
1

Caching Encrypted Content
via Stochastic Cache Partitioning

Andrea Araldo∗, György Dán†, Dario Rossi∗
∗ Telecom ParisTech, Paris, France – {andrea.araldo,dario.rossi}@telecom-paristech.fr

† School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden – gyuri@ee.kth.se

Abstract—In-network caching is an appealing solution to cope
with the increasing bandwidth demand of video, audio and
data transfer over the Internet. Nonetheless, in order to protect
consumer privacy and their own business, Content Providers
(CPs) increasingly deliver encrypted content, thereby preventing
Internet Service Providers (ISPs) from employing traditional
caching strategies, which require the knowledge of the objects
being transmitted.

To overcome this emerging tussle between security and effi-
ciency, in this paper we propose an architecture in which the
ISP partitions the cache space into slices, assigns each slice to a
different CP, and lets the CPs remotely manage their slices. This
architecture enables transparent caching of encrypted content,
and can be deployed in the very edge of the ISP’s network
(i.e., base stations, femtocells), while allowing CPs to maintain
exclusive control over their content. We propose an algorithm,
called SDCP, for partitioning the cache storage into slices so
as to maximize the bandwidth savings provided by the cache.
A distinctive feature of our algorithm is that ISPs only need
to measure the aggregated miss rates of each CP, but they
need not know of the individual objects that are requested.
We prove that the SDCP algorithm converges to a partitioning
that is close to the optimal, and we bound its optimality gap.
We use simulations to evaluate SDCP’s convergence rate under
stationary and non-stationary content popularity. Finally, we
show that SDCP significantly outperforms traditional reactive
caching techniques, considering both CPs with perfect and with
imperfect knowledge of their content popularity.

I. INTRODUCTION

It is widely known that content delivery over the Internet
represents a sizeable and increasing fraction of the overall
traffic demand. Furthermore most of the content, including
video, is carried over HTTP: this evolution of the last decade
was not among those forecasted for the IP hourglass model
evolution [1], and is rather a choice of practical convenience.
This evolution has a tremendous practical relevance, to the
point that HTTP was overtly recognized [2] and proposed [3]
as the new de facto “thin waist” of the TCP/IP protocol family.

Recently, we are on the verge of yet another shift of the
thin waist: we observe that the fraction of traffic delivered
through HTTPS has already passed 50% [4], and it is expected
to increase, as the IETF Internet Architecture Board (IAB)
recommends “protocol designers, developers, and operators to
make encryption the norm for Internet traffic” [5]. Besides
the IAB recommendation, Content Providers (CP) are already
heavily relying on encryption to both protect the privacy of
their users, as well as sensitive information (related to user
preferences) of their own business.

This evolution toward an all-encrypted Internet creates a
tussle between security and efficiency. Today’s Internet heavily
relies on middleboxes such as NATs (to combat the scarcity of
IPv4 addresses) and transparent or proxy caches [6] (to relieve
traffic load). However, some of these middleboxes simply fail
to operate in today’s Internet with end-to-end encryption: for
example, end-to-end encryption renders caching useless, since
(i) ISPs just observe streams of seemingly random bytes with
no visibility of objects and cannot select what to cache and
(ii) multiple transfers of the same object generate different
streams since the same object is encrypted with different
keys, thus destroying redundancy that caching would exploit
to relieve traffic load. At times where the design of the
new 5G architecture strives to reduce latency, increase the
available bandwidth and better handle mobility, this tradeoff is
especially unfortunate, as distributed caches represent a natural
way to reduce latency, reduce bandwidth usage and to cope
with mobility avoiding long detours to anchor points [7], [8].

This architectural evolution calls for a redesign of the
current operations involving both Internet Service Providers
(ISP) and Content Providers (CP): by design, the solutions
should preserve business-critical CP information (e.g., content
popularity, user preferences) on the one hand, while allowing
for a deeper integration of caches in the ISP architecture (e.g.,
in 5G femto-cells) on the other hand [9].

In this paper we address this issue by making the following
contributions:
• We propose an architecture in which the ISP partitions its

cache storage into slices and each CP manages its slice
by caching its most popular content, without having to
reveal sensitive information, such as content popularity,
to the ISP.

• We propose an algorithm called Stochastic Dynamic
Cache Partitioning (SDCP) based on stochastic sub-
gradient descent, which dynamically partitions the cache
storage among various CPs so as to maximize the cache
hit rate (hence, the bandwidth savings). To protect the
business-critical information of the CPs, the algorithm
only needs to measure the aggregate miss rates of the
individual CPs.

• We prove that the proposed SDCP algorithm converges
close to the allocation that maximizes the overall cache
hit rate, and provide a bound on the optimality gap.

• We show that the computational complexity of each step
of the algorithm is polynomial in the number of CPs,
which makes the algorithm easy to implement in practice.

2

Figure 1. System model. The ISP partitions the cache space of K slots among
P = 4 CPs.

• By means of an extensive performance evaluation via
simulation, we contrast our algorithm to classic caching
schemes, showing that gains maintain even in realistic
cases that include (i) time-varying content popularity as
well as (ii) imperfect knowledge of content popularity.

The rest of the paper is organized as follows. Sec. II
describes the system model and objectives. Sec. III introduces
our cache partitioning algorithm, of which we provide proof of
convergence in Sec. IV and a complexity analysis in Sec. V.
Sec. VI evaluates the performance of the algorithm through
simulations. Sec. VII reviews related work, and Sec. VIII
concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we first describe the system model and
introduce the main notation (Sec. II-A). We then formulate the
objective of the ISP that owns the cache in terms of miss-rate
minimization (Sec. II-B).

A. System Model

We consider a cache with a storage size of K slots (e.g.,
in units of MB) maintained by an operator, likely an ISP. As
illustrated in Fig. 1, the operator uses the cache to offer cache-
as-a-service to P Content Providers (CPs) by partitioning the
set of slots and assigning each partition slice to a different CP.

We denote by θp ∈ Z≥0 the number of cache slots allocated
to CP p, which it can use for caching its most popular content.
We define the set of feasible cache allocation vectors

Θ , {θ ∈ ZP≥0|
P∑
p=1

θp ≤ K} ⊂ ZP≥0. (1)

We consider that the arrival of requests for content can be
modeled by a stationary process, and the number of arrivals
over a time interval of length T can be bounded by some
positive constant A(T). This assumption is reasonable as
requests are generated by a finite customer population, and
each customer can generate requests at a bounded rate in
practice. Upon reception of a request for a content of the CPs
that share the cache, the request can either generate a cache hit
(for content stored in the CP partition at time of the request)

or a cache miss (otherwise). Formally, we denote by Lp(θp)
the expected cache miss rate (i.e., expected number of misses
per time unit) of CP p when allocated θp slots of storage.
We make the reasonable assumption that Lp is decreasing and
strictly convex on [0 . . .K], which corresponds to that having
more storage decreases the miss intensity (in expectation) with
a decreasing marginal gain, and each CP would in principle
have enough content to fill the entire storage. As an example,
if CP caches its θp most popular objects (ideal LFU) then
Lp(θp) would be the tail distribution (i.e., the complementary
cumulative distribution function) of the content popularity
distribution (e.g., Zipf). As another example, convexity also
holds if the CP uses probabilistic caching combined with
LRU, which has been shown to approximate the LFU cache
eviction policy as the admission probability approaches zero.
We investigate these (and other) examples having practical
relevance in the numerical results section.

For convenience, we define the expected cache miss inten-
sity vector

~L(θ) , (L1(θ1), . . . , LP (θP))
T
. (2)

Finally, we define the overall expected cache miss intensity

L(θ) ,
P∑
p=1

Lp(θp). (3)

We assume that (i) the content in each cache slice is
encrypted by the respective CP so that the ISP cannot read
it, that (ii) the ISP cannot observe what content an individual
request is for, but that (iii) it can observe the number of content
requests received by a CP and the corresponding number of
cache misses. By doing so, the CP retains precious business
information related to individual content, whereas the ISP
retains the ability to measure network-related performance,
as it only measures the miss rate of aggregated content. The
exact mechanisms for CP and ISP interaction are outside of
the scope of our work, but the ongoing standardization effort
at the ETSI Industry Specification Group (ISG) on Mobile
Edge Computing (MEC) [9] is set out to define a set of APIs
to facilitate interactions such as the one we consider in this
paper.

Furthermore, we assume that cache misses do not signif-
icantly affect the users’ behavior, and thus the sequence of
cache allocation vectors θ ∈ Θ and the arrival of requests for
content is jointly stationary. This is to say that users’ taste
in terms of content is not affected by the QoS/QoE metrics
(e.g., increased delay as a consequence of a cache miss),
which reasonably holds in practice. Finally, we assume that
each CP p uses a cache policy that results in a stationary
placement of files placed in its storage, given the allocated
storage size θp, e.g., the CP could place its θp most popular
objects (as with an ideal Least Frequently Used (LFU) policy)
or could use one of the many cache eviction and replacement
policies (as with a classic Least Recently Used (LRU) policy).
As a consequence, the sequence of cache allocation vectors
θ ∈ Θ and the sequence of cache misses are pairwise jointly
stationary.

3

Table I
FREQUENTLY USED NOTATION (WITH PLACE OF DEFINITION)

P Number of content providers (CP)
K Available cache slots
K′ Allocated cache slots (6)
θ Cache configuration
Θ Set of feasible cache allocations (1)
C Set of allowed virtual cache allocations (5)

L(θ) Expected cache miss intensity (3)
~L Miss intensity vector (2)

L̄(θ) Interpolant of the miss intensity (Lemma 8)
θ∗ Unique minimizer of L̄ (Lemma 8)

D(k) Perturbation vector (8)
+~y(k),− ~y(k) Measured miss stream vector lines 7 and 9 of Alg. 1

T Time slot length
ϕ Euclidean projection (10)

ĝ(k) Stochastic subgradient (line 11 of Alg. 1)
ḡ(θ) Subgradient of L̄ (24)
Γ(θ) Center-point function (7)
ρ Rank Estimation Accuracy (Sec. VI-E)

B. Problem Formulation

Given that the management of each slice is delegated to
the respective CP, the only task of the ISP is to decide how
to allocate the overall cache space among the different CPs.
At a high level, one can approach the problem of cache
storage allocation from the perspective of the CPs or from
the perspective of the cache owner. Approaching the problem
from the perspective of the CPs one can formulate a plethora
of objective functions (including abstract notions of utility,
based on quality of experience and considering fairness and/or
business preferences, etc.). Approaching the problem from the
cache owner’s perspective, the choice of the objective function
is instead much restrained: indeed, considering that caches
at the network edge are typically installed for reducing the
bandwidth requirements in the backhaul network (i.e., between
the edge and the core network), a reasonable objective is
maximize the cache hit rate, as that leads to the minimization
of bandwidth requirements.

In this work, we adopt the perspective of the cache owner
and consider that the ISP is interested in maximizing the
bandwidth savings achievable by the available cache storage,
and thus its objective is to find the optimal allocation θOPT

that minimizes the overall expected cache miss intensity, i.e.,

θOPT ∈ arg min
θ∈Θ

L(θ), (4)

based on the measured cache miss intensity. In what follows
we propose an algorithm that iteratively approximates the
optimal allocation θOPT in case of stationary popularities.
Given its iterative nature, the algorithm is also amenable to be
run continuously, so to track popularity changes in scenarios
with a dynamic catalog.

III. STOCHASTIC DYNAMIC CACHE PARTITIONING

We tackle the miss-rate minimization problem via Stochastic
Dynamic Cache Partitioning (SDCP). Our SDCP proposal is
an iterative algorithm that is executed over time slots of fixed
duration T . The pseudo code of the algorithm is shown in
Alg. 1. For simplicity we present the algorithm assuming
that P is even, but the case of an odd number of CPs can

Algorithm 1: Stochastic Dynamic Cache Partitioning
1 Choose an initial allocation θ0 ∈ C ∩ RP≥0

2 for k = 0; ; k ++ do
3 Generate D(k)

4 +θ(k) = Γ(θ(k)) + 1
2
D(k)

5 −θ(k) = Γ(θ(k))− 1
2
D(k)

6 Set the configuration to +θ(k) for time T/2
7 Measure +~y(k)

8 Set the configuration to −θ(k) for a time T/2
9 Measure −~y(k)

10 δ~y(k) =+ ~y(k) −− ~y(k)

11 ĝ(k) = δ~y(k) ◦D(k) − 1
P
· (δ~y(k)T ·D(k))1P

12 θ(k+1) = ϕ(θ(k) − a(k)ĝ(k))
13 end

be handled by introducing a fictitious CP with zero request
rate. Unless otherwise stated, we treat the case of stationary
popularities, and defer the case of dynamic popularities to the
performance evaluation section.

At time slot k the algorithm maintains a virtual cache
allocation θ(k). The virtual allocation is an allocation of K ′

storage slots among the CPs, i.e.,

θ(k) ∈ C ,
{
θ ∈ RP |1TP · θ , K ′

}
, (5)

where
K ′ = K − P/2. (6)

We will justify the introduction of K ′ and of C in the proof
of Lemma 6.

In order to obtain from θ(k) an integral allocation that
can be implemented in the cache, we define the center-point
function Γ : RP → RP , which assigns to a point in Euclidean
space the center of the hypercube containing it, i.e.,

γ(x) , bxc+ 1/2, ∀x ∈ R,
Γ(θ) , (γ(θ1), . . . , γ(θP))

T
, ∀θ ∈ C,

(7)

where we use b·c to denote the floor of a scalar or of a
vector in the component-wise sense. Furthermore, we define
the perturbation vector D(k) = (D

(k)
1 , . . . , D

(k)
P)T at time slot

k, which is chosen independently and uniform at random from
the set of −1,+1 valued zero-sum vectors

D(k) ∈ Z ,
{
z ∈ {−1, 1}P

∣∣zT · 1P = 0
}
. (8)

Given Γ and D(k) the algorithm computes two cache
allocations to be implemented during time slot k,

+θ(k) , Γ(θ(k)) + 1
2D(k),

−θ(k) , Γ(θ(k))− 1
2D(k).

(9)

The algorithm first applies allocation +θ(k) for T/2 amount of
time and measures the cache miss rate +y

(k)
p for each provider

p = 1, . . . , P , i.e. the amount of objects that are not found
in the cache and retried from the CP server. It then applies
allocation −θ(k) during the remaining T/2 amount of time in
slot k and measures the cache miss rates −y(k)

p . The vectors
of measured cache misses −~y(k) , (−yk1 , . . . ,

− y
(k)
P)T and

+~y(k) , (+yk1 , . . . ,
+ y

(k)
P)T are used to compute the impact

4

δy
(k)
p ,+ y

(k)
p −− y(k)

p of the perturbation vector on the cache
miss intensity of CP p, or using the vector notation δ~y(k) ,+

~y(k) −− ~y(k).
Based on the measured miss rates, the algorithm then

computes the allocation vector θ(k+1) for the (k+ 1)-th step.
Specifically, it first computes (line 11, where ◦ denotes the
Hadamard product) the update vector ĝ(k), which we show in
Cor. 12 to match in expectation a subgradient of the miss-
stream interpolant L̄, defined in Lemma 8. The (k + 1)-th
allocation moves from the k-th allocation in the direction
of the update vector ĝ(k), opportunely scaled by a step size
a(k) > 0. Additionally, denoting with R≥0 the set of non-
negative numbers, θ(k+1) is computed using the Euclidean
projection ϕ : C → C ∩ RP≥0, defined as

ϕ(θ) , arg min
θ′∈C∩RP

≥0

‖θ− θ′‖. (10)

Several remarks are worth making. First, we will show in
Lemma 5 that the equation above admits a unique solution
and thus the definition is consistent. Second, we will show in
Lemma 6 that ĝ computed as in line 11 guarantees that the
update θ(k) − a(k)ĝ(k) at line 12 lies inside C. Nonetheless,
this update may have some negative components and we need
to project it into C ∩ R≥0 by applying ϕ, to ensure that the
subsequent virtual allocation θ(k+1) is valid. Third, the step
size a(k) must be chosen to satisfy

a(k) > 0,∀k > 0 (11)
∞∑
k=1

a(k) =∞ (12)

∞∑
k=1

(a(k))2 <∞ (13)

in order to guarantee convergence (see Theor. 14). Fourth,
although the convergence of the proposed algorithm is guar-
anteed, for stationary content popularity, irrespectively of the
choice of a(k) satisfying the above conditions, we point out
that the step size plays an important role in determining the
convergence speed, which we will numerically investigate in
Sec. VI.

IV. CONVERGENCE ANALYSIS OF SDCP
We first provide definitions and known results (Sec.IV-A)

that are instrumental to prove important properties of the
proposed algorithm: consistency (Sec.IV-B), convergence
(Sec.IV-C) and a bound on the optimality gap (Sec.IV-D).

A. Preliminaries

Let us start by introducing the forward difference defined
for functions on discrete sets.

Definition 1. For a function F : Zq1 → Rq2 , q1, q2 ≥ 1 the
forward difference is

∆nF(x) , F(x + n · 1q1)− F(x),∀x ∈ Zq1 , n ∈ Z \ {0},

where 1q is the column vector of all ones of dimension q.
By abuse of notation, we will simply use ∆F(x) to denote
∆1F(x).

The forward difference is convenient for characterizing
convexity using the following definition [10].

Definition 2. A discrete function F : Z→ R is strictly convex
iff x→ ∆F (x) is strictly increasing.

Furthermore, for a class of functions of interest we can
establish the following.

Lemma 3. Let F : Z→ R be decreasing and strictly convex,
x ∈ Z and n ∈ Z \ {0}, then we have

∆nF (x) > n∆F (x). (14)

Proof:
We first show that ∀x, y ∈ Z such that y > x, the following

holds

∆nF (y) > ∆nF (x) if n > 0, (15)
∆nF (y) < ∆nF (x) if n < 0. (16)

For n > 0 we can use Def. 2 to obtain

∆nF (y) =

n−1∑
i=0

[F (y + i+ 1)− F (y + i)] =

n−1∑
i=0

∆F (y + i)

>

n−1∑
i=0

∆F (x+ i) = ∆nF (x), (17)

which proves (15).
For n < 0 algebraic manipulation of the definition of the

forward difference and (17) gives

∆nF (y) = −∆|n|F (y−|n|) < −∆|n|F (x−|n|) = ∆nF (x),

which proves (16). To prove (14) for n > 0, observe that
thanks to Def. 2, each of the n terms of the last summation
in (15) is lower bounded by ∆F (x). For n < 0 via algebraic
manipulation we obtain

∆nF (x) = −
|n|∑
i=1

∆F (x−i) > −
|n|∑
i=1

∆F (x) = −|n|·∆F (x),

which proves (14) as |n| = −n.
Since SDCP generates virtual configurations whose compo-

nents are not necessarily integer, we have to extend the discrete
functions Lp to real numbers. Thanks to Theor. 2.2 of [11],
we have the following existence result.

Lemma 4. Given a discrete decreasing and strictly convex
function F : Z → R, there exists a continuous and strictly
convex function F̄ : R → R that extends F , i.e., F (x) =
F̄ (x),∀x ∈ Z. We call F̄ the interpolant of F .

Finally, we formulate an important property of the Euclidean
projection ϕ.

Lemma 5. There is a unique function ϕ satisfying (10).
Furthermore, ϕ satisfies

‖ϕ(θ)− θ′‖ ≤ ‖θ− θ′‖,∀θ ∈ C,θ′ ∈ C ∩ RP≥0, (18)

i.e., ϕ(θ) is no farther from any allocation vector than θ.

Proof: Observe that C∩RP≥0 is a simplex, and thus closed
and convex. Hence, the Euclidean projection ϕ is the unique

5

solution of (10) [12]. Furthermore, the Euclidean projection is
non-expansive (see, e.g., Fact 1.5 in [13]), i.e., for θ,θ′ ∈ C
it satisfies ‖ϕ(θ) − ϕ(θ′)‖ ≤ ‖θ − θ′‖. Observing that if
θ′ ∈ C ∩ RP≥0 then ϕ(θ′) = θ′ proves the result.

B. Consistency

We first have to prove that during each time slot the
configurations −θ(k),+ θ(k) that SDCP imposes on the cache
are feasible. This is non-trivial, as the operators used in
computing the allocations are defined on proper subsets of Rp.
The following lemma establishes that the allocations computed
by SDCP always fall into these subsets.

Lemma 6. The allocations θ(k) are consistent in every time
slot, as they satisfy
(a) θ(k) − akĝ(k) ∈ C,
(b) θ(k+1) ∈ C ∩ RP≥0,
(c) +θ(k),− θ(k) ∈ Θ.

Proof: Recall that θ0 ∈ C ∩ RP≥0. To show (a) observe
that

ĝ(k) · 1P =

P∑
p=1

δy(k)
p ·D(k)

p −
P∑
p=1

δy(k)
p ·D(k)

p = 0, (19)

and thus if θ(k) ∈ C, then θ(k)− a(k)ĝ(k) ∈ C. The definition
of the Euclidean projection (10) and (a) together imply (b).
Finally, observe that if D(k) = (z1, . . . , zP)T ∈ Z , as in (8),
then since half of the zp equal −1 and half of them equal +1,
we can write

1T ·+ θ(k) =

P∑
p=1

[
bθkpc+

1 + zp
2

]
=

= 1T · bθc+
P

2
≤ 1T · θ+

P

2
≤ K ′ + P

2
= K,

(20)

which proves (c). Note that the above motivates the choice of
K ′ in the definition of the set of virtual allocations C, as if
K ′ > K − P

2 then +θ(k),− θ(k) ∈ Θ may be violated due to
the use of the mapping γ and D(k) in (9).

C. Convergence

To prove convergence of SDCP, we first consider the
relationship between the measured miss rates +y

(k)
p and −y(k)

p

and the expected miss intensities Lp(+θ
(k)
p) and Lp(

−θ
(k)
p),

respectively. We define the measurement noise
+ε(k) ,+ ~y(k) − ~L(+θ(k)),
−ε(k) ,− ~y(k) − ~L(−θ(k))

(21)

and the corresponding differences

δε(k) , +ε(k) −− ε(k),

δ~L(k) , ~L(+θ(k))− ~L(−θ(k)).
(22)

Observe that D(k), +~y(k) and −~y(k) are random variables
and form a stochastic process. Using these definitions we can
formulate the following statement about the measured miss
rates.

Lemma 7. The conditional expectation of the measurement
noise and its difference satisfy

E[δε(k)|θ(k)] = 0p. (23)

Proof: Observe that due to the stationarity of the re-
quest arrival processes we have E[+ε(k)|θ(k)] = 0 and
E[−ε(k)|θ(k)] = 0, which due to the additive law of expecta-
tion yields the result.

Intuitively, this is equivalent to saying that the sample
averages provide an unbiased estimator of the miss rates. In
what follows we establish an analogous result for the update
vector ĝ(k) with respect to a subgradient of the interpolant
L̄ of the expected miss intensity L, which itself is a discrete
function. We define and characterize L̄ in the following lemma,
which recalls known results from convex optimization.

Lemma 8. Given the interpolants L̄p of the expected miss
intensities Lp of the CPs and defining the interpolant of L as
L̄(θ) ,

∑P
p=1 L̄p(θp),∀θ ∈ RP≥0, L̄ is strictly convex and

admits a unique minimizer θ∗ in C ∩ RP≥0.

Proof: Recall that each interpolant L̄p of Lp is strictly
convex as shown in Lemma 4. The strict convexity of L̄
can then be obtained applying Proposition 1 of [14]. Then,
we observe that θ∗ is the solution to a convex optimization
problem with a strictly convex objective function, which is
unique (Sec. 4.2.1 of [15].

For completeness, let us recall the definition of a subgradient
of a function from (see, e.g., [14]).

Definition 9. Given a function L̄ : Rp → R, a function ḡ :
C ⊆ RP → RP is a subgradient of L̄ over C iff

L̄(θ′)− L̄(θ) ≥ ḡ(θ)T · (θ′ − θ),∀θ,θ′ ∈ C.

We are now ready to introduce a subgradient ḡ(θ) for the
interpolant of the expected cache miss intensity L̄.

Lemma 10. The function

ḡ(θ) , ∆~L(k)(bθc)− 1

P
·∆L(bθc) · 1P (24)

is a subgradient of L̄ over C ∩ RP≥0.

Proof: Observe that for θ,θ′ ∈ C

ḡ(θ)T · (θ′ − θ) = ∆~L(k)(bθc)T · (θ′ − θ)

− 1

P
·∆L(bθc) ·

[
1TP · (θ

′ − θ)
]
.

At the same time, for θ,θ′ ∈ C we have

1TP · (θ
′ − θ) = (1TP · θ

′ − 1TP · θ) = K ′ −K ′ = 0.

Therefore, for any θ,θ′ ∈ C

ḡ(θ)T · (θ′ − θ) = ∆~L(k)(bθc) · (θ′ − θ). (25)

Thus, according to Def. 9, in order to show that ḡ is a
subgradient of L̄ it suffices to show that

P∑
p=1

[
L̄p(θ

′
p)− L̄p(θp)

]
≥

P∑
p=1

∆Lp(bθjc) · (θ′p − θp). (26)

6

We now show that this holds component-wise. If
bθ′pc − bθpc = 0, then the above clearly holds. Otherwise,
if n = bθ′pc − bθpc 6= 0 we apply a well known property of
convex functions (Theor. 1.3.1 of [16]) to obtain:

L̄p(bθ′pc)− L̄p(bθpc)
(bθ′pc − bθpc)

≤
L̄p(θ

′
p)− L̄p(θp)

(θ′p − θp)

≤
L̄p(bθ′pc+ 1)− L̄p(bθpc+ 1)

(bθ′pc+ 1− (bθpc+ 1))
,

which, by Def. 1, can be rewritten as:

∆nLj(bθjc)
n

≤
L̄p(θ

′
p)− L̄p(θp)
θ′p − θp

≤ ∆nLj(bθj + 1c)
n

. (27)

For n > 0 we can use the first inequality of (27) and Lemma 3
to obtain

L̄p(θ
′
p)− L̄p(θp) ≥ ∆Lj(bθjc) · (θ′p − θp). (28)

For n < 0 we can use the second inequality of (27) and
Lemma 3 to obtain

L̄p(θ
′
p)− L̄p(θp)
θ′p − θp

≤ ∆Lj(bθj + 1c) ≤ ∆Lj(bθjc) (29)

and by multiplying the first and the second term of (29) by
θ′p− θp (which is negative since n = bθ′pc−bθpc is negative),
we obtain the result.

The subgradient ḡ will be central to proving the conver-
gence of SDCP, but it cannot be measured directly. The next
proposition establishes a link between the update vector ĝ(k),
which we compute in every time slot, and the subgradient ḡ.

Proposition 11. The update vector ĝ(k) is composed of the
subgradient ḡ plus a component due to the noise,

ĝ(k) = ḡ(θ(k)) + δε(k) ◦D(k) − 1

P
·
[
δε(k)T ·D(k)

]
1P .

Proof: We first apply (22) to obtain

ĝ(k) = δ~L(k) ◦D(k) − 1

P
· (δ~L(k)T ·D(k))1P (30)

+ δε(k) ◦D(k) − 1

P
· (δε(k)T ·D(k))1P .

Consider now a particular realization of the random variable
D(k). We can express component p of δ~L(k) ◦ D(k) =[
~L(+θ(k))− ~L(−θ(k))

]
◦D(k) as[

Lp

(
Π
(
θ(k)
p

)
+

1

2
D(k)
p

)
− Lp

(
Π
(
θ(k)
p

)
− 1

2
D(k)
p

)]
·D(k)

p

=

[
Lp

(
Π
(
θ(k)
p

)
+

1

2

)
− Lp

(
Π
(
θ(k)
p

)
− 1

2

)]
=
[
Lp

(
bθ(k)
p c+ 1

)
− Lp

(
bθ(k)
p c

)]
,

where the first equality can be easily verified assuming that
D

(k)
p = −1 and then assuming that it is D(k)

p = 1. We thus
obtain

δ~L(k) ◦D(k) = ∆~L(bθ(k)c)

and in scalar form

δ~L(k)T ·D(k) = ∆L(bθ(k)c).

By substituting these in (30)

ĝ(k) = ∆~L(bθ(k)c)− 1

P
·∆L(bθ(k)c) · 1P

+δε(k) ◦D(k) − 1

P
· (δε(k)T ·D(k))1P

and using (24), we obtain the result.
Furthermore, thanks to Lemma 7, the second term of (30),
which is due to the noise, is zero in expectation, which
provides the link between the update vector ĝ(k) and the
subgradient ḡ(θ(k)).

Corollary 12. The conditional expectation of ĝ(k) is
E[ĝ(k)|θ(k)] = ḡ(θ(k)) and thus ĝ(k) is a stochastic subgra-
dient of L̄, i.e. E[ĝ(k)] = ḡ(θ(k)).

Before we prove the main theorem, we formulate the
following basic result.

Lemma 13. Consider a sequence of allocations θ̂
(k)
∈ C such

that the sequence ‖θ̂
(k)
− θ∗‖2 converges to some z∗ > 0.

Then
∑∞
k=0[L̄(θ̂

(k)
)− L̄(θ∗)] = +∞.

Proof: By hypothesis, θ̂
(k)

is distant from the unique
minimizer θ∗, and thus

∃ε > 0 : ‖θ̂
(k)
− θ∗‖2 ≥ ε for k sufficiently large.

Let us define C′ = {θ ∈ C|‖θ−θ∗‖2 ≥ ε}, which is closed
and bounded. According to the Bolzano-Weierstrass theorem
there exists a subsequence θ̌

(k)
of θ̂

(k)
that converges to an

allocation θ′ ∈ C′. By construction, L̄ is continuous, whence
limk→∞ L̄(θ̌

(k)
) = L̄(θ′) and, since L̄ has a unique mini-

mizer (Lemma 8), we can define 2ε′ = L̄(θ′) − L̄(θ∗) > 0.
By the definition of limit, for k sufficiently large, |L̄(θ̌

(k)
)−

L̄(θ′)| < ε′/2 , and thus L̄(θ̌
(k)

)− L̄(θ∗) > ε′/2. Therefore

∞∑
k=0

[L̄(θ̂
(k)

)− L̄(θ∗)] ≥
∞∑
k=0

[L̄(θ̌
(k)

)− L̄(θ∗)] = +∞,

where, in the first inequality, we use the fact that [L̄(θ̌
(k)

)−
L̄(θ∗)] is a subsequence of the non-negative sequence
[L̄(θ̂

(k)
) − L̄(θ∗)] and the last equality is a well known

property of lower-bounded positive series.
We can now prove the main theorem.

Theorem 14. The sequence θ(k) generated by SDCP con-
verges in probability to the unique minimizer θ∗of L̄, i.e., for
arbitrary δ > 0

lim
k→∞

Pr{‖θ(k) − θ∗‖ > δ} = 0.

7

Proof: The proof of convergence is similar to (Theor. 46
in [14]), with the difference that our proof holds for Euclidean
projection-based stochastic subgradients. Let us compute

‖θ(k+1) − θ∗‖2 = ‖ϕ(θ(k) − a(k)ĝ(k))− θ∗‖2

≤ ‖θ(k) − a(k)ĝ(k) − θ∗‖2

= ‖θ(k) − θ∗‖2 − 2a(k) · (ĝ(k))T · (θ(k) − θ∗)
+(a(k))2 · ‖ĝ(k)‖2, (31)

where the first inequality is due to Lemma 5. Thanks to Cor. 12
and Def. 9, respectively

w(k) ,
(
E[ĝ(k)|θ(k)]

)T
· (θ(k) − θ∗)

=
(
ḡ(θ(k))

)T
· (θ(k) − θ∗) ≥ L̄(θ(k))− L̄(θ∗). (32)

Recall that the number of arriving requests per time slot A(T)
is bounded, and thus ‖ĝ(k)‖2 is bounded, i.e., ‖ĝ(k)‖2 ≤ c for
some 0 < c <∞. Hence, applying the expectation to (31)

E
[
‖θ(k+1) − θ∗‖2

∣∣∣θ(k)
]
≤ ‖θ(k) − θ∗‖2 + c(a(k))2. (33)

Defining the random variable

zk , ‖θ(k) − θ∗‖2 + c
∑∞
s=k(a(s))2,

it can be easily verified that (33) is equivalent to the in-
equality E[zk+1|zk, . . . , z1] ≤ zk. Consequently, {zk}∞k=1 is
a supermartingale and converges almost surely to a limit
z∗. Recalling now that the step size sequence by definition
satisfies limk→∞

∑∞
s=k(a(k))2 = 0, we have that the sequence

{‖θ(k) − θ∗‖2} also converges to z∗ with probability one.
What remains is thus to show that z∗ = 0, which we do

by contradiction. If this were not true, then there are ε > 0
and δ > 0 such that, with probability δ > 0, ‖θ(k) −θ∗‖ ≥ ε
for all sufficiently large k. Thanks to (32) and Lemma 13,∑∞
k=0 a

(k) · w(k) = +∞, with probability δ, which, in turn,
would imply

E

[∞∑
k=0

a(k) ·
(
ḡ(θ(k))

)T
· (θ(k) − θ∗)

]
= +∞.

However, this would contradict the following relation (which
is obtained by a recursion on (31) and then applying the
expectation)

E[‖θ(k+1) − θ∗‖2] ≤

‖θ(0) − θ∗‖2 − 2E

[
k∑
s=0

a(s) · (ĝ(s))T · (θ(s) − θ∗)

]
+

E

[
k∑
s=0

a(s) · ‖ĝ(s))‖2
]
,

as the left hand side cannot be negative.

D. Optimality gap

It is worthwhile to note that the minimizer θ∗ of L̄ over
C ∩ RP≥0 may not coincide with its minimizer θOPT over Θ

for two reasons: i) K ′ < K and ii) θOPT is forced to have
integer components while θ∗ can be a real vector. In what
follows we show that the optimality gap ‖θOPT − θ∗‖∞ is
bounded by a small number, compared to the number of cache
slots available.

Lemma 15. The gap between the optimal solution θOPT

and the configuration θ∗ to which SDCP converges is ‖θ∗ −
θOPT ‖∞ ≤ (3/2)P

Proof: We observe that θ∗ is the optimal solution of
the continuous Simple Allocation Problem (SAP), expressed
as max

(
−
∑P
p=1 Lp(θp)

)
, subject to

∑P
p=1 θp ≤ K ′ with

θ ∈ RP≥0. K ′ usually referred to as volume and we denote
with SAPcont(K ′) the problem above. The integer version of
the SAP, which we denote by SAPint(K

′), is obtained from
the problem above with the additional constraint θ ∈ Zp.
According to Cor. 4.3 of [17] there exists a solution θ̂ of
SAPint(K

′) such that ‖θ∗ − θ̂‖∞ ≤ P . The solution of
the integer SAP can be constructed via the greedy algorithm
presented in Sec. 2 of [17]. In our case, it consists of iteratively
adding storage slots, one by one, each time to the CP whose
miss intensity is decreased the most by using this additional
slot. Based on this, it is easy to verify that a solution θOPT can
be obtained starting from θ̂ and adding the remaining K−K ′
slots. Therefore, ‖θOPT − θ̂‖∞ ≤ P/2, which implies

‖θOPT − θ∗‖∞ ≤ ‖θ∗ − θ̂‖∞ + ‖θOPT − θ̂‖∞ ≤ (3/2)P.

V. IMPLEMENTATION ASPECTS

After proving the convergence of SDCP (which makes
the algorithm interesting), we now turn our attention to
aspects having practical relevance from implementation and
operational standpoints (which makes the algorithm feasible).
Notably, we tackle the issue of efficiently computing an
Euclidean projection ϕ (Sec. V-A). We next investigate the
choice of the step size a(k) on the last line of Alg. 1, that
has practical relevance so as the convergence rate of SDCP is
concerned (Sec. V-B). Finally, we analyze the space and time
complexity of SDCP (Sec. V-C).

A. Euclidean Projection

The efficient implementation of the Euclidean projection ϕ
onto a simplex, as defined in (10), has been widely studied
in the literature. A convenient implementation is the one
shown in Alg. 2, which is a modified version of the algorithm
proposed in [12]. Its computational complexity is O(P logP),
which is not expected to be a computational burden since
the number of CPs P is expected to be moderate. While we
choose Alg. 2 for its simplicity, we point out that algorithms
with lower complexity O(P)) exist, such as [18], that could
be considered shall ever the Euclidean projection ϕ become
a system bottleneck.

8

Algorithm 2: Euclidean Projection computation based on
[12]

Input : θ ∈ C,K′ > 0
22 Sort the components of θ in (u1, . . . , uP) such that

u1 ≥ · · · ≥ uP
44 Find w = max{1 ≤ p ≤ P : up +

1
p

(
K′ −

∑p
j=1 uj

)
> 0}

66 Define z = 1
w

(
K′ −

∑w
j=1 uj

)
Output: ϕ(θ) s.t. its p-th component is

max{θp + z, 0}, p = 1, . . . , P

Algorithm 3: Conditional Step Size Sequence Computa-
tion

1 a = 1

‖ĝ(1)‖1
· K
′

P

2 b = a/10
3 if k ≤ kBS ; // Bootstrap Phase
4 then
5 a(k) = a
6 else if k ≤M ; // Adaptive Phase
7 then
8 Compute the miss-ratio m(k) during the current iteration
9 Compute m5th, i.e. the 5th percentile of the previous miss

ratios m(1), . . . ,m(k−1)

10 â(k) = a(k−1)/2

11 ã(k) = a(k−1) − a(k−1)−b
M−k+1

12 a(k) =

{(
min(â(k), ã(k)), b

)
m(k) ≤ m5th

ã(k) otherwise
13 else

14 a(k) = a(k−1) ·
(
1− 1

(1+k+M)

) 1
2
+ε

; // Moderate Phase
15 end

B. Step Size Sequence

Recall that, in order for SDCP to converge, the step size se-
quence must satisfy equations (11)-(13). There can be several
compliant step size sequences and choosing the right one is
critical, as it affects the speed of convergence, as we investigate
via simulation in Sec. VI-B. Considering the case of catalog
with stationary popularity first, in what follows we propose
three step size sequences: namely, Reciprocal, Moderate and
Conditional.

In the Reciprocal scheme, the step size is

a(k) = a/k

where
a =

1

‖ĝ(1)‖
· K
′

P

and ĝ(1) is the update factor (Proposition 11) computed at the
first time slot.

Observe that, with this choice, the Euclidean norm of the
first update a(1) ·ĝ(1) is K′

P , which implies a broad exploration
of the allocation space at the very beginning.

In the Moderate scheme, step sizes decrease slowly, to avoid
confining the exploration only to the beginning. Motivated
by [19], we define the step size as

a(k) = a(k−1) ·
(

1− 1

(1 +M + k)

) 1
2 +ε

(34)

where a is computed as above and M, ε are positive constants
that can be used to tune the slope of decrease.

We finally propose in Alg. 3 a third step size sequence, to
which we refer as Conditional. It consists of a Bootstrap phase
(up to iteration kBS) in which the step size remains constant,
thus allowing broad exploration. Then an Adaptation phase
follows, up to iteration M , in which the step size decreases, by
default, linearly from an initial value a to a final value b. This
decrease is steeper than linear when the miss ratio measured
at the current iteration is smaller than the 5-th percentile of
the miss ratio values observed so far. In this case the step size
is halved, unless it already equals b. The intuition behind this
phase is that we try to reduce the extent of exploration every
time we encounter a “good” allocation, i.e., an allocation that
shows a small miss ratio compared to what we experienced so
far. Note that we do not start immediately with the Adaptation
phase, since we need to collect enough samples during the
Bootstrap phase in order to correctly evaluate the quality of
the current allocation. Finally, we continue with Moderate
phase, in which step sizes are updated as in (34) and are
asymptotically vanishing, thus guaranteeing convergence.

These step size choices can be extended to the case of non-
stationary catalog popularity laws by simply reinitializing the
step sequence after a configurable time period (whose settings
depends on the timescale of the popularity evolution, which is
expected to be quite slow in practice). We consider scenarios
with non-stationary catalog in Sec. VI-D.

C. Computational and Space Complexity

The computational complexity of our algorithm depends on
the implementation of the projection ϕ just analyzed and on
the step size sequence. Since the algorithm is iterative, in what
follows we analyze the complexity per iteration.

Recall that the computation complexity of the projection
using Alg. 2 is O(P logP). As for the step sizes, it is easy
to verify that ĝ(1) and K need to be computed only once,
with a complexity O(P). Then, the per-iteration computational
complexity of Reciprocal and Moderate is O(1). As for
Conditional, we have to take into account the computation of
the percentile, which is linear with the amount of samples [20].
Since at iteration k there are k − 1 measured miss ratio
samples, the complexity is O(k). Considering that all the other
operations of Alg. 1 are linear in time, the overall complexity
at time slot k is{

O(P logP) for Reciprocal and Moderate
O(P logP + k) for Conditional

(35)

We now turn to the space complexity. It is easy to show
that the space complexity of Alg. 2 is linear in P . The space
complexity of the Reciprocal and of the Moderate step size
computation is O(P). In the case of Conditional step sizes,
we need space for the k miss ratio measurement samples. All
the other operations in Alg. 1 require a space that is linear in
P . Therefore, the overall space complexity at time slot k is{

O(P) for Reciprocal and Moderate
O(P + k) for Conditional

(36)

9

 0

 20

 40

 60

 80

 100

0 1 2 3

C
ac

h
e

A
ll

o
ca

ti
o
n
 (

%
)

Time (h)

CP1 CP2 CP3 CP4

O
p
t

U
n
if

(a) Moderate step size

 0

 20

 40

 60

 80

 100

0 1 2 3

C
ac

h
e

A
ll

o
ca

ti
o
n
 (

%
)

Time (min)

CP1 CP2 CP3 CP4

O
p
t

U
n
if

(b) Conditional step size

Figure 2. Evolution of the allocation of cache slots across CPs, with cache size K = 105 and (a) Moderate vs (b) Conditional step sizes. For reference
purposes, bars on the right side of each figure reports the Optimal (Opt) and Uniform (Unif) allocations.

To estimate the overall complexity (i.e., over all iterations
until convergence), a further observation is worth sharing. As
we just introduced, in cases with dynamic content popularity
(see Sec. VI-D), it is reasonable to periodically reinitialize
Conditional step sizes after a fixed amount of iterations: on
the one hand, this makes adaptation to possible changes in the
popularity distributions faster; on the other hand, this further
limits the complexity as a function of k.

VI. PERFORMANCE EVALUATION

In what follows we evaluate the performance of SDCP
through simulations performed in Octave under various pat-
terns of content popularity and we compare its performance
to that of reactive caching. We first describe the evaluation
scenario (Sec. VI-A) and show how the convergence speed is
affected by the choice of the step size sequence (Sec.VI-B).
We then evaluate the sensitivity of SDCP to various system
parameters (Sec. VI-C). Recognizing that content catalogs
are rarely static in the real world, we investigate the ex-
pected performance in the case of changing content catalogs
(Sec. VI-D). Finally, we confirm SDCP bring consistent gains
over reactive caching, both in case of perfect and imperfect
knowledge of content popularity (Sec. VI-E).

A. Evaluation Methodology

We consider a content catalog of 108 objects, in line with the
literature [21] and recent measurements [22]. We partition the
catalog in disjoint sub-catalogs, one per each CP. We assume
that the content popularity in each sub-catalog follows Zipf’s
law with exponent α = 0.8, as usually done in the litera-
ture [23]. We use a cache size of K ∈ {104, 105, 106} objects
(which corresponds to cache/catalog ratios of 10−4, 10−3 and
10−2 respectively), adopting K = 106 as default value. We set
the request arrival rate to λ = 102req/s, according to recent
measurements performed on ISP access networks [22]. We
compare the performance of SDCP to that of the optimal
allocation θOPT (Opt), and to that of the naive solution in
which the cache space K is equally divided among all the
CPs and is unchanged throughout the simulation (Unif).

When using Conditional step sizes, after a preliminary
evaluation, we set ε = 1/1000 as in [19] and b = a/10.

We set kBS and M , i.e., the duration of the bootstrap and
adaptive phases, to the number of iterations in 6 minutes and 1
hour, respectively. While the optimal duration of these phases
would depend on the arrival rate, the performance achieved
with these choices was satisfactory for the different scenarios
we considered. Unless otherwise stated, the time-slot duration
T is set to 10s.

B. Convergence

We start with evaluating the convergence of SDCP, for a
cache size of K = 105 and 4 CPs, receiving 13%, 75%, 2%
and 10% of requests, respectively. Fig. 2 shows the evolution
of the cache allocation as a function of time, for the Moderate
(left) and for the Conditional (right) step size sequences,
and illustrates important properties of the SDCP algorithm.
First, after an initial exploration phase the algorithm starts to
converge towards a stable allocation. It is important to note that
convergence happens in a stochastic sense, i.e., the allocation
is a random variable driven by random perturbations (the
content request arrival process), but the number of allocated
slots per CP converges in the sense of Theor. 14. Third, it is
also immediate to notice that the rate of convergence depends
on the step size sequence. Interestingly, while convergence is
guaranteed only asymptotically, already for short timescales
of practical relevance, such as those reported in the figure,
the allocation vectors for Moderate and Conditional steps are
close to the optimal one. In particular, the most relevant metric
from an ISP viewpoint is represented by the miss-rate, which
directly relates to the amount of backhauling bandwidth that a
specific allocation incurs: at the end of the 3 hours observation
window in Fig. 2, the Moderate and Conditional miss rates are
respectively only 3% and 2% far from the optimal one.

To better assess the impact of the step size sequence, we
next consider a larger scenario with cache size K = 106 and
p = 10 CPs, one of which is a popular CP, to which 70%
of requests are directed, followed by a second one receiving
24% of requests, another 6 CPs accounting for 1% each, and
the remaining two CPs receiving no requests. Fig. 3 shows the
step sizes and the inaccuracy of the algorithm, i.e. the distance

10

1.10
6

2.10
6

3.10
6

4.10
6

S
te

p
 S

iz
e

Reciprocal
Moderate

Conditional
Unif

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30 35

E
rr

o
r

(%
)

Total Time (min)

Figure 3. Error and step size sequence with cache size K = 106.

to the optimal allocation, measured as:

Error(θ) ,
‖θOPT − θ‖∞

K
=

maxj=1...p |θp − θOPTp |
K

.

(37)
We can observe that the step size under Reciprocal decreases
too fast, and immediately limits the adaptation of the allo-
cation, significantly slowing down convergence. Conversely,
Moderate results in step sizes remaining large for a long time,
preventing the algorithm from keeping the allocation in regions
that guarantee good performance. Conditional shows the best
performance since in the Adaptation phase the step sizes are
sharply decreased whenever the current allocation is providing
a small miss ratio.

C. Sensitivity Analysis

We next study how the performance of SDCP is affected
by the algorithm parameters and the scenario. We first focus
on the time slot duration T . On the one hand, a small T
implies that only few requests are observed in each time
slot, which may result in a high noise +ε(k),− ε(k), and
ultimately affects the accuracy of the update. On the other
hand, a large T decreases the measurement noise, but makes
the allocation updates less frequent, which possibly slows
down convergence.

To evaluate the impact of T , Fig. 4 shows the miss ratio
measured over 1h for the default scenario. We consider SDCP
with the three step size sequences of Sec. V-B, and compare it
to the Uniform and to the Optimal allocations as benchmarks.
The figure shows that SDCP with the Conditional step size
sequence enhances the cache efficiency significantly. We also
observe that a time slot duration of T = 10s (corresponding to
100 samples on average per CP) represents a good compromise
between a more accurate miss ratio estimation based on more
samples (with large T) and a larger number of iterations at
the cost of lower accuracy (with small T).

Since Conditional step sizes guarantees the best perfor-
mance, we will use it in the sequel.

Fig. 5 shows the cache miss rate measured over 1h for
a time slot length of T = 10s and for various cache sizes

 50

 55

 60

 65

1 5 10 50 100

M
is

s
R

at
io

 (
%

)

Iteration
duration T

#Iterations

#Requests
per Iteration

3600 1800 360 180 36

100 500 1K 5K 10K

More Iterations Better Measurement

Unif
Reciprocal

Moderate
Conditional

Opt

Figure 4. Impact of time-slot duration T on the average miss ratio (bars
represent the 95% confidence interval over 20 runs).

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

10
4

10
5

10
6

M
is

s
R

at
io

 (
%

)

Cache Size K

Unif
λ=1

λ=10
λ=100

λ=1000
λ=10000

Opt

Figure 5. Miss rate measured over 1h for various average request rates λ and
cache sizes K. Note that the miss ratio of Unif and Opt does not depend on
the request rate. Bars represent the 95% confidence interval over 20 runs.

K ∈ {104, 105, 106} and arrival rates λ ∈ [1, 104]. The figure
confirms that the gains of SDCP hold for different cache
sizes, and shows that the gain increases for large caches. To
interpret the results for different arrival rates, recall that for any
given time slot duration T , the average request rate affects the
measurement noise. Fig. 5 confirms that the miss rate increases
when the measurement noise is higher, i.e., for lower λ, but it
also shows a very limited impact: the number of time slots
in a relatively short time (in 1h, there are 360 time slots
of duration T = 10s) allows SDCP to converge to a good
cache configuration, in spite of the noise and the consequent
estimation errors.

D. Changing Content Popularity

Motivated by recent studies that showed that content popu-
larities change over time [24], we next investigate the perfor-
mance of SDCP under time-varying content popularity.

For each object we generate requests using a discrete-time
interrupted Poisson process (IPP), i.e., a discrete-time two
state Markov modulated Poisson process. At each time slot
an object can be either in ON state or OFF state. Requests
for an object are only generated during a time slot if the
object is in the ON state. We denote by pON→OFF and

11

pOFF→ON the transition probability from ON to OFF and
from OFF to ON states, respectively. It is easy to show
(Sec. 2.2 of [25] and page 201 of [26]) that the number of
time slots NON (NOFF) an object stays in the ON (OFF)
state is a random variable with geometric distribution and
mean 1/pON→OFF (1/pOFF→ON). We note that this model
is a discrete time version of the one in [24], in which
objects alternate between ON and OFF states, whose duration
is exponentially distributed. As in [24], we set the catalog
size to 3.5 · 106, the cache size to K = 104 objects and
E[NON]/E[NOFF] = 1/9. Observe that a smaller E[NON]
value means that the content popularity varies more frequently.
To provide a conservative evaluation, we consider a pessimistic
case of a very fast dynamic, setting E[TON] = 1 day, below
the fastest dynamic reported in the literature (Tab. I of [24]).
On average, we maintain the overall request rate equal to our
default value λ = 100req/s, i.e., an object i in ON state
receives requests at rate λ · qi · E[TON]+E[TOFF]

E[TON] , where qi is
the popularity of i, computed using Zipf’s law.

Fig. 6 shows the performance of Unif, which statically par-
titions the cache in slices of equal size, and of Conditional(τ),
which reinitializes the step sequence every τ amount of time
(τ ∈ {3h, 1d,∞}), i.e., 8 times per day, once per day,
and never, respectively, and, within each period of time τ
updates the step sequence according to Alg. 3. The results
show that reinitialization helps improve cache efficiency under
changing content popularities. Indeed, the evolution of the
content popularity is detrimental for Conditional(∞) and Con-
ditional(1d) already after a few hours, causing them to have
performance worse than Unif. To understand this behavior,
we can interpret the sequence of allocations computed by the
algorithm as a trajectory in the P -dimensional space, over
time. If the popularity does not change, the optimal allocation
is always the same point and the trajectory of Conditional(∞)
approaches this point by decreasing the extent of the variation,
thanks to the decreasing step size sequence. On the contrary, if
popularity changes, the optimal allocation changes over time.
Therefore, if we keep decreasing the step size sequence, as in
Conditional(∞), the trajectory cannot follow the optimal point
fast enough. Nonetheless, reinitializing the step sequences as
in Conditional(3h) is sufficient to respond to fast catalog
dynamics as the results show. Furthermore, notice that the
timescale of the reinitialization of the step sequence leading
to “good enough” results in the non-stationary case, happens
to be of the same order of magnitude of the timescale where
SDCP was already yielding to “good enough” results in the
stationary case (recall Fig. 2).

Clearly, it would be interesting to further test our algorithm
under real traffic traces, i.e., with simple trace-driven simu-
lation. Sadly, publicly available datasets [27] are not fit for
our purpose, and thus the scientific community as a whole
lacks access to real datasets. Yet, we point out that this
simple strategy is expected to give even better performance
in realistic situations, since dynamics are slower [24] than the
ones considered here.

 40

 45

 50

 55

 0 5 10 15 20

M
is

s
R

at
io

 (
%

)

Time (h)

Conditional(3h)

C
o
n
d
it

io
n
al

(1
d
)+

		
		
C

o
n
d
it

io
n
al

(∞
)

Unif

 0 1 2 3 4 5 6 7 8 9 10

Time (days)

Conditional(3h)

Conditional(1d)

Conditional(∞)

Unif

Figure 6. Miss ratio with varying content popularity. Step size sequences in
Conditional(τ) are reset every τ interval. On the left the first day is zoomed,
where Conditional(∞) and Conditional(1d) correspond, since none of them
have reinitialized the step sequence.

 1

 10

 100
 1 10 100

T
ru

e
R

an
k
 (

lo
g
)

Estimated Rank (log)

ρ=0.1
ρ=1

ρ=10
ρ=∞

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10
E

x
p
ec

te
d
 M

is
s

R
at

io
 %

Cache to Catalog Ratio %

ρ=∞

ρ=10
ρ=10

ρ=0.1

Figure 7. Error due to rank mis-estimation, for an experiment with a catalog
of 5000 objects. In the left figure, we plot the true rank corresponding to each
estimated rank. It means that for each i-th object in the x axis (which is the
object that is estimated to be the i-th most popular object), we plot what is
its true rank. In the right plot, we depict the expected miss ratio when storing
in cache the first estimated most popular objects instead of the first true most
popular object.

E. SDCP vs. Reactive Caching

Finally, we compare SDCP to reactive caching. To allow
for a fair comparison, we have to consider that in practice the
CPs may have a noisy prediction of the content popularities,
and thus they would inevitably cache objects in the allocated
storage that are not among the most popular objects. We model
the popularity prediction of CP p by the empirical frequency
of object requests in a sequence of ρ · |Op| requests for the
CP’s objects, where |Op| is the cardinality of the catalog of
the CP p and ρ ∈ [0,+∞[is a parameter that we call the
estimation accuracy.

Fig. 7 (left) shows the error in the rank estimation of a
CP with different values of ρ for an example run. Clearly,
increasing ρ increases the accuracy of the rank estimation and
for ρ =∞ the estimate is noiseless. It is important to note that

12

 40

 50

 60

 70

 80

 90

 100

0.1
1 10 ∞

M
is

s
R

at
io

 %

Estimation Accuracy ρ

Unif
SDCP

Opt

 40

 50

 60

 70

 80

 90

 100

0.001

0.01
0.1

0.5
1

M
is

s
R

at
io

 %

Acceptance Probability

R
eactive C

aching

after 3h
after 20h

after 1000h

Figure 8. Miss ratio obtained with SDCP (left) and reactive caching (right).
The average values over 20 runs are shown, as well as 95% confidence
intervals (when visible). Default scenario is assumed. In the left plot, the
optimal allocation is computed based on the true popularity distributions,
even if, during the simulation, the objects that are saved in each cache slice
are selected based on the estimated rank.

a rank mis-estimation is more likely for less popular objects,
as the ratio between the popularity of objects i and i+1 tends
to 1 for high i, and thus the popularity of objects in the tail
is practically indistinguishable. This can be observed in the
bottom-right corner of Fig. 7 (left).

The mis-estimation of the rank naturally increases the miss
ratio that a CP can achieve with its allocated cache space.
Fig. 7 (right) shows the cache miss rate for the same values of
ρ as Fig. 7 (left) and shows that the cache miss rate increases
significantly, especially for high values of the cache/catalog
ratio, when less popular objects have a chance to be cached.
Note that rank mis-estimation may cause that the miss rate
becomes a non-convex function of the cache storage, but if
the estimator is unbiased then the expected miss ratio is a
convex function.

As an alternative to SDCP, we consider a reactive strategy
called Probabilistic Caching. Under this strategy when a cache
miss occurs the newly fetched object is inserted into the
cache with a certain probability, referred to as the admission
probability [28]. If the object is inserted then the least recently
used object is evicted. It was recently shown that Probabilistic
caching is asymptotically optimal as the admission probability
goes to zero [28]. We use ccnSim [29], an event driven
simulator, to evaluate the reactive strategy. Observe that we
consider reactive caching for the sake of comparison, but in
reality it would be impossible to implement such a strategy
in the scenario we consider, as it assumes that the ISP can
observe the objects transmitted.

Fig. 8 (left) shows the miss rate as a function of the
estimation accuracy obtained with SDCP and, as a comparison,
with Unif and the theoretically optimal allocation, after 3h
of simulations. Fig. 8 (right) shows the corresponding miss
rate for reactive caching as a function of the admission
probability, evaluated over a period of 3h, 20h and 100h.
The results show that SDCP is superior to reactive caching,

even conservatively considering the worst cases for SDCP
(low estimation accuracy and short time of 3h to improve
the performance) and the best case for reactive caching (best
admission probability and long experiment time).

To get an insight into the reason for the superior perfor-
mance of SDCP, Fig. 9 shows the number of objects stored in
cache that do not belong to the first K most popular objects,
i.e., objects that would ideally not be cached, in absence of
rank mis-estimation. We refer to these objects as trash and
to the other objects as good. While SDCP is able to select
good objects and reduce the trash after 3h, in the case of
reactive caching the cache is filled mostly with trash after 3h.
A low acceptance probability effectively decreases the trash,
but since it lets the cache content change very slowly, even
though newly inserted objects are likely to be popular ones, it
takes too much time for them to enter the cache.

VII. RELATED WORK

Recent years have seen an increasing interest in cooperative
cache management (Sec. VII-A) and in cache partition-
ing(Sec. VII-B), both of which are related to our work.

A. Cooperative Cache Management

The literature on cooperative cache management focuses
on ISP/CDN/CP cooperation. These works show that ISPs
have a strong incentive in investing in caching to reduce the
traffic on their critical paths, but also show that CPs and
users would also benefit from ISP in-network caching. The
game theoretical study in [30] shows that caches are inefficient
when operated by CPs, since CP content placement and ISP
traffic engineering are often not compatible. Solutions are
proposed in [31], [32], which however require ISPs to share
with the CP confidential information, such as topology, routing
policies or link states, and as such are arguably practical, since
ISPs are typically not willing to disclose information about
the topology and the state of their network, i.e., congestion,
available bandwidth, etc. [33]. Conversely, [34], [33], [35]
foster an ISP-operated cache system, but requires the ISP
to be able to observe every object requested by the users,
which is arguably equally impractical since CPs purposely
hide this confidential information, and makes these approaches
incompatible with encryption. In contrast with these previous
works, our solution allows for encryption and is not limited
to a single CP, unlike [31].

At the time of writing there is not an established techno-
logical standard yet, however there are at least two important
industry fora our work is aligned with. The mission of the
Open Caching Working Group (OCWG) [36] is to develop
standards, policies and best practices for a new layer of content
caching within ISP networks, which can coexist with HTTPS
and provide shared access to storage for many CPs.

Another relevant normalization forum is represented by the
ETSI Industry Specification Group (ISG) on Mobile Edge
Computing (MEC)[7], whose purpose is to create a stan-
dardized, open environment, which will allow the efficient
and seamless integration of applications from vendors, service
providers, and third-parties across multi-vendor Mobile-edge

13

Reactive
(after 3h)

Reactive
(after 20h)

Reactive
(after 100h)

SDCP
(after 3h)

Prob 0.1

Prob 0.5

Prob 1

ρ=0.1

ρ=1

ρ=∞

Trash Good

Figure 9. Percentage of trash and unused cache space. Every 10 seconds the
number of trash objects is measured. The average over all these measurement
is depicted. Default scenario is assumed.

Computing platforms. Recently, MEC entered its phase 2
with the goal to offering standard APIs [9], and interfaces
between MEC hosts and transport networks, which will enable
the cooperation we envision in this paper. Quoting the ETSI
MEC whitepaper, “the aim is to reduce latency, ensure highly
efficient network operation and service delivery, and offer an
improved user experience” [7]: clearly, since caching reduces
latency, it is one of the use cases considered by the ETSI
MEC. 5G Americas goes even further and identifies caching
and Information Centric Networking as a crucial technology
to enable in 5G networks, at the mobile edge and beyond [8],
reinforcing the soundness of our assumptions.

Our work fits the OCWG requirements as well as the ETSI
MEC, and as such is, we believe, of high practical relevance.

B. Cache Partitioning
Cache partitioning has a long history in CPU cache opti-

mization. One example is the stochastic optimization based
algorithm of [37], which partitions a CPU cache among
competing processes. Clearly, the cache workload created by
CPU jobs, the cache size and all the other characteristics of the
CPU cache scenario are fundamentally different from the in-
network cache case we address. The literature on in-network
content caching usually treats the cache as a whole, with the
following recent exceptions [38], [39], [40], [41], [42], [43].
In particular, [38], [39] assign slices to different services, to
favor the ones with more stringent requirements. In [40], each
slice is used for a different video quality. Closer to our work,
are [41] and [42] that consider a cache owner (corresponding
to the ISP in our case) sharing storage among different CPs.

In particular, [41] proposes a pricing scheme based on the
value that each CP gives to cache space, which on the one
hand requires settling, on the other hand it may or may not
lead to the minimization of the cache miss rate. Unlike [41],
our solution allows to minimize the cache miss rate without
the need for payments, which may make its adoption less
controversial considering the disputes among ISPs and CPs
in recent years [33].

Authors of [42] show in an optimization framework that
partitioning a cache among multiple CPs is more efficient than

using a single LRU cache. Unlike our work, [42] assumes that
the cache owner knows the content popularity and uses Che’s
approximation [44] for formulating an optimization problem,
which requires CPs to reveal business critical information
periodically. This assumption implies an important difference
in terms of methodology, since in our framework learning of
the cache miss rate as a function of the storage size happens
simultaneously to finding the optimal allocation, whereas the
optimization framework in [42] assumes the hit rate is a known
function of the storage size. Finally, [42] assumes that each
CP manages its cache slice using LRU, which does not allow
to exploit the a-priori knowledge that CPs may have about
their content popularity. Our work overcomes these limitations,
and extends [43] by discussing implementation aspects of the
proposed SDCP algorithm, and by analyzing the sensitivity of
the algorithm and its adaptation to non-stationary workloads.
To the best of our knowledge, our work is the first to consider
the dynamic partitioning of in-network caches that allows CPs
to manage their cache content, with the aim of minimizing the
overall ISP cache miss rate, without disclosing nor leaking
content-related information to the ISP at the same time.

VIII. CONCLUSION

One of the main challenges of in-network caching nowa-
days is its incompatibility with encrypted content. Our work
represents a first step in solving this challenge by proposing
a simple and therefore appealing system design: Stochastic
Dynamic Cache Partitioning requires solely the knowledge
of aggregated cache miss-intensities, based on which it prov-
ably converges to an allocation with a small optimality gap.
SDCP assigns cache slots to CPs and allows CPs choose
what to cache. Since CPs may be able to predict content
popularity, they can take informed caching decisions that
would be impossible in classic caching schemes, in which the
cache owner is a third party with little knowledge of content
popularity. Therefore, not only does SDCP make cache sharing
feasible in case of encrypted content, but it can also has the
potential to make it more efficient than traditional reactive
caching policies, as our comparison shows. Simulation results
confirm the benefits of the proposed algorithm to hold under
various scenarios, which includes scenarios where the CPs has
non-perfect estimates of the object popularity. Additionally,
numerical results confirm that performance maintains also in
scenarios with complex content catalog dynamics, that thus
make SDCP applicable in scenarios of high practical relevance.

ACKNOWLEDGEMENTS

This work benefited from support of the Swedish Founda-
tion for Strategic Research through the Modane project and
of NewNet@Paris, Cisco’s Chair “NETWORKS FOR THE FU-
TURE” at Telecom ParisTech (http://newnet.telecom-paristech.
fr). Any opinion, findings or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of partners of the Chair.

REFERENCES

[1] S. Deering, “Watching the Waist of the Protocol Hourglass,” in IETF51
Plenary Talk, 2001.

http://newnet.telecom-paristech.fr
http://newnet.telecom-paristech.fr

14

[2] D. Thaler, “Evolution of the IP Model,” in IETF73 Plenary Talk, 2008.
[3] I. Popa, Lucian and Ghodsi, Ali and Stoica, “HTTP as the Narrow Waist

of the Future Internet,” in ACM SIGCOMM HotNets Workshop, 2010.
[4] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,

M. Munafò, K. Papagiannaki, and P. Steenkiste, “The Cost of the “S”
in HTTPS,” in ACM CoNEXT, 2014.

[5] “IAB Statement on Internet Confidentiality,” IETF, Tech. Rep., 2014.
[6] G. Barish and K. Obraczke, “World Wide Web caching: trends and

techniques,” IEEE Commun. Mag., vol. 38, no. 5, pp. 178–184, 2000.
[7] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile

edge computing – a key technology towards 5g,” ETSI White Paper,
no. 11, pp. 1–16, 2016.

[8] 5G Americas, “Understanding information centric networking and
mobile edge computing,” http://www.5gamericas.org/files/3414/8173/
2353/Understanding_Information_Centric_Networking_and_Mobile_
Edge_Computing.pdf, 2016.

[9] www.etsi.org/news-events/news/1180-2017-03-news-etsi-multi-access-
edge-computing-starts-second-phase-and-renews-leadership-team.

[10] Ü. Yüceer, “Discrete convexity: convexity for functions defined on
discrete spaces,” Discrete Applied Mathematics, vol. 119, no. 3, pp.
297–304, 2002.

[11] J. Carnicer and W. Dahmen, “Characterization of Local Strict Convexity
Preserving Interpolation Methods by C1 Functions,” Journal of Approx-
imation Theory, vol. 77, no. 1, pp. 2–30, 1994.

[12] W. Wang and M. A. Carreira-Pepinan, Projection onto the probability
simplex : An efficient algorithm with a simple proof and an application.
arXiv:1309.1541v1, 2013.

[13] H. H. Bauschke and J. M. Borwein, “On Projection Algorithms for
Solving Convex Feasibility Problems,” SIAM Review, vol. 38, no. 3, pp.
367–426, 1996.

[14] N. Z. Shor, Nondifferentiable Optimization and Polynomial Problems.
Springer, 1998.

[15] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[16] C. P. Niculescu and L.-E. Persson, Convex Functions and Their Appli-
cations: A Contemporary Approach. Springer, 2004.

[17] D. S. Hochbaum, “Lower and Upper Bounds for the Allocation Problem
and Other Nonlinear Optimization Problems,” Mathematics of Operation
Research, vol. 19, no. 2, pp. 390–409, 1994.

[18] N. Maculan and G. G. J. de Paula, “A linear-time median-finding
algorithm for projecting a vector on the simplex of Rn,” Operations
Research Letters, vol. 8, no. 4, pp. 219–222, 1989.

[19] Q. Wang, “Optimization with Discrete Simultaneous Perturbation
Stochastic Approximation Using Noisy Loss Function Measurement,”
Ph.D. dissertation, John Hopkins University, 2013.

[20] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, “Time
bounds for selection,” Journal of Computer and System Sciences, vol. 7,
no. 4, pp. 448–461, 1973.

[21] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of Traffic
Mix on Caching Performance in a Content-Centric Network,” in IEEE
INFOCOM, 2012.

[22] C. Imbrenda, L. Muscariello, and D. Rossi, “Analyzing Cacheable Traffic
in ISP Access Networks for Micro CDN Applications via Content-
Centric Networking,” in ACM SIGCOMM ICN, 2014.

[23] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Joint Caching and Base
Station Activation for Green Heterogeneous Cellular Networks,” in IEEE
ICC, 2015.

[24] M. Garetto, E. Leonardi, and S. Traverso, “Efficient analysis of caching
strategies under dynamic content popularity,” IEEE INFOCOM, 2015.

[25] T. Bonald and M. Feuillet, “Exponential Distribution,” in Network
Performance Analysis. Wiley, 2011.

[26] W. J. Stewart, Probability, Markov Chains, Queues and Simulation,
1st ed. Princeton University Press, 2009.

[27] W. Bellante, R. Vilardi, and D. Rossi, “On netflix catalog dynamics and
caching performance,” in IEEE CAMAD, 2013.

[28] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in IEEE INFOCOM, 2014.

[29] R. Chiocchetti, D. Rossi, and G. Rossini, “ccnSim: a Highly Scalable
CCN Simulator,” in IEEE ICC, 2013.

[30] D. DiPalantino and R. Johari, “Traffic Engineering vs. Content Distri-
bution: A Game Theoretic Perspective,” in IEEE INFOCOM, 2009.

[31] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang, “Cooperative
content distribution and traffic engineering in an ISP network,” ACM
SIGMETRICS Perf. Eval. Review, vol. 37, no. 1, pp. 239–250, 2009.

[32] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. M. Maggs,
J. Rake, S. Uhlig, and R. Weber, “Pushing CDN-ISP Collaboration to
the Limit,” ACM SIGCOMM CCR, vol. 43, no. 3, pp. 35–44, 2013.

[33] A. Gravey, F. Guillemin, and S. Moteau, “Last Mile Caching of Video
Content by an ISP,” in European Teletraffic Seminar, 2013.

[34] K. Cho, H. Jung, M. Lee, D. Ko, T. T. Kwon, and Y. Choi, “How Can
an ISP Merge with a CDN?” IEEE Commun. Mag., vol. 49, no. 10, pp.
156–162, 2011.

[35] G. Dan and N. Carlsson, “Dynamic content allocation for cloud-assisted
service of periodic workloads,” in IEEE INFOCOM, 2014.

[36] “Open Caching: Problem Statement and Guiding Principles,” Streaming
Video Alliance, Tech. Rep., 2015.

[37] I. Megory-Cohen and G. Ela, Dynamic Cache Partitioning by Modified
Steepest Descent. U.S. Patent No. 5,357,623, 1994.

[38] Y. Lu, T. F. Abdelzaher, and A. Saxena, “Design, implementation,
and evaluation of differentiated caching services,” IEEE Trans. Parallel
Distrib. Syst., vol. 15, no. 5, pp. 440–452, 2004.

[39] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Evaluating per-
application storage management in content-centric networks,” Comput.
Comm., vol. 36, no. 7, pp. 750–757, 2013.

[40] A. Araldo, F. Martignon, and D. Rossi, “Representation Selection
Problem : Optimizing Video Delivery through Caching,” in IFIP Netw.,
2016.

[41] S. Hoteit, M. E. Chamie, D. Saucez, and S. Secci, “On Fair Network
Cache Allocation to Content Providers,” Comput. Netw., 2016.

[42] W. Chu, M. Dehghan, D. Towsley, and Z.-l. Zhang, “On Allocating
Cache Resources to Content Providers,” in ACM SIGCOMM ICN, 2016.

[43] A. Araldo, G. Dan, and D. Rossi, “Stochastic Dynamic Cache Partition-
ing for Encrypted Content Delivery,” in ITC, 2016.

[44] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
modeling, design and experimental results,” IEEE JSAC, vol. 20, no. 7,
pp. 1305–1314, sep 2002.

Andrea Araldo (S’14) is a postdoc at MIT. He re-
ceived his MSc in Computer Science from Università
di Catania in 2012 and his PhD in Computer Net-
works from Univ. ParisSud and Télécom ParisTech
in 2016. He was a visiting researcher at KTH in 2016
and worked in FP7 European research projects, such
as Ofelia and mPlane and for the Italian academic
consortium CNIT in 2012-13. His interests include
Network Optimization, Content Distribution in the
Internet, Intelligent Transportation systems.

György Dán (SM’17) (M.Sc. ’99 and ’03, PhD ’06)
is a Professor at KTH Royal Institute of Technology,
Stockholm, Sweden. He was a visiting researcher
at the Swedish Institute of Computer Science in
2008, a Fulbright research scholar at University of
Illinois at Urbana-Champaign in 2012-2013, and an
invited professor at EPFL in 2014-2015. He has been
associate editor of Computer Communications since
2014, and TPC members of some 40 conferences
including ACM ICN, ACM e-Energy and IEEE
Infocom (Distinguished member 2015,2017). He has

coauthored over 100 papers receiving 4 best paper awards.

Dario Rossi (SM’13) is a Professor at Telecom
ParisTech and Ecole Polytechnique, and is the holder
of Cisco’s Chair NewNet@Paris. He served on the
board of several IEEE Transactions, and in the
program committees of over 50 conferences includ-
ing ACM ICN, ACM CoNEXT, ACM SIGCOMM
and IEEE INFOCOM (Distinguished Member 2015,
2016 and 2017). He has coauthored 9 patents and
over 150 papers, receiving 4 best paper awards, a
Google Faculty Research Award (2015) and an IRTF
Applied Network Research Prize (2016).

http://www.5gamericas.org/files/3414/8173/2353/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
http://www.5gamericas.org/files/3414/8173/2353/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
http://www.5gamericas.org/files/3414/8173/2353/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
www.etsi.org/news-events/news/1180-2017-03-news-etsi-multi-access-edge-computing-starts-second-phase-and-renews-leadership-team
www.etsi.org/news-events/news/1180-2017-03-news-etsi-multi-access-edge-computing-starts-second-phase-and-renews-leadership-team

	Introduction
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Stochastic Dynamic Cache Partitioning
	Convergence Analysis of SDCP
	Preliminaries
	Consistency
	Convergence
	Optimality gap

	Implementation aspects
	Euclidean Projection
	Step Size Sequence
	Computational and Space Complexity

	Performance evaluation
	Evaluation Methodology
	Convergence
	Sensitivity Analysis
	Changing Content Popularity
	SDCP vs. Reactive Caching

	Related Work
	Cooperative Cache Management
	Cache Partitioning

	Conclusion
	References
	Biographies
	Andrea Araldo
	György Dán
	Dario Rossi

