardware abstraction directly to the user-space, with

a number of efforts (cfr. Sec. 2) targeting (i) low-level

building blocks for kernel bypass like netmap [38] and the

Intel Data Plane Development Kit (DPDK), (ii) very spe-

cific functions [24, 39, 36, 33] or (iii) full-blown modular

frameworks for packet processing [32, 28, 11, 37, 12].

In this manuscript, we describe Vector Packet Pro-

cessor (VPP), a framework for building high-speed data

plane functions in software. Though being released as open

source only recently, specifically within the Linux Founda-

tion project “Fast Data IO” (FD.io) [20], VPP is already a

mature software stack in use in rather diverse application

domains, ranging from Virtual Switch (SW) in data-center

to support virtual machines [7] and inter-container net-

working [3], as well as virtual network function in different

contexts such as 4G/5G [5] and security [6].

In a nutshell, VPP combines the flexibility of a modular

router (retaining a programming model similar to that of

Click) with high-speed performance. Additionally, it does

so in a very effective way, by extending benefits brought

by techniques such as batch processing to the whole packet

processing path, increasing as much as possible the number

of instructions per clock cycle (IPC) executed by the mi-

croprocessor. This is in contrast with existing batch pro-

cessing techniques, that are merely used to either reduce

interrupt pressure (e.g., as done by lower-building blocks

such as [38, 4, 18]) or are non-systematic and pay the price

of a high-level implementation (e.g., in FastClick [11] batch

mmap

Packet ring

Lock-free multi-threaded (LFMT)
KBnets application

(DMA)

Buffer (I/O Batch)

H
a
rd

w
a
re

S

o
ft

w
a
re

K
e
rn

e
l

U
se

r

. . .

...

DDR memory

Socket node

NUMA node

L3 cache

L2

L1 i

L1d

P
ro

ce
ss

o
r

h
ie

ra
rc

h
y

Core
1

L1d

Core
2

...

Hw Queues (RSS)

Network Interface
Card (NIC)

Wire

Figure 1: The architecture of a typical COTS software router with

special attention the NIC (left) and the memory hierarchy (right).

processing advantages are offset by the overhead of man-

aging linked-lists).

Our previous analysis [10] shows that VPP can sus-

tain a rate of up to 12 millions packets per second (Mpps)

with our general-purpose CPU. We extend our perfor-

mance evaluation, proving highly predictable performance

(as shown by the constrained latency), a throughput scale-

up (depending on whether we increase the CPU frequency,

use Hyper-Threading or simply allocate more cores) and

the possibility to adopt VPP for different use-cases (testi-

fied by the different scenarios evaluated).

In the rest of the article, we put VPP in the context

of related kernel-bypass effort (Sec. 2). We then introduce

the main architectural ingredients behind VPP (Sec. 3),

and assess their benefits with an experimental approach,

by describing both our methodology (Sec. 4) and our re-

sults (Sec. 5). We finally discuss our findings and report

on open questions in Sec. 6. In line with the push toward

research reproducibility, we make all scripts available in

[9] alongside with instructions to replicate our work.

2. Background

This section overviews the state-of-the-art of software

data plane: Sec. 2.1 introduces popular and new tech-

niques and Sec. 2.2 maps them to existing KBnets frame-

works, of which we provide a compact summary in Tab. 1.

2

2.1. KBnets-related techniques

By definition, KBnets avoid the overhead associated

to kernel-level system calls: to achieve so, they employ

a plethora of techniques, which we overview with respect

to Fig. 1, that illustrates the general COTS architecture

we consider in this work. We now describe in details the

columns of Table 1, by following the packet reception path.

Lock-free Multi-threading (LFMT). Current tendency

to multi-core COTS allows to embrace a multi-thread pro-

gramming paradigm. Ideally, the parallelism degree of

a network application, which represents the number of

threads simultaneously running, is related to a speed-up in

the performance of the system: the more threads available,

the better the performance, up to a saturation point where

increasing the number of threads does not affect the perfor-

mance. At the same time, to achieve this ideal speed-up,

it is imperative to avoid performance issues tied to the

use of synchronization techniques (mutexes, semaphores,

etc.) in order to achieve lock-free operations. Lock-free

parallelism in KBnets is tightly coupled with the avail-

ability1 of multiple hardware queues (discussed next), to

let threads operate on independent traffic subsets.

I/O batching (IOB). Upon reception of a packet, the

NIC writes it to one of its hardware queues. To avoid rais-

ing an interrupt as soon as a new packet is ready to be

scheduled for processing, KBnets batch packets in a sepa-

rate buffer and send an interrupt once the whole buffer is

full: the NIC simply writes the buffer via Direct Memory

Access (DMA) and appends a reference to its position to

the packet ring (a circular buffer of memory accessible by

both the network device and the user-space application).

Overall, I/O batching amortizes the overhead due to the

interrupt processing, and can speed-up the overall pro-

1Even when a single receive queue is available, a software sched-

uler (potentially the system bottleneck) can assign different packets

to different threads, and then perform independent processing.

cessing. It is worth pointing out that VPP extends batch

processing from pure I/O (which reduces interrupt over-

head) to complete graph processing (which ameliorates the

efficiency of the CPU pipeline).

RSS Queues. Modern NICs support multiple RX/TX

hardware queues, and Receive-side Scaling (RSS) [25] is

the technique used to assign packets to a specific queue.

RSS queues are generally accessible in userland and are

typically used for hardware-based packet classification or

to assist (per-flow) multi-thread processing. Depending

on hardware capabilities, packets can be simply grouped

in flows by means of a hash function over their 5-tuple

(grouping both directions is also trivial [42]), but recent

NICs support more involved matching (e.g., up to 4096-bit

hash filtering, which the framework needs to make acces-

sible in userland).

Zero-Copy (Z-C). When the Network Interface Card

(NIC) has some packets available, it writes them to a re-

served memory region, which is shared between the net-

work interface and the operating system. Early KBnets re-

quired user-space applications to access this memory through

system calls (i.e., a memory copy operation), whereas in

most of the latest KBnets approaches the user-space ap-

plication has Direct Memory Access to the memory region

used by the NIC. Notice that zero-copy is sustainable only

in case the packet consumer is faster than the packet ar-

rival rate (occasional slowdown may need application-level

buffers or drops). Typical Zero-Copy approaches leverage

the fact that most of the network applications perform

little to no operations to the packet payload, which can

therefore be left unchanged, and only a subset of metadata

(usually the L2/L3 addresses) is provided to the user-space

application via the NIC driver.

Compute Batching (CB). When packets are retrieved

from the NIC, the software can start the packet processing.

3

Table 1: State of the art in KBnet frameworks

Framework LFMT IOB RSS Z-C CB CC&L LLP Main

[Ref.] Purpose

DPDK[4] X X X X
Low-level IO

netmap[38] X X X X

PacketShader[24] X X X Routing

MTclass[39] X X X Classification

Augustus[29] X X X X Name-based fwd

HCS[33] X X X X Caching

Click[30]

RouteBricks[32] X X

DoubleClick[28] X X X X Modularity

FastClick[11] X X X X partial

BESS/SoftNIC[23] X X X X X X

VPP (this work) X X X X X X X

This is typically performed on a per-packet basis, that is,

all network functions in the processing path are applied to

the same packet until the final forwarding decision. With

compute batching, the notion of I/O batching is extended

to the processing itself, meaning that the network func-

tions are implemented to treat natively batches of packets

rather than single packets. Similarly to the I/O batch-

ing, CB helps mitigating the overhead of function accesses

(e.g. context switch, stack initialization) as well as pro-

viding additional computational benefits: when a batch of

packets enters the function, the code of the function will

be loaded and a miss in the L1 instruction cache will oc-

cur only for the first packet, while for all other packets the

code to be run will be already in the cache; furthermore,

the code might be written to exploit low-level parallelism

(i.e. when instructions on subsequent packets are inde-

pendent) in order to increase the number of instructions

issued at the same clock cycle. CB can provide perfor-

mance speed-up or not, depending on how systematic it is

the implementation of CB techniques (cfr. Sec. 5.2).

Cache Coherence & Locality (CC&L). A major bot-

tleneck for software architecture is nowadays represented

by memory access [13]. At hardware level, current COTS

architectures counter this by offering 3 levels of cache mem-

ories with a faster access time (for the sake of illustration,

the cache hierarchy of an Intel Core i7 CPU [17] is re-

ported in the right of Fig. 1). In general, L1 cache (di-

vided into instruction L1-i and data L1-d) is accessed on

per-core/processor basis, L2 caches are either per-core or

shared among multiple cores, and L3 caches are shared

within a NUMA node. The speed-up provided by the

cache hierarchy is significant: access time of a L1 cache

is about 1ns, whereas access time to a L2 (L3) cache is

about 10ns (60ns) and in the order of 100ns for the main

DDR memory. When the data is not present at a given

level of the cache hierarchy, a cache miss occurs forcing

access to the higher levels, slowing the overall application.

Low-level parallelism (LLP). Together with the user-

land parallelism, a lower level of parallelism can be achieved

by exploiting the underlying CPU micro-architecture, which

4

consists of a multiple stages pipeline (instruction_fetch

or load_store_register are two examples of such stages),

one or more arithmetical-logical units (ALU) and branch

predictors to detect ”if” conditions (which may cause pipeline

invalidation) and maintain the pipeline fully running [26].

An efficient code leads to (i) an optimal utilization of the

pipelines and (ii) a higher degree of parallelism (that is,

executing multiple instructions per clock cycle). Further-

more, giving ”hints” to the compiler (e.g. when the prob-

ability of some ”if condition” is known to be very high)

can also improve the throughput. As we shall see, the vec-

torized processing, coupled with particular coding prac-

tices, can exploit the underlying architecture, thus result-

ing in a better throughput for user-space packet process-

ing. To the best of our knowledge, VPP is among (if not

the) first approaches to leverage systematic low-level par-

allelism through its design and coding practices.

2.2. KBnets frameworks

We identify three branches of software frameworks for

high-speed packet processing based on kernel bypass, de-

pending on whether they target low-level building blocks

[38, 4, 18], very specific functions [24, 39, 36, 33] or full-

blown modular frameworks [32, 28, 11, 37, 12].

Low-level building blocks. This class of work has re-

ceived quite a lot of attention, with valuable frameworks

such as netmap [38], DPDK [4] and PF RING [18]. In

terms of features, most of them support high-speed I/O

through kernel-bypass, zero-copy, I/O batching and multi-

queuing, though subtle2 differences may still arise among

frameworks [11] and their performance [21]. A more de-

tailed comparison of features available in a larger number

of low-level frameworks is available at [11], whereas an ex-

perimental comparison of DPDK, PF RING and netmap

(for relatively simple tasks) is available at [21]. Worth

2A limitation of netmap that it does not allow to directly access

the NIC’s registers [19]

mentioning are also the eXpress Data Path (XDP)[41],

which embraces similar principles but in a kernel-level ap-

proach, and the Open Data Plane (ODP) project [8], an

open-source cross-platform set of APIs running on sev-

eral hardware platforms such as x86 servers or networking

System-on-Chip processors.

Purpose-specific prototypes. Another class of work

is represented by prototypes that are capable of a very

specific and restrained set of capabilities such as IP rout-

ing [24], traffic classification [39], name-based forwarding

[36] or transparent hierarchical caching [33]. In spite of

the different goals, and the possible use of network proces-

sors [36] or GPUs [24], a number of commonalities arise.

PacketShader [24] is a GPU accelerated software IP router.

In terms of low-level functions it provides kernel-bypass

and I/O batching, but not zero-copy. MTclass [39] is a

CPU-only traffic classification engine capable of working at

line rate, employing a multi-thread lock-free programming

paradigm; at low-level, MTclass uses PacketShader hence

inheriting the aforementioned limitations. Prototypes in

[36, 29] and [33] address high-speed solutions of two spe-

cific functions related to Information-centric networking

(ICN) architectures, namely name-based forwarding and

caching ([36] employs a network processor whereas [29, 33]

uses DPDK). In all these cases, multi-thread lock-free pro-

gramming enabled by RSS queues is the key to scale-up

operations in user-space. In contrast to these efforts, VPP

aims for generality, feature richness and consistent perfor-

mance irrespectively of the specific purpose.

Full-blown modular frameworks. Full-blown modular

frameworks are closer in scope to VPP. Letting aside rel-

evant but proprietary stacks [2], work such as [37, 12, 32,

28, 11] is worth citing. In more details, Arrakis [37] and

IX [12] are complete environments for building network

prototypes, including I/O stack and software processing

model. Arrakis’ main goal is to push further kernel-bypass

5

beyond network stack functionalities, whereas IX addition-

ally separates some functions of the kernel (control plane)

from network processing (data plane), and is as such well

suited to building SDN applications.

Closest work to VPP is represented by Click [30], which

shares the goal of building a flexible and fully programmable

software router. Whereas the original Click cannot be

listed among KBnets applications (as it requires a cus-

tom kernel, and runs in kernel-mode thus being not suited

for high-speed processing), however a number of extensions

have over the years brought elements of KBnets into Click.

Especially, RouteBricks [32], DoubleClick [28], FastClick [11]

all support the kernel version of Click, introducing sup-

port for HW multi-queue [32], batching [28], and high-

speed processing [11], possibly obtained through a dedi-

cated network processor [31]. Click has also inspired work

such as the Berkeley Extensible Software Switch (BESS,

formerly known as SoftNIC) [23] which presents a simi-

lar programming model and implements the most impor-

tant software acceleration techniques. Important differ-

ences among Click (and variants) and VPP arise in the

scheduling of packets in the processing graph, and are dis-

cussed further in Sec. 3.

The evolution of full-blown modular frameworks is the

key to enable NFV composition and deployment. Most of

the recent NFV frameworks are in fact built on top of one

of the aforementioned tools: we cite, for instance, ClickNF

[22], a modular stack for the composition of L2-L7 network

functions built on FastClick; the E2 [34], a framework for

creating and managing virtual functions built on top of

BESS; NetBricks [35], a clean-slate approach that lever-

ages pure DPDK and the Rust [1] programming language

to provide high-speed NFV capabilities.

3. VPP Architecture

Initially proposed in [16], VPP technology was recently

released as open-source software, in the context of the

FD.io Linux foundation project [20]. In a nutshell, VPP

DPDKnetmap

XDP

Vector Packet
Processor (VPP)

ODP

U
se

rl
a
n

d
K
e
rn

e
l

ixgbe

Figure 2: VPP scope and processing tree. The nodes we use later

in the experiments (as well as their neighbors) are highlighted in red

(IP) and green (Eth). Process nodes are depicted in blue.

is a framework for high-speed packet processing in user-

space, designed to take advantage of general-purpose CPU

architectures. In contrast with frameworks whose first aim

is performance on a limited set of functionalities, VPP is

feature-rich (it implements a full network stack, including

functionalities at layer 2, 3 and above), and is designed

to be easily customizable. As illustrated in Fig. 2, VPP

aims at leveraging recent advances in the KBnets low-level

building blocks early illustrated: as such, VPP runs on top

of DPDK, netmap, etc. (and ODP, binding in progress)

used as input/output nodes to the VPP processing. It is

to be noted that non-KBnets interfaces such as AF PACKET

sockets or tap interfaces are also supported.

At a glance. VPP’s processing paradigm follows a “run-

to-completion” model. First a batch of packets is polled

using a KBnets interface (like DPDK), after which the

full batch is processed. Poll-mode is quite common as it

increases the processing throughput in high traffic con-

ditions (but requires 100% CPU usage regardless of the

traffic load conditions), whereas native compute batch is

a novel ingredient.

VPP is written in C, and its sources comprise a set of

low-level libraries for realizing custom packet processing

applications as well as a set of high-level libraries imple-

menting specific processing tasks (e.g. l2-input,

ip4-lookup) representing the main core of the framework.

6

User-defined extensions, called plugins, may define addi-

tional functionalities or replace existing ones (e.g.,

flowperpkt-plugin, dpdk-plugin). The main core and

plugins together form a forwarding graph, which describes

the possible paths a packet can follow during processing.

In more details, VPP allows three sets of nodes: namely

process, input, and internal (which can be terminating

leaves, i.e., output nodes). Process nodes (blue nodes in

Fig. 2) do not participate in the packet forwarding, be-

ing simply software functions running on the main core3

and reacting to timers or user-defined events. Input nodes

abstract a NIC interface, and manage the initial vector

of packets. Internal nodes are traversed after an explicit

call by an input node or another internal node. For some

nodes, a set of fine-grained processing tasks (aka features4

in VPP’s terminology) can be activated/deactivated on

demand at runtime.

VPP architecture adopts all well-known KBnets tech-

niques discussed in Sec. 2, to which it adds a design (Sec. 3.1)

and coding practices (Sec. 3.2) that are explicitly tailored

to (i) minimize the data cache misses using data prefetch-

ing, (ii) minimize the instruction cache misses, (iii) in-

crease the instructions per cycle that the CPU front-end

can fetch, and that we describe in what follows.

3.1. Vectorized processing

The main novelty of VPP is to offer a systematic way

to efficiently process packets in a “vectorized” fashion: in-

stead of letting each packet traverse the whole forwarding

graph, each node processes all packets in a batch, which

provides sizable performance benefits (cfr. Sec. 5.2).

Input nodes produce a vector of work to process: the

graph node dispatcher pushes the vector through the di-

rected graph, subdividing it as needed, until the origi-

3VPP features its own internal implementation of cooperative

multitasking [14], which allows running of multiple process nodes

on the main core.
4Which are not functions and thus do not incur function call

overhead.

dpdk-input
Vector

IPv4 IPv4IPv6 L2 l2-input

.

ip6-input

ip4-lookup

ip4-input

l2-output

Step 1:

Step 2:

Step 3 to n-1:

..

RX from NIC

Parse vector

Per-protocol
batch processing

Step n:
TX to NIC

ip4-rewrite

error-drop

Figure 3: Illustration of the vectorized packet processing model.

nal vector has been completely processed. At that point,

the process recurs. Notice that not all packets follow

the same path in the forwarding graph (i.e., vectors may

be different from node to node). While it is outside of

the scope to provide a full account of all the available

nodes [40], Fig. 3 compactly depicts a subset of the full

VPP graph (comprising 253 nodes and 1479 edges) and

illustrates the vectorized processing. We consider a case

of a vector consisting in a mixture of traffic, and then

focus on classical IPv4 processing for the sake of the ex-

ample. Notice how the overall processing is decoupled in

different components, each of them implemented by a sep-

arate node. VPP’s workflow begins with a node devoted

to packet reception (dpdk-input), and then the full vec-

tor is passed to the next node dealing with packet parsing

(l2-input). Here the vector can be split in case of mul-

tiple protocols to process. After this step, we enter the

IPv4 routing procedure (split in ip4-input, ip4-lookup,

ip4-rewrite). The workflow finally ends in a forwarding

decision (l2-forward) for the re-assembled vector. A drop

decision may be taken at every step (error-drop).

Advantages of vectorized processing. In a classic

“run-to-completion” [30, 11] approach, different functions

of the graph are applied to the same packet, generating

a significant performance penalty. This penalty is due to

7

several factors. (i) The instruction cache miss rate in-

creases when a different function has to be loaded and

the instruction cache is already full. (ii) There is a non-

negligible framework overhead tied to the selection of the

next node to access in the forwarding graph and to its func-

tion call. (iii) It is difficult to define a prefetching strategy

that can be applied to all nodes, since the next execution

node is unknown and since each node may require to access

to a different portion of the packet data.

VPP exploits a “per-node batch processing” to mini-

mize these effects. In fact, since a node function is applied

to all the packets in the batch, instruction misses can oc-

cur only for the first packet of the batch (for a reasonable

codesize of a node). Moreover, the framework overhead

is shared among all the packets of the batch, so the per-

packet overhead becomes negligible when the batch size

is of hundreds of packets. Finally, this processing enables

an efficient data prefetching strategy. When the node is

called, it is known which packet data (e.g. which headers)

are necessary to perform the processing task. This allows

to prefetch the data for the (i+1)-th packet while the node

processes the data of the i-th packet.

Vector size. Notice that while the maximum amount of

packets per vector can be controlled, the actual number

of packets processed depends on the duration of the pro-

cessing tasks, and on the number of new packets arrived

during this time. Intuitively, in case of a sudden increase

in the arrival rate, the next vector will be longer. How-

ever, the processing efficiency (measured in terms of clock

cycles per packet) increases by amortizing fixed costs over

a larger number of elements. Thus, when a batch is larger,

it is expected that the processing time of each packet in

the batch decreases, and so does the size of the subsequent

input vector. In practice, this sort of feedback loop helps

maintaining a stable equilibrium in the vector size.

Vector processing vs I/O Batching. In some sense,

VPP extends I/O batching to the upper layers of KBnets

processing. However, if the goal of batching I/O oper-

ations is to reduce the interrupt frequency, the goal of

vectorized processing is to decrease the overall numbers

of clock cycles needed to process a packet, amortizing the

overhead of the framework over the batch. These two goals

are complementary.

Vector processing vs Compute Batching. It is worth

pointing out that tools such as G-opt [27], FastClick [11]

and the pipelines of the DPDK Packet Framework [4] do

offer some form of “Compute Batching”, which however

barely resemble to batching in VPP only from a very high-

level view, as several fundamental differences arise on a

closer look. In G-opt batching serves only the purpose of

avoiding CPU stalls due to memory latency. The pipeline

model of DPDK Packet Framework is used to share the

processing among different CPUs and is not focused on im-

proving the performance on a single core. Instead, FastClick

“Compute Batching” (see Sec 5.7 in [11]) and the BESS [23]

implementation, are close in spirit to VPP.

However, the functions implemented in any VPP node

are designed to systematically process vectors of packets.

This natively improves performance and allows code opti-

mization (data prefetching, multi-loop, etc). In contrast,

nodes in FastClick implicitly process packets individually,

and only specific nodes have been augmented to also ac-

cept batched input. Indeed, per-vector processing is a

fundamental primitive in VPP. Vectors are pre-allocated

arrays residing in contiguous portions of memory, which

are never freed, but efficiently managed in re-use lists.

Additionally, vector elements are 32-bit integers that are

mapped to 64-bit pointers to the DMA region holding the

packet with an affine operation (i.e., multiplication and

offset that are performed with a single PMADDWD x86 in-

struction). In FastClick, batches are constructed by using

the simple linked list implementation available in Click,

with significantly higher memory occupancy (inherently

8

less cacheable) and higher overhead (adding further 64-bit

pointers to manage the list).

Ultimately, these low-level differences translate into quite

diverse performance benefits. VPP’s vectorized processing

is lightweight and systematic (as for the BESS compute

batching): in turn, processing vectors of packets increase

the throughput consistently, and our measurements con-

firm that the treatment of individual packets significantly

speeds up. In contrast, opportunistic batching/splitting

overhead in FastClick, coupled to linked list management

yields limited achievable benefits in some cases and none

in others (e.g., quoting [11], in “the forwarding test case

[. . .] the batching couldn’t improve the performance”).

3.2. Low-level code optimization techniques

As mentioned before, batch processing in VPP enables

additional techniques to exploit all lower-level hardware

assistance in user-space processing.

Multi-loop. We refer to multi-loop as a coding prac-

tice where any function is written to explicitly handle N

packets with identical processing in parallel: since compu-

tations on packets i, . . . , i + N are typically independent

of each other, very fine-grained parallel execution can be

exploited letting CPU pipelines be continuously full. The

CPU front-end can in fact execute in parallel several in-

structions applied to data coming from different packets in

the same clock cycle. Sec. 5 verifies the efficiency of this

technique, by measuring the IPC achievable enabling or

disabling multi-loop for some VPP nodes. This technique

provides significant performance improvements for certain

processing nodes (see Sec. 5 for details) but it presents two

limitations: (i) the multi-loop technique is applied writ-

ing C code that is explicitly parallel5 (the programmer

leverages C template code to write multi-loop functions);

(ii) the multi-loop technique increases the number of IPC

5Automating the deployment of multi-loop functions is an on go-

ing work.

removing data dependency, but does not provide benefit

when the performance bottleneck is due to the number of

memory accesses.

Data prefetching. Once a node is called, it is possible

to prefetch the data that the node will use for the i + 1-

th packet while processing the i-th packet. Prefetching

can be combined with multi-loop, i.e. prefetching data for

packets from i+ 1 to i+N while processing packets from

i−N to i. This optimization does not work at the vector

bounds: for the first N packets of the batch no prefetching

is possible, while for the last N packets there is no further

data to prefetch. However, since in the standard setting

VPP uses a quad-loop (N = 4) or a dual-loop (N = 2),

and the vector size is 256, this effect is negligible. We verify

in Sec. 5 the efficiency of this technique by measuring IPC

with prefetching enabled or disabled.

Branch-prediction. This practice is based on the as-

sumption that most processing will follow a “Pareto law”

in that the majority of packets will require very similar

processing and thus follow the same path in the graph.

VPP encourages a coding practice where programmers

give the compiler some expert hints about the most likely

case in an if-then-else branch: in case the prediction is true

(which happens often due to the Pareto law), a pipeline

reset is avoided saving clock cycles (possibly more than 10

in practice). If the prediction is false, then additional pro-

cessing is needed (i.e., invalidate pipelined operations and

revert to previous state), with however a low impact on

the average case (since mispredictions are rare due to the

Pareto law). While Branch Predictor (BP) is a very pow-

erful component in the latest CPUs, and so the majority

of compiler hints are unnecessary, it still can be relevant

upon BP failures (e.g., when many branches are present

in a small part of code).

Function flattening. In VPP a majority of graph nodes

9

make use of inline functions. This avoids the cost of reshuf-

fling registers to comply with the Application Binary In-

terface (ABI) calling convention and avoids stack opera-

tions. As a beneficial side effect, flattening likely yields to

additional optimizations by the compiler (e.g., removing

unused branches).

Direct Cache Access (DCA). As an extension of the

zero-copy operation achieved through DMA, in case of Di-

rect Data IO (DDIO) systems, it is possible to prefill pack-

ets directly in the L3 cache, so that with a careful buffer

allocation strategy it is possible to achieve (or at least aim

for) close-to-zero RAM memory utilization.

Multi-architecture support. VPP supports runtime

selection of graph node function code optimized for specific

CPU micro-architecture: e.g., at run-time the same bi-

nary can detect and execute code which utilizes AVX2 (e.g,

on Haswell/Broadwell) and still work on systems without

AVX2 support (e.g., Atom Sandy/Ivy Bridge).

4. Methodology

This section describes the experimental setup and the

methodology that we use to assess the impact of VPP ar-

chitectural choices as well as the scenarios that we evalu-

ate. We start by providing a quick overview of our hard-

ware and software setup in Sec. 4.1 and Sec. 4.2 respec-

tively; we describe the evaluated scenarios in Sec. 4.3, and

we detail our metrics in Sec. 4.4.

4.1. Hardware Setup

We reproduce our experimental environment as sug-

gested in the RFC2544 by connecting one device under test

(DUT) running VPP to one measurement device equipped

with a packet transmitter and a packet receiver, referred to

as Traffic generator and sink (TGS). Performance is eval-

uated at the endpoints of the measurement device. This

setup is represented in Fig. 4.

NUMA node 1

DUTTX
GEN

Input rate

Fwd rate

RX

Traffic
- static
- uniform

Input rate
- 10Gbps
- 0.5Gbps CPU

VPP
graph

Drop

NUMA node 0

Measurements

Figure 4: Hardware setup.

Our hardware consists of a server with 2× Intel Xeon

Processor E52690, each with 12 physical cores running at

2.60 GHz in hyper-threading and 576KB (30MB) L1 (L3)

cache. Each processor socket is attached to a NUMA node

(95 GByte of RAM, for a total of 190 GB). The server is

equipped with 2× Intel X520 dual-port 10Gbps NICs, that

are directly connected with SFP+ interfaces. The server

runs a vanilla Linux kernel 4.8.0-41 (Ubuntu 16.04.3).

In order to reproduce the scenario depicted in Fig. 4,

we separate the DUT and the TGS assigning one line card

to the DUT and another one to the TGS; within the TGS,

we assign one port for the traffic generation (TX GEN)

and the other one for the the measurements (RX). The

TGS and the DUT are further isolated being physically

located in two different NUMA nodes (each one attached

to a different CPU socket).

Since we are interested into gathering insights on the

performance gains tied to the different aspects of the whole

VPP architecture, as opposed to gathering raw absolute

performance data for a specific system, we study per-core

performance – intuitively, provided a good lock-free multi-

threaded application design, the overall system performance

can be deduced by aggregating the performance of individ-

ual cores. The CPU core dedicated to the VPP forwarding

can only run the VPP software and no other processes are

ever scheduled to it6.

6The system tuning procedures are described in details on

the project wiki page at https://wiki.fd.io/view/VPP/How_To_

Optimize_Performance_(System_Tuning)

10

4.2. Software setup

We describe in the following the software setup for both

the DUT and the two components of the TGS.

DUT. VPP (version 17.04) starts with a static configu-

ration that is maintained for the duration of a single ex-

periment. The configuration, stored in a plain text file,

describes the size of the memory to allocate, the number

of cores to use as well as the number of RSS queues.

We provide isolation by instructing one VPP instance

to allocate 4 GB of RAM from the NUMA node 1. This is

done via the use of hugepages of size 1 GB. Such memory

is used for both packet I/O and software data structures.

VPP is assigned to a single core running in isolation mode

(i.e. no other threads are ever scheduled to this core) and

with TurboBoost7 deactivated. Finally, both input and

output interfaces are configured with a single RSS queue.

Notice that VPP is always running a full forwarding

graph – which includes all the supported protocols, as well

as nodes for managing the command-line interface (CLI),

logging and management operations. Yet, in a more com-

mon setup, tasks such as CLI, logging and management

would typically run in a separate core (the so-called main

core, whereas operations related to the data-path would be

executed in different cores (aka workers), bound to differ-

ent RSS queues. Our results are obtained in the configura-

tion where all tasks are executed in a single core, which is

shown to provide conservative results (cfr. Sec. 5.7 where

we consider in addition the model of a main core plus a

number of workers).

TX GEN and RX. Both traffic generation and measure-

ments processes are executed in the same server placed on

NUMA node 0. Isolation is provided with the same tech-

7This feature of modern CPUs consists in allowing a higher clock

frequency w.r.t. the nominal one. However, this cannot be sustained

for long time, and a cool-down period can occur where the clock fre-

quency is kept at a lower rate, thus giving non-deterministic results.

nique already described for the DUT (separate cores in

isolation with TurboBoost disabled).

Traffic generation and measurements are performed by

the DPDK-pktgen standard traffic generator, running on

two separate cores assigned to two separate RSS queues

with an allocated RAM of 4 GB. This software provides a

command-line interface and a programmable kit of func-

tionalities for rate selection and packet crafting, which is

sufficient for forwarding rate measurement. For latency

measurements we use the MoonGen [19] traffic generator,

still based on DPDK, which provides the API to obtain

the observed latency via the use of Precision Time Proto-

col (PTP) packets.

Both traffic generators exports several NIC counters

to the user space: the RX components is in fact exe-

cuted within the same process dealing with traffic gen-

eration. Here the RX periodically checks the interface’s

packet counters for measuring the forwarding rate, or the

difference between packet timestamps to measure latency.

4.3. Scenarios

To gather results representative of different network

operations, we consider different input workloads and pro-

cessing tasks. In particular, our scenarios should be rep-

resentative of realistic use-cases where VPP can be used

either as a pure software-router, or as a tool for deploying

VNFs on COTS equipment. In line with the push toward

research reproducibility, we release all scripts to configure

the workloads and the VPP tasks available at [9].

Input workload. We vary the L2/L3 addresses gener-

ated by the TX GEN. The most simple case is repre-

sented by a static traffic, where packets with the same

source/destination pair are continuously sent to the DUT.

For our second scenario we perform a round-robin vari-

ation in the IP destination address by incrementing the

least significant bits by one in the range [1 : 255]. In this

scenario, the input traffic is deterministically predictable.

11

Finally, we reproduce a scenario in which packets are ran-

domly generated: in particular, the TX GEN generates

packets by selecting the IP source/destination pair uni-

formly at random.

Processing task. The processing task is chosen at run-

time by executing some scripts via the VPP CLI. We recre-

ate three different scenarios, with an increasing level of

complexity.

The least complex scenario is the cross-connect (XC),

where packets are just forwarded from the input interface

to the output port. This scenario is the closest to a pure

I/O task, but it is important to underline that VPP still

runs a full forwarding graph, where only a few nodes are

accessed and packets follow always the same path (the

nodes accessed are dpdk-input, l2-input, l2-output

and the final node representing the output NIC, cfr. Fig. 3).

The second scenario is the classic IPv4 processing (IP).

VPP is configured to read a routing table, taken from the

RIPE database8 which contains 130k entries with different

prefix lengths. Whether the complexity is higher than the

XC scenario, the VPP graph still contains a single path

followed by all incoming traffic.

In order to add a bifurcation in the forwarding graph,

we engineered a mixed scenario (MIX) in which VPP is

configured to deal with packets from different protocols:

in particular, we choose IPv4, IPv6 and L2 forwarding

altogether, so that the forwarding graph contains at least

three different paths. This scenario is closer to a realistic

application of VPP in an NFV environment in which the

software may execute different virtual network functions

deployed on the same commodity hardware.

4.4. Metrics

We observed in Sec.3.1 that we can configure at com-

pile time the maximum vector size, but the actual vector

size depends on the processing task. This can be measured

8https://www.ripe.net/

by logging the actual vector size under different input rate

generated by the TX GEN. This is the first metric consid-

ered in our results.

When the TX rate is at its maximum (that is 10Gbps

for our line cards) it is possible to measure the throughput

of the system representing the maximum capability of the

DUT+VPP to run under stress conditions. As observed

in [38], I/O performance are dominated by per-packet op-

erations: i.e., it is only slightly more expensive to send a

1.5KB packet than a 64B one. To stress the system, we

consider the VPP packet-level processing rate R̃ for the

smallest 64B packet size. This is measured by sending 10

Gbps traffic from the TX GEN and gathering the forward-

ing rate observed at the RX side after the VPP processing.

In addition to the overall throughput, we can also measure

other interesting variables related to the underlying CPU

architecture: we thus consider (i) the number of CPU in-

structions per packet (IPP), that represents the “weight”

of the SW framework; (ii) the number of instructions per

clock cycle (IPC), that is related to the capability of the

framework in instruction parallelization; (iii) miss-rate in

the L1 Instruction cache, that shows the benefit of the

compute batching technique.

We measure the latency observed in the VPP graph,

defined as the difference between the departure time of

a packet from the TX GEN and the arrival time at the

RX. This kind of measurement is not defined in a lossy

regime (or otherwise latency values would be undefined for

such packets). In fact, the RFC2544 suggests to measure

latency at the maximum rate at which none of the input

packets are dropped, aka non-drop rate (NDR). Since the

forwarding rate that we measure does not assure that zero

packets are lost, we configure the TX GEN to send packets

at 99% of the observed forwarding rate. We complete our

latency measurements by providing the latency observed

also at 50% and 10% of the forwarding rate.

We finally provide a sensitivity analysis, measuring the

throughput obtained on different CPUs, with an increasing

12

number of cores and different thread placements.

5. Experimental results

In the following we present our experimental results.

In particular, we evaluate the effect of the traffic load on

the actual vector size in Sec. 5.1, for the default value of

the maximum allowed vector size (the VLIB FRAME SIZE).

We then evaluate the impact of the maximum vector size

in Sec. 5.2; we analyze the per-node processing cost in

Sec. 5.3, the benefits given by coding practices in Sec. 5.4,

as well as of the impact of exogenous factors such as the

input workload in Sec. 5.5. We measure the latency in

Sec. 5.6, and we further evaluate VPP under different core

allocation and CPU frequencies in Sec. 5.7. We conclude

the section with a comparison w.r.t the DPDK l3fwd ap-

plication in Sec. 5.8.

5.1. Vector size as a function of the rate

VPP controls the maximum number of packets to be

processed by varying the maximum batch size, the

VLIB FRAME SIZE, controlling the delay due to batching. We

underline that batching is especially useful for high traffic

rates, since it allows to increase the instruction per clock-

cycle efficiency. Conversely, at low traffic rates the NIC

queues seldom fills, so that the vectors polled from the NIC

at time t typically have a size smaller than VLIB FRAME SIZE.

Fig. 5 reports actual batch sizes polled from the NIC

for increasing input traffic rates. We observe that the

vector size is generally small, and only as the input load

approaches the processing capacity, the vector size grows

to VLIB FRAME SIZE. Otherwise stated, vectors grow only

when this is actually needed. This additionally confirms

that the expected delay will be negligible in practical non-

overloaded scenarios.

5.2. Impact of maximum vector size

While the previous experiment was performed with a

fixed VLIB FRAME SIZE and a variable input rate, we now

 0

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ct

ua
l V

ec
to

r S
iz

e
[p

kt
s]

Normalized input load

VLIB_FRAME_SIZE
Vector samples

Figure 5: Actual vector size as a function of the traffic rate for

VLIB FRAME SIZE=256 in realistic scenarios.

fix the input rate at 10 Gbps (14.88 Mpps of 64-byte

packets) and we vary the VLIB FRAME SIZE. The maximum

vector size can be changed at compile time (to a mini-

mum of 4 packets, due to quad-loop operations in some

nodes): intuitively, increasing the frame size increases the

L1-instruction cache hit benefits, but also increases the

average per-packet delay.

Fig. 6 presents a set of metrics gathered from three

main use cases, namely (i) Cross-connect (XC) case, (ii) a

IP longest-prefix-match (IP) forwarding and (iii) a mixed

traffic (MIX) in which the incoming traffic activates L2,

IPv4 and IPv6 nodes (cfr. Sec. 4.3). Such plots depict

a set of key performance indicators (y-axis) as a function

of the VLIB FRAME SIZE (x-axis). Experiments are repeated

10 times, so that in addition to the average of the metric

of interest, we report as well the minimum and maximum

values9 over the repetitions.

The per-core packet processing rate in Mpps is reported

in Fig. 6a: for all cases, the packet processing rate in-

creases linearly with the vector size, up to a saturation

point where increasing the size further does not bring no-

ticeable benefits. When the vector size becomes too large

(greater than 512 packets), a slight penalty arises, prob-

ably due to the overhead of managing a larger memory

9We prefer to report the full range since performance are tightly

clustered around the mean and 95% confidence intervals are hardly

distinguishable.

13

 0

 2

 4

 6

 8

 10

 12

 14

 4 64 128 256 512

Pa
ck

et
 p

ro
ce

ss
in

g
ra

te
 R

 [M
pp

s]

XC
IP

Mixed

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4 64 128 256 512

In
str

uc
tio

ns
 p

er
 p

ac
ke

t

XC
IP

Mixed

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 4 64 128 256 512

In
str

uc
tio

n
pe

r c
lo

ck
 c

yc
le

 (I
PC

)

Maximum vector size (VLIB_FRAME_SIZE)

XC
IP

Mixed

(c)

0.00%
0.05%
0.10%
0.15%
0.20%
0.25%
0.30%
0.35%

 4 64 128 256 512

L1
 I-

ca
ch

e
m

iss
 ra

te
 [%

]

Maximum vector size (VLIB_FRAME_SIZE)

XC
IP

Mixed

(d)

Figure 6: Packet processing performance as a function of the maximum vector size (10Gbps traffic rate on a single-core): (a) packet

processing rate, (b) average number of instructions per packet, (c) average number of instructions per clock cycle and (d) miss

rate of L1 i-cache.

portion. This holds across all types of processing func-

tion: interestingly, for the IP case, a single core is able

to forward over 8 million packets per second, for a fairly

large FIB. In a sense, the XC gap with the 14.88Mpps line

rate can be considered as a measure of the VPP framework

overhead (but see Sec. 5.7–5.8 for more details). Increas-

ing the frame size also increases the average per-packet

latency: for all the traffic cases, the knee in the curve at

about 256 packets-per-vector corresponds to a sweet-spot

with maximum throughput and bounded maximum delay

(see latency measurements in Sec. 5.6).

Fig. 6b shows the average number of instructions per

packet with respect to the maximum vector size. The de-

crease of the number of instructions relates to the amount

of code that is executed just once per vector (e.g., call of

the input DPDK function, scheduling of the node graph,

etc.), and that represents the overhead of the processing

framework. Even if this overhead is directly related to

the VPP framework, we argue that any kind of software-

based packet processing framework will experience similar

overhead. Instead of optimizing the code to minimize this

overhead, an easier and most efficient solution consists in

sharing this overhead over several packets, as VPP does.

Fig. 6c reports the average number of instructions per

clock cycle (IPC), which is related to the ability of VPP

to optimize the code execution by leveraging multi-loop

and prefetching strategies discussed in Sec. 3.2. We ob-

serve that the IPC significantly increases when the vec-

tor size grows up to 256. In particular, for the XC case

the increase is around 10%, while for the IP forwarding

14

case it is around 20%.

Finally, Fig. 6d shows the average L1 instruction-cache

misses occurred for each packet: as expected the miss rate

decreases when the vector size increases, thus avoiding

stalling in the CPU pipeline and improving the process-

ing capabilities. An L1 instruction-cache miss requires to

access the L2 level cache, and each miss has a penalty of

around 10 clock cycles: the reduction of i-cache miss rate

corresponds to a saving of roughly 30-40 clock cycles for

each processed packet.

5.3. Per-node breakdown

We now analyze Fig. 7, which shows the per-packet

processing cost, measured in clock cycles, spent in each

node for the XC and L2, IPv4 and IPv6 traffic. Nodes

are grouped by colors, depending on their activity. Gray

nodes represent the low-level I/O functionalities, mainly

consisting in accessing the NIC through DPDK drivers.

Then, we have the processing functions, which are related

to L2 (green), IPv4 (red) and IPv6 (yellow) processing.

Notice that XC consists only of gray nodes, and the

per-packet total cost is about 200 clock cycles per packet.

For the L2, IPv4 and IPv6 cases some processing is in-

troduced, but a big component of the processing cost is

still related to the I/O. In fact, for L2 forwarding, only

few tens of clock cycles are spent in the actual processing,

while the rest is due to I/O.

For both IPv4 and IPv6 some gray nodes are not present:

this is related to some code optimization, that can early

detect the protocol of the packet and can anticipate some

functions to be run directly in a processing node. For in-

stance, both IPv4 and IPv6 lacks of l2-input and l2-output

nodes, that are replaced by ip4-input and ip4-output

(ip6- respectively).

Finally, we notice that in the IPv4 and IPv6 scenarios

a major cost is represented by the lookup function. Here

we can observe the implementation difference between the

IPv4 mtrie and the IPv6 hashtable, for which we highlight

 0

 50

 100

 150

 200

 250

 300

 350

XC L2 IPv4 IPv6

Cl
oc

k
cy

cl
es

 p
er

 n
od

e

dpdk-input
ethernet-input
l2-input
l2-output
TenGigabitEthernetb/0/0-output
TenGigabitEthernetb/0/0-tx
l2-learn
l2-fwd
interface-output
ip4-input
ip4-load-balance
ip4-lookup
ip4-rewrite
ip6-input
ip6-lookup
ip6-rewrite

Figure 7: Per-node breakdown for different traffic scenarios

a cost of about 40 clock cycles for IPv4 and about 70 cycles

for IPv6 (an increment of almost 50% w.r.t. IPv4).

5.4. Multi-loop

Fixing VLIB FRAME SIZE to 256, we next consider the

impact of multi-loop programming practice due to the in-

struction parallelization (improvement in terms of IPC)

and prefetching (avoiding stalls due to data cache misses).

We recall that the multi-loop technique aims at amortiz-

ing per-packet processing by parallelizing instructions over

multiple independent packets, thus increasing the IPC that

the CPU can issue. It works well for nodes that require

significant processing (i.e. there are several instructions to

execute). However, the multi-loop benefits are negligible

in the XC case (the active nodes have few instructions, so

that multi-loop does not actually increase the IPC, making

this technique useless in this case). We consider for this

experiment two different scenarios that require more pro-

cessing, and we focus on longest-prefix matching on IPv4

and IPv6 traffic.

Fig. 8 reports the number of cycles per packet obtained

by enabling and disabling the quad-loop and prefetching

options, for IPv4 and IPv6 processing. Rather than re-

porting aggregate processing rates, we report the aver-

age packet processing duration expressed in CPU cycles.

15

 40

 50

 60

 70

 80

Single
-

Single
Active

Quad
-

Quad
Active

Loop:
Prefetch:

Loop:
Prefetch:

Pe
r-p

ac
ke

t p
ro

ce
ss

in
g

co
st

[C
yc

le
s]

ip4-lookup ip6-lookup

-2%

-16%
-25%

-5% -6% -10%

Figure 8: Impact of multi-loop and prefetching

While the difference between IPv4 and IPv6 is tied to the

data structures used for lookups (tries for v4 and hash-

tables for v6), the figure clearly shows that the quad-loop

technique sizably reduces the number of clock cycles both

when prefetching is enabled (25% for IPv4) or disabled

(16%).

5.5. Input workload

We next turn our attention to the impact of different

input workloads on the processing rate. As before, we

consider the XC, IP and MIX cases. In particular, we now

consider a packet arrival processes with a different spa-

tial variability for the source and destination IPs, specifi-

cally: (i) a Static scenario where traffic corresponds to a

single source-destination pair; (ii) a Round-robin scenario

where destination is simply incremented by one and (iii)

a Uniform case where source/destination pair is extracted

uniformly at random.

In the XC case, we don’t expect any noticeable effect.

Concerning the IP forwarding case, we instead expect the

Static case to correspond to a best case since, in addition to

the L1-i cache hit, the IP lookup can take advantage also of

a L1-d cache hit. Similarly, IP lookups in the round-robin

traffic case can leverage L1-d cache hits to some extent (it

depends on the length of the FIB netmask: specifically,

for a IP/x netmask the first miss is followed by 232−x − 1

hits) whereas the Uniform random case can be expected

to be close10 to the worst-case.

10In practice, L1-d cache hits can happen, even though with low

 0
 2
 4
 6
 8

 10
 12
 14

Static Round-robin Unif

-8%

Pa
ck

et
 p

ro
ce

ss
in

g
ra

te
 [M

pp
s]

Input workload (IP src/dst variability)

XC
IP (130K FIB)

IP (1K FIB)

Figure 9: Variation of the packet processing rate as a function of the

input workload process.

Results, shown in Fig. 9, confirm the expectation. Not

only XC performance are hardly affected by stochastic

properties of the spatial IP address distribution, but it

is especially interesting to notice that also L3 performance

are only minimally affected: the drop in IP packet for-

warding rate from Static to Uniform case is limited to less

than 10%, hinting to the fact that the L1-d cache misses

implied by random traffic generation have a minor impact

with respect to the L1-i cache hits obtained by processing

packets in vectors. This confirms the soundness of VPP

design, and the robustness of its potential gain.

5.6. Latency

The batch processing may impact the latency that pack-

ets experience in a VPP router, because of the forwarding

operation occurring only after a full graph traversal for a

given batch. Furthermore, we may expect that latency is

also affected by the system load: whether a high input traf-

fic rate corresponds in bigger vectors, a lower traffic may

reduce the batch sizes thus reducing the overall latency.

As shown in Sec. 5.2, when the maximum vector size

is fixed at 256 packets, VPP is able to deal with about 12

Mpps, which is lower than the line rate of 14.88, meaning

probability, in the uniform random case; a truly adversarial worst-

case could be obtained by using a linear shift register so to produce

a sequence that minimizes the L1-d cache hit, with however a signif-

icant engineering effort for a minimum expected difference.

16

Latency (µs)

0.01

0.1

1
0.1 R+

0.5 R+

0.99R+

0.01

0.1

1
0.1 R+

0.5 R+

0.99R+

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90

0.1 R+

0.5 R+

0.99R+

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

Figure 10: Latency measured for three different scenarios (XC, IP, MIX) represented through a histogram. The measured values obtained

at three different rate conditions (10%, 50% and 99% of the forwarding rate) are arranged in the x-axis, while the y-axis is the normalized

frequency in log-scale of the occurrences. We report as well each scenario’s minimum, average, standard deviation, median and 99th percentile.

that the system is in overload (that is, we have a drop rate

of 2.88 Mpps). Latency computation would provide non-

valid results in such a scenario: we tune the input rate to

match the Maximum Forwarding Rate (R+), which is the

maximum rate for which the DUT is able to forward pack-

ets with zero losses11. Thus, we measure the maximum for-

warding rate as observed in Fig. 6a for a VLIB FRAME SIZE

equals to 256, and we consider the 10%, 50% and 99% of

such rate, referred to as 0.1, 0.5 and 0.99 R+.

We report our measurements in Fig. 10, that shows

the latency, measured in microseconds, for the XC, IP and

MIX scenarios and for the three different input rates. Mea-

sured values are organized in a histogram w.r.t. normal-

ized frequency (in log-scale). We first observe that at low

input rates (0.1 R+and 0.5 R+) the average values are

similar across the XC, IP and MIX cases, all falling in the

11Precisely calculating the non-drop rate requires a dichotomic

search to find an the input rate with no packet losses, but we found

it very difficult to accurately measure it with our software traffic

generator, as both DPDK-pktgen and MoonGen experience non-

deterministic drops in the order of some parts per millions, which

are however sufficient to bias the NDR computation.

range [4.7, 10.1]µs. The higher values for the average and

standard deviation in the MIX scenario are compensated

by the fact that the 99th percentile is bounded at 13.2µs.

In other words, when the system is not overloaded, the

measured latency is similar independently from the sce-

nario that we consider.

Focusing on the 0.99 R+case, we observe that, as ex-

pected, the XC scenario shows the lowest values of latency,

being on average 24.3µs. In this scenario, as soon as pack-

ets are received at the input port, a vector is immediately

created and forwarded to the output port (therefore, the

graph traversal is minimal, and consists only to few nodes

dealing mostly with I/O). Latency increases when VPP

starts performing a regular graph traversal, as shown by

Fig.10. The average latency is 35.6µs and 66.4 µs for the

IP and the Mixed case respectively. The histogram shows

that the latency histogram moves towards higher values

of latency when the scenario changes from XC to IP and

then to the MIX case. At the same time, the standard

deviation increases more for the MIX case, meaning that

values are less concentrated among the average, thus re-

sulting in a more spread histogram. This increase is due

17

Physical
core

Virtual
core 1

Virtual
core 2

Instance
of process0

2
4
6
8

10
12
14
16

Single core Single core
(worker)

2 threads
1 core

2 threads
2 cores

Line rate

Ra
te

 [M
pp

s]

XC 2.6 GHz
IP (130k) 2.6 GHz

XC 3.6 GHz
IP (130k) 3.6 GHz

Figure 11: VPP performance for different CPUs (2.6GHz vs 3.6GHz)

and core allocation strategies. We plot, left to right, results for a

single core running management and forwarding graph; then a single

core running just the forwarding graph (1 worker); we then place two

workers on a single core and finally two workers on different cores.

to the presence of multiple paths in the forwarding graph:

a packet in the first positions of the first sub-vector would

experience a higher latency than the last packet of the last

sub-vector since the final forwarding operation should wait

for all the batch to be processed (and in the case a path

split, the small batches have to be re-aggregated at the

last node).

We finally highlight that even for the MIX scenario (our

worst case) the 99th percentile is smaller than 90 µs and

the standard deviation is 30.1 µs: this proves deterministic

performance and a small worst case value, testifying that

VPP is suitable for many applications in the context of

high-speed networking in an NFV environment.

5.7. Impact of core allocation

Processing and forwarding rates are tightly coupled

with characteristics of the HW architecture, such as the

cache size, the CPU frequency, the thread placement etc.

We show in Fig. 11 the achievable forwarding rates for a

CPU running at 2.6 GHz (the one used in the manuscript)

as well as for a second one running at a higher clock speed

of 3.6 GHz. For both experiments we first focus on VPP

running on a single core (i) that is our baseline. We then

separate the main core from the workers (cfr. Sec. 4.2) and

place (ii) one worker on a single core; (iii) two workers on

a single core in HyperThreading; (iv) two workers on two

separate cores.

The figure clearly shows that working at 3.6 GHz, VPP

(XC) is able to sustain line rate in all scenarios, including

the most conservative one. Similarly, the IPv4 forwarding

performance are very close to the line rate already for a

single worker (i)-(ii) and achieve the line rate already for

two workers sharing a physical core (iii). Clearly, as IPv4

forwarding was already achieving line rate at 2.6GHz on

two cores, this is still the case at 3.6GHz (iv). We point

that this behavior also applies for the IPv6 case: with our

2.6 GHz CPU, the throughput of a simple IPv6 scenario

ranges from 7.78 Mpps on a single core, to 8.10 Mpps

when using a separate worker, to reach 9.19 Mpps when

placing two workers on a single physical core and finally

ending close to line rate, at 14.15 Mpps when allocating

two separate cores.

These results confirm that VPP is able to sustain the

14.88Mpps line rate for XC and IP on on a single core

for different architectures. However we preferred to report

conservative results in this article (as all our experiments

refer to the 2.6GHz single core case). Indeed, while quanti-

tative results may vary (as hardware obsoletes by design),

the observations we gather here are qualitatively valid to

a larger extent.

5.8. Comparison with l3fwd DPDK application

We finally confront VPP with open-source software

performing similar functions: we choose the default DPDK

l3fwd application. At the same time, we point out that

there is a fundamental difference concerning the operations

performed by VPP and those performed by l3fwd: no-

tably, VPP L3 operations include all necessary operations

for a fully fledged IP router, which not only involve lookup,

but also modification of the forwarded packets (i.e., TTL

decrement, checksum update). Conversely, l3fwd is a spe-

cialized function, built on top of the DPDK library, which

18

0
2
4
6
8

10
12
14
16

Single core Single core
(worker)

2 threads
1 core

2 threads
2 cores

XC conservative baseline

Line rate

IP conservative baseline

N.A
.Ra

te
 [M

pp
s]

VPP XC VPP IP (130k) L3FWD (130k)

Figure 12: VPP vs DPDK l3fwd performance for different core allo-

cation strategies

merely accesses the mbuf memory in read mode to perform

the L3 lookup, but is not otherwise writing to the memory

to modify the packet payload. Given the cost of memory

accesses, this is an important difference to keep in mind

when comparing VPP and l3fwd performance.

Furthermore, there is a second fundamental difference

concerning the system level architecture of VPP and the

l3fwd, which concerns in particular the DPDK and VPP

programming model and notably impacts the core alloca-

tion. VPP runs as a router, and it is aware of all the

interfaces it deals with: thus, in VPP a thread is bound

(via the DPDK drivers) to a NIC RSS queue, typically al-

located in a separate core. On the contrary, l3fwd uses the

DPDK poll-mode driver that avoids lock contention allo-

cating a different logical core (lcore) to each receive NIC12.

Thus, the simplest DPDK l3fwd case is represented by two

NICs, governed using two cores (in our scenario, one core

for the RX on the first NIC, and one core for the TX on

the second NIC).

With these differences in mind, we report in Fig.12 a

comparison of XC and L3 lookup for VPP and l3fwd in the

same experimental conditions of the paper, for 4 different

configurations: (i) single core (ii) single core worker (iii) 2

threads 1 core (iv) 2 threads 2 cores.

12see section 8.1 of the DPDK manual https://dpdk.org/doc/

guides/prog_guide/poll_mode_drv.html)

Notice that (i) is the conservative scenario used through-

out the paper for VPP: in this scenario, for which the

DPDK l3fwd example is not designed for, VPP outper-

forms l3fwd. Notice then that in the typical case (ii) of

a dedicated per-worker core, which is not supported by

l3fwd, the performance of VPP ameliorate mainly because

of the reduced interference with non-data-plane tasks (and

despite the main core being almost idle). The l3fwd ap-

plication is instead optimized for scenario (iii), where it

indeed achieves line rate forwarding: VPP performance

benefits of the increased number of cores, although the rate

does not match that of l3fwd. This is due to two main

reasons: first, the fully fledged VPP router also has to alter

the forwarded packets (unlike the simpler l3fwd applica-

tion); second, the high IPC observed in Sec. 5.2 (already

higher than 2 on average) implies that VPP performance

can ameliorate (but not double) when run over multiple

logical cores in hyper-threading. Finally, (iv) both l3fwd

and VPP achieve line rate IPv4 forwarding over fairly large

FIBs when using 2 cores.

To summarize the results for different core allocations

shown in Fig.12, we deduced that using a similar core al-

location in VPP allows to reach line rate with only 2 cores

at 2.6 GHz in both XC and IP experiments; at the same

time, running the l3fwd example in a scenario in which all

resources are used in a single core at 2.6 GHz (hence, lock-

ing mechanisms are required and l3fwd is not optimized

for this) lowers the overall performance.

6. Conclusion

This paper introduces Vector Packet Processing (VPP),

a feature-rich high-performance software router, both illus-

trating its main novelty from an architectural viewpoint,

as well as extensively assessing its performance through ex-

periments. Thanks to its flexibility and high performance

(up to more than 12 Mpps on a single commodity CPU

core), VPP may allow network managers to deploy NFV

19

functions on COTS hardware with hardware-comparable

performance. We now summarize our main findings.

Compute batching. With respect to the previously in-

troduced techniques, it is worth pointing out that VPP

extends batching from pure I/O, which merely reduces

interrupt overhead, to complete graph processing, in a sys-

tematic fashion so that it amortizes the software frame-

work overhead). Indeed, even though extension of batch-

ing to processing is attempted in FastClick [11], it is inter-

esting to notice that its implementation is done at a much

higher level (i.e., on top of the processing Click graph, only

from dedicated elements with separate APIs, and imple-

mented with linked lists) than in VPP, where batch pro-

cessing becomes the sole low-level primitive. The low-level

vectorized processing primitive offered by VPP is key to

its performance, as it increases both data cache hit rate

(with prefetching) and instruction cache hit rate (inher-

ently, since the same node functions are repeated over

packets in the batch), as well as increasing the processor

IPC (using multi-loop).

Performance analysis. We evaluate the VPP perfor-

mance, both in stress tests and realistic scenarios, demon-

strating the soundness of VPP’s architectural design. We

show that the vectorized processing approach allows to

experience high-speed packet processing while keeping low

latency values. We show that the design is scalable, as

line rate is achieved on commodity CPUs with a small

number of cores. We explain the relationship of the maxi-

mum vs actual vector size as a function of the load, which

is of uttermost importance for the framework gain. We

also quantify the precise cycle-level breakdown of the func-

tion cost in each node of the VPP framework, to show

the relative cost. We show the impact of varying work-

load (random/deterministic/round-robin spatial traffic) on

VPP performance and we finally assess the predictability

of packet processing latency across a spectrum of load and

functions.

Comparison with l3fwd. We prove that the overhead of

the framework is limited, by comparing VPP with the sim-

ple l3fwd DPDK application that, differently from VPP,

implements only a set of layer 3 functionalities (the longest-

prefix matching). We compare the performance of VPP

and l3fwd on a set of multi-core configurations, showing

that VPP can achieve a similar forwarding rate and, at

the same time, a superset of L2/L3 and L4 functionalities.

Open points. VPP is a mature software router that pro-

vides a full-router functionalities, well-suited for NFV ap-

plications or any high-speed network application in com-

modity hardware. At the same time, VPP is not the only

high-speed software packet forwarding framework available

nowadays, several of which are overviewed in [15]: as such,

interesting questions that remain now open are (i) a de-

tailed quantitative performance comparison of such frame-

works, as well as (ii) a more systematic study in regimes

where the aggregate traffic flowing on a single box exceed

the 100Gbps, where the PCIx express bus can become a

bottleneck.

Acknowledgments

This work has been carried out at LINCS (http://

www.lincs.fr) and benefited from support of NewNet@Paris,

Cisco’s Chair “Networks for the Future” at Telecom

ParisTech (https://newnet.telecom-paristech.fr).

Bibliography

[1] Rust - system programming language. https://www.

rust-lang.org/en-US/, (visited on 04-10-2018).

[2] 6WIND Products. http://www.6wind.com/products/, (visited

on 10-09-2018).

[3] Contiv. http://contiv.github.io/, (visited on 10-09-2018).

[4] Data Plane Development Kit. http://dpdk.org, (visited on 10-

09-2018).

[5] Intel’s GTP-U implementation. https://goo.gl/CHYTCn, (vis-

ited on 10-09-2018).

[6] NetGate’s pfSense. https://www.netgate.com/solutions/

pfsense/, (visited on 10-09-2018).

[7] Networking VPP. https://wiki.openstack.org/wiki/

Networking-vpp, (visited on 10-09-2018).

20

[8] The Open Data Plane (ODP) Project. https://www.

opendataplane.org/, (visited on 10-09-2018).

[9] Vector packet processor benchmark. https://newnet.

telecom-paristech.fr/index.php/vpp-bench, (visited on 10-

09-2018).

[10] Dave Barach, Leonardo Linguaglossa, Damjan Marion, Pierre

Pfister, Salvatore Pontarelli, and Dario Rossi. High-speed Soft-

ware Data Plane via Vectorized Packet Processing. In IEEE

Communication Magazine (to appear), 2018.

[11] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast

userspace packet processing. In ACM/IEEE ANCS, 2015.

[12] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman,

Christos Kozyrakis, and Edouard Bugnion. IX: A Protected

Dataplane Operating System for High Throughput and Low

Latency. In USENIX OSDI, 2014.

[13] Peter A Boncz, Stefan Manegold, Martin L Kersten, et al.

Database architecture optimized for the new bottleneck: Mem-

ory access. In VLDB, 1999.

[14] Joe Bradel. Non-preemptive multitasking. The Computer Jour-

nal, 30, 1988.

[15] D. Cerovic, V. Del Piccolo, A. Amamou, K. Haddadou, and

G. Pujolle. Fast packet processing: A survey. IEEE Communi-

cations Surveys Tutorials, pages 1–1, 2018.

[16] D. Barach and E. Dresselhaus. Vectorized software packet for-

warding, June 2011. US Patent 7,961,636.

[17] David Levinthal. Performance analysis guide for in-

tel core i7 processor and intel xeon 5500 processors.

https://software.intel.com/sites/products/collateral/

hpc/vtune/performance_analysis_guide.pdf, (visited on

10-09-2018).

[18] Luca Deri et al. Improving passive packet capture: Beyond

device polling. In Proc. of SANE, 2004.

[19] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Flo-

rian Wohlfart, and Georg Carle. Moongen: a scriptable high-

speed packet generator. In ACM IMC, 2015.

[20] The Linux Foundation. Fast Data Project (FD.io). https:

//fd.io, (visited on 10-09-2018).

[21] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and

G. Carle. Comparison of frameworks for high-performance

packet io. In ACM/IEEE ANCS, 2015.

[22] Massimo Gallo and Rafael Laufer. Clicknf: a modular stack for

custom network functions. In 2018 USENIX Annual Technical

Conference (ATC), 2018.

[23] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,

Dongsu Han, and Sylvia Ratnasamy. Softnic: A software nic

to augment hardware. Tech.Rep., 2015.

[24] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon.

PacketShader: a GPU-accelerated software router. In ACM

SIGCOMM, 2010.

[25] Tom Herbert and Willem de Bruijn. Scaling in the linux net-

working stack. https://www.kernel.org/doc/Documentation/

networking/scaling.txt, 2011.

[26] Intel. Haswell Micro-architecture Reference

Manual. https://www.intel.com/content/

www/us/en/architecture-and-technology/

64-ia-32-architectures-optimization-manual.html, (vis-

ited on 10-09-2018).

[27] Anuj Kalia, Dong Zhou, Michael Kaminsky, and David G An-

dersen. Raising the bar for using gpus in software packet pro-

cessing. In USENIX NSDI, 2015.

[28] Joongi Kim, Seonggu Huh, Keon Jang, KyoungSoo Park, and

Sue Moon. The power of batching in the click modular router.

In Asia-Pacific Workshop on Systems, 2012.

[29] Davide Kirchner, Raihana Ferdous, Renato Lo Cigno, Leonardo

Maccari, Massimo Gallo, Diego Perino, and Lorenzo Saino. Au-

gustus: a ccn router for programmable networks. In ICN, 2016.

[30] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and

Frans Kaashoek. The Click Modular Router. Operating Systems

Review, 34(5):217–231, 1999.

[31] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian

Luo, Ningyi Xu, Yongqiang Xiong, and Peng Cheng. ClickNP.

In ACM SIGCOMM, 2016.

[32] M. Dobrescu et al. Routebricks: exploiting parallelism to scale

software routers. In SIGOPS, 2009.

[33] Rodrigo Mansilha, Lorenzo Saino, M Barcellos, M Gallo,

E Leonardi, D Perino, and D. Rossi. Hierarchical Content Stores

in High-speed ICN Routers: Emulation and Prototype Imple-

mentation. In ACM ICN, 2015.

[34] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit

Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. E2:

A framework for nfv applications. In SOSP. ACM, 2015.

[35] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia

Ratnasamy, and Scott Shenker. Netbricks: Taking the v out of

nfv. In USENIX OSDI, 2016.

[36] Diego Perino, Matteo Varvello, Leonardo Linguaglossa,

Rafael P. Laufer, and Roger Boislaigue. Caesar: a content router

for high-speed forwarding on content names. In ACM/IEEE

ANCS, 2014.

[37] Simon Peter, Thomas Anderson, and Timothy Roscoe. Arrakis:

The Operating System as Control Plane. ACM Transactions on

Computer Systems, 38(4):44–47, 2013.

[38] Luigi Rizzo. netmap: a novel framework for fast packet I/O. In

USENIX ATC, 2012.

[39] Pedro M. Santiago del Ŕıo, D. Rossi, F. Gringoli, L. Nava,

L. Salgarelli, and J. Aracil. Wire-speed statistical classifica-

tion of network traffic on commodity hardware. In ACM IMC,

21

2012.

[40] The Linux Foundation. FD.io’s VPP Features. https://wiki.

fd.io/view/VPP/Features, (visited on 10-09-2018).

[41] The Linux Foundation - IO Visor. The eXpress Data Path

(XDP) project. https://www.iovisor.org/technology/xdp,

(visited on 10-09-2018).

[42] Shinae Woo and KyoungSoo Park. Scalable TCP session mon-

itoring with symmetric RSS. In KAIST Tech. Rep., 2012.

Leonardo Linguaglossa is a post-doctoral

researcher at Telecom ParisTech. He received his

MSc. in telecommunication engineering from Uni-

versity of Catania in 2012, and his PhD in Com-

puter Science in 2016 through a joint program

among Alcatel-Lucent Bell Labs, INRIA and Uni-

versity Paris 7. His research interests focus in the design and proto-

typing of systems for high-speed networks.

Dario Rossi is Professor at Telecom Paris-

Tech and Ecole Polytechnique. He received his

MSc and PhD degrees from Politecnico di Torino

in 2001 and 2005 respectively. He has coauthored

over 150 conference and journal papers, received

several best paper awards, a Google Faculty Re-

search Award (2015), and an IRTF Applied Net-

work Research Prize (2016). He is a Senior Member of IEEE and

ACM.

Salvatore Pontarelli is a CNIT Senior Re-

searcher at University of Rome Tor Vergata. He

received his MSc. in electronic engineering from

University of Bologna in 2000 and his PhD from

the University of Rome Tor Vergata in 2003. He

participated in several national and EU funded re-

search programs. His research interests include hash based structures

for network applications, HW design of SDN devices and stateful

programmable data planes.

David Barach is a Cisco Fellow specializ-

ing in networking data-plane codes. He is the in-

ventor of the Vector Packet Processor code: be-

fore the recent open-source release, VPP princi-

ples were implemented in most of the high-speed

Cisco routers.

Damjan Marion is a Principal Engineer

of the Chief Technology and Architecture Office

(CTAO) at Cisco Systems. He is a regular com-

miter of many open-source projects, among which

the Fast Data I/O project (FD.io) and of the VPP

source code relase in particular.

Pierre Pfister is a Software Engineer at

Cisco. He received a MSc from the Ecole Poly-

technique in 2012. He is an active partici-

pant and author at IETF (homenet, 6man, bier

and hackathons) and co-developed the reference implementation of

HNCP on OpenWrt platform. He is now commiter to FD.io and

active contributor to the VPP project.

22

