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Abstract—Recent research has identified Information-Centric
Networking (ICN) as a good fit for Internet of Things (IoT)
deployments. However, most studies have focused on ICN as an
application enabler, disregarding the behaviour from a network
viewpoint. In this paper, we address this by studying the most
important properties of an ICN-IoT deployment and contrast
the operational costs between geographic-based forwarding and
name-based forwarding schemes. We aim to understand if,
and under which IoT deployment characteristics, geographic
forwarding constitutes an advantage over name-based schemes,
in terms of feasibility (i.e., memory footprint and computational
capability of the devices) and performance (which we analyze as
the overall energy cost of operating an ICN-IoT network under
either forwarding paradigm).

To achieve this goal, we employ a mixture of (i) modelling, (ii)
simulative and (iii) experimental methodologies, which are useful
to respectively (i) state the problem in a principled way, (ii) gather
information about topological properties that are instrumental
to the model and (iii) gather physical properties of the devices
to feed the model with realistic data. In a nutshell, our results
show that geographic forwarding (i) halves the memory footprint
on our reference deployments and (ii) yields significant energy
savings, especially for dynamic topologies.

I. INTRODUCTION

Recent research [1]–[12] argues that Information-Centric
Networking (ICN), a network paradigm centered around the
concept of named information available in the network, is a
better fit for the Internet of Things (IoT) than the standard
IPv6-based network stack. For instance, seminal work [1]
shows through experiments that a slightly modified ICN
stack outperforms the standard IPv6-based stack (i.e., IEEE
802.15.4, 6LoWPAN and RPL) in terms of energy efficiency
and memory requirements – which are primary concerns for
IoT. The study of the ICN paradigm has focused both on IoT at
large [2], [3] as well as on specific use cases such as vehicular
networks [4], industrial automation [5], healthcare [6], smart
cities [7], buildings [8] and homes [9].

However, the advantages resulting from the use of ICN
architectures in terms of naming, mobility, and security [2]
do not come without challenges [3]. One such challenge is
efficient packet delivery with minimal control traffic. Geo-
graphic forwarding, where packets are forwarded towards a
physical location instead of a host, addresses this issue by
keeping routing updates local. Yet, geographic forwarding
strategies have not been explored in ICN-IoT in detail [4],
[10], and require further attention. Security aspects constitute
another challenge: IoT data is often private (e.g., position [4]
or health sensor readings [6]) and must be protected from
malicious attackers. Additionally, the IoT should be protected
from malicious nodes performing denial of service (DoS)

attacks (e.g., flooding malicious packets to drain the IoT relays
batteries [10]). The challenge is thus to ensure that the ICN
security model is fit to provide network access control [11],
[12] on power-constrained IoT nodes.

In this paper, we focus on the first of these two challenges:
how to transmit secured IoT sensor data efficiently over the
network using geographic forwarding. We refer the reader
to our previous work [10], [13] for more details on the
articulation of security and efficient forwarding in the ICN-IoT.
Specifically, we are interested in assessing whether these two
goals can be jointly achieved in a way that is not only feasible
but also, and especially, energy efficient. While geographic
forwarding strategies have been thoroughly studied in the
literature since the publication of seminal work such as [14],
to date there are no implementations available in state of the
art IoT stacks [15], and the same holds true for the ICN-
IoT context. We are thus interested in understanding if, and
under which circumstances, secure geographic forwarding can
be a viable alternative to address-based (in IP) or name-
based (in ICN) forwarding for the general IoT applications.
Rather than focusing on a specific IoT deployment, which
would result in conclusions of limited scope, we intentionally
study the broad issue of geographic as opposed to name-
based forwarding, where resource consumption grows with
the number of neighbours and entries in the ICN forwarding
information base (FIB) respectively. At the same time, to make
the analysis relevant from a practical viewpoint, we also single
out four real deployments [16]–[19] as a reference, which
represent diverse scenarios: environmental monitoring, smart
cities, buildings, and homes.

To summarize our contributions:

• we propose a simple analytical model to represent the en-
ergy consumption of ICN-IoT systems supporting name-
based and geographic forwarding schemes;

• we implement a functioning RIOT-based prototype of
ICN-IoT, which we plan to make available as open
source in the future, and gather accurate data on message
encryption and transmission at individual devices, as one
source of data to drive the model;

• we simulate message propagation dynamics over large
topologies, from which we gather propagation patterns
as a second source of data to the model;

• finally, given an energy budget, we use the model to
derive the expected number of messages for different
degrees of network dynamism under both schemes, giving
useful guidelines for ICN-IoT deployments.

The remainder of this paper is organized as follows. We start
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TABLE I
REFERENCE IOT DEPLOYMENTS

Deployment
name

Deployment
class

No. of
Nodes

Node
degree

Ref.

A Place de la
Nation

Urban sensor
network

97 3.8 [16]

B Great Duck
Island

Environmental
sensor network

150 4.6 [17]

C CASAS Home
automation

30 8 [18]

D Sensor
Andrew

Building
automation

1000 15 [19]

by overviewing IoT deployments, with the purpose of selecting
some relevant use cases that we use as reference points in our
evaluation (Section II). Next, we introduce the reference ICN
architecture, discussing aspects related to naming, security, and
forwarding (Section III). We then formally state our problem
and outline the methodology, introducing the energy model
for ICN-IoT deployments at a high level (Section IV). We
incrementally add details to the overall picture, refining each
of the building blocks (Section V–VI). The full details of
the model, which we use to quantitatively and qualitatively
contrast geographic and named-based ICN forwarding for the
identified use cases (Section VII) are presented next. Finally,
we discuss and summarize our main findings (Section VIII).

II. REFERENCE IOT DEPLOYMENTS

Depending on the use cases and applications, IoT deploy-
ments cover a broad spectrum of characteristics in terms
of node density, number of nodes, typical topology, traffic
patterns, etc. Given that our main aim is to identify under
which circumstances, if any, geographic forwarding is more
advantageous than classical name-based forwarding, we need
to select a number of specific use cases, representative of
different application classes. For the purpose of quantitative
assessment, we need each use case to precisely report charac-
teristics that are clearly specific to a single deployment. At the
same time, provided that the selection is made among carefully
defined application classes, we expect that the results for the
selected example in any given application class qualitatively
applies to other deployments in the same class.

To define such classes, we consider the IETF Routing Over
Low power and Lossy networks (ROLL) working group1,
which identifies four main use cases: (i) urban sensing [20],
(ii) industrial sensing [21], (iii) home automation [22], and (iv)
building automation [23]. While not considered by the ROLL
working group, environmental sensor networks and machine-
to-machine deployments are another class of deployments
largely covered in the literature [5], [24]. Without loss of
generality, and to give the reader several reference points, we
consider four deployments, whose relevant characteristics we
summarize in Table I, as well as their classes with respect to
the aforementioned ROLL categories. For each deployment,
we review the reference documentation or available data to
determine the number of neighbours for each node, which we

1https://datatracker.ietf.org/wg/roll/

use as input data to our model. The deployments, ordered by
increasing node degree in Table I, are:
(A) Place de la Nation: as an example of the urban sensing

class, we take the Cisco-Paris deployment, which is a joint
venture between Cisco, the City of Paris and several start-
up companies [16]. The deployment is used to measure
and track car and pedestrian traffic and pollution patterns
on a highly frequented square in Paris. It consists of 19
cameras, 14 noise sensors, 5 pollution-reading sensors,
and 12 wireless access points that report information
about user connections. The measured data is open-source
and available online [25].

(B) Great Duck Island: the Great Duck Island deploy-
ment [17] is an environmental sensors network consisting
of 150 devices. The sensors were used to observe the
habitat of seabirds on an island off the coast of Maine
and its evolution with respect to weather conditions.

(C) CASAS: as an example of the home automation class,
we select CASAS [18], which is a so-called “smart-home
in a box”: a ready-to-deploy sensor network that allows
any consumer to transform their home in a connected (or
"smart") home. It consists of 30 nodes communicating
over the 802.15.4 radio channel, including temperature
sensors and infrared motion/light sensors.

(D) Sensor Andrews: as an example of the building au-
tomation class, we select Sensor Andrew [19], a sen-
sor network deployment at Carnegie Mellon University
(CMU). More than 1000 devices spread all over the CMU
campus report numerous measurements such as electricity
consumption or temperature.

III. REFERENCE INFORMATION-CENTRIC THINGS
(ICN-IOT) ARCHITECTURE

While it has been shown that ICN is a good fit for IoT [1],
[3], [11], [26], a number of aspects important for IoT are miss-
ing in the original ICN architectures. Specifically, the main
building blocks of the reference ICN-IoT architecture [10] that
we need to outline are the following: (i) a neighbour discovery
and association protocol (Section III-A), which ensures that
only trusted nodes are authorized to send packets on the
network; (ii) a secure beaconing (Section III-B) protocol
to handle topology and location changes; (iii) a forwarding
scheme (Section III-C), to ensure correct forwarding of Interest
packets over the network independently of the forwarding
algorithm class (i.e., geographic or name-based). We point out
that while the main focus of this paper is on (iii), however,
(i) and (ii) are instrumental and necessary for correct ICN-
IoT operations, and must be accounted for in our evaluation.
We thus summarize here the relevant points of the ICN-IoT
architecture presented in our prior work [10]. Let us note that
our study leaves for future work one important feature of ICN:
in-network caching. As memory is a scarce resource on IoT
platforms, a better understanding of the opportunities for in-
network caching in the ICN-IoT would require a thorough
study of current ICN-IoT stacks and their memory usage.
We provide a first step in that direction with the results of
Section VII-B.

https://datatracker.ietf.org/wg/roll/
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A. Secure neighbour discovery

In order to protect the network against intruders, sensors
must be able to authenticate each other. We initially considered
two protocols, with similar security features, based respec-
tively on symmetric [12] and asymmetric [13] cryptography.
The study in [13] reveals an interesting trade-off between
the communication and the processing/energy overhead: in-
deed, while the asymmetric-keys based approach incurs a
lower traffic overhead (of about 30%), its implementation
is significantly more energy- and time-consuming due to
the cost of cryptographic operations. Specifically, asymmetric
cryptography requires up to 41× more energy and 8× more
time for both old (TelosB) and new (OpenMote) generation of
IoT platforms.

Therefore, we choose symmetric cryptography for ICN-IoT
neighbour discovery, and particularly, we take the state-of-the-
art OnboardICNg [12] protocol as a reference. In summary,
an OnboardICNg exchange allows two nodes to verify that
both have been registered to a trusted third party. As a result,
OnboardICNg provides the nodes with a shared symmetric
key and includes the distribution of a shared broadcast key in
each node’s neighbourhood (the broadcast key is a symmetric
key propagated by one node to its direct physical neighbour to
enable encrypted L2 broadcasts). Given that the primary focus
of this paper is the evaluation of the energy cost of name-based
forwarding and geographical forwarding for ICN-IoT we refer
the reader to OnboardICNg [12] for more details.

B. Secure beaconing

Beaconing presents two new challenges. First, unsecure
beaconing opens the possibility of wormhole or DoS attacks
through exhausting the neighbour database or overloading the
central processing unit (CPU). Second, beaconing is essen-
tially a push operation, which contrasts with the ICN pull
model.

Security. In order to prevent these threats, sensors must be able
to distinguish between beacons originating from trusted and
malicious entities. We thus use the broadcast keys provided
by OnboardICNg [12] to encrypt our beacons and authenticate
their origin. All the subsequent messages are encrypted with

the node broadcast key and contain a message authentication
code (MAC). Using this encryption, ICN-IoT devices are re-
sistant to flooding attacks from non-authorized nodes. Indeed,
only beacons encrypted with the broadcast key of authenticated
neighbours are considered, and the corresponding key can only
be accessed by trusted nodes. However, the scheme is not
resistant to trusted nodes that have been physically tampered
with.

Note that if the AES operations have to be performed in
software, attackers can send packets with bogus encryption to
perform a simple DoS attack against a node’s CPU. However,
we point out that recent platforms such as the OpenMote
section IV-A) are equipped with hardware modules that can
perform AES computation. Therefore, these systems compute
and check MAC at low CPU and energy cost.

Push. To accommodate the push nature of beacons with ICN,
we must slightly modify the specification of ICN exchanges,
similar to the work presented in [27]. Specifically, we use
persistent Pending Interest Table (PIT) entries (i.e., entries
that are not purged after being satisfied once) and unsolicited
Data messages (i.e., Data messages that are emitted without
a corresponding Interest message). We describe the beaconing
protocol with the help of Figure 1:

(i) After an OnboardICNg association, each node creates
a persistent PIT entry (e.g., with a soft timeout) for
/ndb/neigh_id, where neigh_id is the id of the
neighbour with whom the exchange was performed.

(ii) Regularly, each node sends a broadcast unsolicited
Data packet (encrypted with the node broadcast key)
for /ndb/node_id containing the beacon information
(e.g., the node’s coordinates) and a sequence number (to
avoid replay attacks).

(iii) Unsolicited Data packets are forwarded to the beacon
processing application, thanks to the persistent PIT entry.

Persistent PIT entries and unsolicited messages have a
network utilisation advantage over the traditional ICN Inter-
est/Data exchange. Indeed, the traditional scheme requires four
packets per pair of neighbour nodes (two exchanges, one per
node), so a total of 4Nd where N is the total number of nodes
and d the average number of neighbours per node. Instead,
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with our scheme, each beacon is broadcast to all of the nodes
in the neighbourhood, so that only N packets are required.

C. Forwarding

Our reference ICN-IoT architecture is conceived as a frame-
work to perform name-based and geographic forwarding in
the ICN-based IoT and is thus independent of the actual
variation of geographic forwarding chosen. We achieve this
with the workflow summarized in Figure 2. In our ICN-IoT
implementation, FIB entries match with faces and strategies.
Faces can be either physical neighbours, application or virtual
faces (such as the broadcast face). A strategy is a callback
on the faces in the FIB, that can, for instance, select a face
amongst the available ones with a specific metric. For instance,
one could use a specific prefix (such as /g/) to forward
packets through geographic forwarding by linking it to the
corresponding strategy in the FIB. Interest packets destined to
any other prefix would still be forwarded by name.

While our architecture allows for a variety of forwarding
strategies, for quantitative performance evaluation we need to
select specific geographic and name-based forwarding strate-
gies that are implemented and executed on real IoT hardware.
Routing and forwarding in the IoT world has been the subject
of extensive research; we refer the reader to [28] for a
taxonomy and survey of algorithms. To guide our selection, we
remark that this taxonomy, which categorizes forwarding into
flat/hierarchical or location-based strategies, also applies in
an ICN-flavoured IoT deployment, where the choice of using
flat/hierarchical or location-based naming schemes directly
maps the choice of a forwarding strategy as well [26].

Location-based. To select our candidate location-based strat-
egy, we remark that most geographic forwarding techniques
are based on greedy forwarding (i.e., select the neighbour
closest to the destination as a next hop) with either a beacon-
based [14], [29] or beacon-less [30], [31] approach. Greedy
choices are complemented by recovery techniques to route
around sinkholes, as in GPSR [14] or GOAFR+ [29].

The applicability of geographic forwarding to ICN has
explored in a limited way, primarily as applied to Vehicle-to-
Vehicle (V2V) networks [4], [32], [33] and are designed to ex-
ploit V2V characteristics: highly dynamic, fast moving nodes
with no battery/CPU constraints that receive long streams of
video/audio data. In [34], the authors propose an ICN-IoT rout-
ing scheme based on geographic coordinates. However, their
proposal assumes a tree-like topology and does not account
for potential sinkholes. We additionally note that, despite the
availability of many geographic forwarding algorithms in the
literature, there are few implementations; e.g., even the most
basic and best-known approaches, such as GPSR [14], are not
available in modern IoT toolboxes [15] such as Contiki [35]
or RIOT [36]. As a representative of location-based strategies,
we implemented GPSR [14], a classic and well-understood
strategy based on a geographic greedy forwarding algorithm.

In addition to destination coordinates (that are part of a
name under the /g/ prefix), GPSR also requires additional
information for the forwarding. Indeed, to avoid local maxima

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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M
od

e

sl Flags Coordinates

Fig. 3. The TLV field used by GPSR for keeping in-flight state (with sl = 16).

(cases where the current node is closer to the destination
than any of its neighbours), GPSR uses a technique called
“perimeter routing”, which requires the packet to carry the
coordinates of the node where it entered the perimeter mode.
The ICN-IoT architecture stores this information in a Type
Length Value (TLV) field as described in Figure 3, where a
flag determines whether the GPSR is in greedy or perimeter
mode. Given that we expect the reference ICN-IoT architecture
to be used in different scenarios (dense deployment in urban
buildings as opposed to sparse deployments in large rural
areas), it may be desirable to provide the capability to adjust
the coordinate resolution to a specific application scenario to
avoid overhead. As a result, the architecture also supports
the use of different resolutions for geographic coordinates: as
Figure 3 outlines, 2 bits in the flags, noted as sl , allow to
specify from 8 to 64 bits coordinates, in step of 8 bits.

Name-based. In, the matching between Interest names and
output faces in the ICN-IoT FIB is usually done using longest-
prefix match. Simple flood-and-learn (F&L) forwarding strat-
egy [1], [37] (and variants [38], [39]) are typically used in
ICN-IoT to construct FIBs on demand. These are inherently
non-scalable and possibly a bad fit for IoT deployments. As
such, while we do implement F&L for reference purposes, we
do also argue for the need to complementing it with additional
techniques to reduce broadcast storms. Particularly, we opt
for a Multi-Point Relay (MPR) [40] variant inspired by the
Optimized Link State Routing Protocol (OLSR), where at each
hop during the message propagation, only a few relays are
selected out of those having received the message.

However, while implementing naive F&L is simpler than
implementing GPSR, implementing a full-blown MPR dis-
tributed OSLR-like protocol is not. In particular, F&L and
MPR performance will not only differ in the number of mes-
sages sent over the network (which we can simulate) but will
also differ in the computational complexity (which we should
measure from an actual implementation). We can approximate
the computational cost of MPR with the computational cost of
the simpler F&L strategy to provide a conservative evaluation
of the energy efficiency of MPR for comparison with GPSR.
Therefore, we decouple the implementation and prototype
only the simpler F&L for the purpose of measuring the
computational cost in Section IV-C, and simulate an ideal
MPR for the purpose of gathering a lower bound of the
number of messages transmitted by MPR over a network in
Section VI-B. In particular, our ideal MPR implementation
exploits global knowledge available in simulation to find a
minimal set of MPR relays, providing a lower bound on the
message complexity. These choices guarantee a conservative
evaluation of the potential benefits of geographic GPSR over
name-based MPR.
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TABLE II
CHARACTERISTICS OF THE OPENMOTE

Architecture ARM Cortex-M3 (32 bits)
MCU Texas Instrument CC2538 (32MHz)
RAM (ROM) 32KB (512KB)
Encryption HW AES & ECC
Encryption cost [41] 19.7 µJ (SW, AES-CCM, 128bits)

8.7 µJ (HW, AES-CCM, 128bits)
Consumption [42] 39mW (CPU at 32MHz, no RX/TX)

60mW (CPU idle, RX at -50 dBm)
72mW (CPU idle, TX at 0 dBm)

IV. METHODOLOGY OVERVIEW

In this section, we define the lines along which we evaluate
the costs of using name-based and geographic forwarding
strategies in ICN-IoT deployments. In particular, we detail the
experimental setup (Section IV-A) and focus our attention on
the most relevant implementation criteria: namely, (i) memory
footprint (Section IV-B), (ii) CPU overhead (Section IV-C),
and (iii) energy consumption (Section IV-D). We consider
memory and CPU metrics as tied to the feasibility of an
ICN-IoT deployment, whereas we use the energy consumption
to quantify the cost of ICN-IoT operation. We found that
assessing memory and CPU costs is significantly simpler than
assessing the overall energy budget, which, therefore, is the
main contribution of our investigation. We thus set to solve
the following problem: under which conditions (if any) is
geographic forwarding more performant in terms of energy,
memory, and CPU consumption than flood-based strategies
for the ICN-IoT?

A complex system such as an IoT deployment is influ-
enced by numerous factors (that are recapped and summarized
further on in Table IV). Therefore, we employ a range of
methodologies. At each step of our evaluation, we select the
most appropriate one to estimate values that have practical
relevance for the different variables. This section defines
our ICN-IoT experimental model and enumerates the various
sources of energy consumption. Sections V and VI combine
measurement from an actual ICN-IoT implementation with
stochastic modelling of L2 transmission and simulation of
network-wide scenarios to populate the different components
of the model, including security, forwarding, data plane traffic,
and control plane overhead. The refined model is then quanti-
tatively analyzed to provide guidelines on the most favourable
ICN-IoT settings for the different IoT deployment classes and
scenarios (Section VII). We point out that, while our previous
work [10] accurately assessed the cost of sending a single ICN
packet from a single IoT device, in this paper we provide a
much more complete picture that encompasses all network-
related activities of a full ICN-IoT deployment.

A. Experimental setup

While our methodology to evaluate the cost of secure
geographic forwarding in the reference ICN-IoT architecture
is general, the quantitative aspects reported in this paper are
relevant for the hardware and software setup with which we
conducted our evaluation. To make the quantitative aspects of
our evaluation of interest to the largest possible audience, we

TABLE III
SIZE OF INTEREST (I), GEO-INTEREST (GI), AND DATA (D) ICN PACKETS

Packet Type
Field Field size I GI D

L
2

he
ad

er 802.15.4 PHY header 6B 3 3 3
802.15.4 MAC header 23B 3 3 3
802.15.4 SEC header 5B 3 3 3

L
3

he
ad

er

Packet Type TL 1B 3 3 3
Nonce TLV 1B (TL) + 1B (V) 3 3
Name TL 1B 3 3 3
Name component TLVs sn 3 3 3
GPSR TLV 1B (TL) + (1 + sl ) (V) 3

Pa
yl

oa
d

Content TLV 1B (TL) + sc (V) 3
Signature Info TL 1B 3
Signature Type TLV 1B (TL) + 1B (V) 3
KeyLocator TLV 1B (TL) + 1B (V) 3
KeyId TLV 1B (TL) + 1B (V) 3
Signature TLV 1B (TL) + 16B (V) 3

Fo
ot

er 802.15.4 Signature 16B 3 3 3
802.15.4 CRC 2B 3 3 3

Total size Packet Type
56B + sn Interest
58B + sn + sl Geo-Interest
79B + sn + sc Data

use the widely used open-source hardware (OpenMote [43])
and software (RIOT OS [36]) stacks.

Hardware setup. We use an OpenMote platform with a
32MHz ARM Cortex-M3 CPU, which is equipped with an
IEEE 802.15.4 chipset as well as hardware modules for
symmetric and asymmetric cryptography. To evaluate the
cost of hardware cryptography module and of receiving or
transmitting packets through the IEEE 802.15.4 interface, we
rely on measurements performed by Shafagh et al. [41]. The
energy consumption figures for this platform are provided in
the corresponding datasheet [42], which we summarize along
with other characteristics in Table II.

Software setup. Our code runs on top of the RIOT operating
system [36]. We implement a custom ICN stack on top of
RIOT that uses standard ICN forwarding (i.e., longest-prefix
match in the FIB) as well as GPSR (with perimeter routing as
introduced earlier). We point out that our code is for the time
being closed source, though plans are to make it available in
the long term. To accommodate the typically low frame sizes
of IoT networks (e.g., 127 bytes for IEEE 802.15.4 networks),
adaptations to the TLV-based format of ICN packets have
been proposed. Following the recommendations in [44], we
implement 1+0 TLVs (i.e., where the Type and Length field are
encoded in one single byte), instead of the 1+1 or 2+2 format
described in the CCNx specifications [45], with which our
implementation is otherwise fully compliant. Table III details
the different fields of IEEE 802.15.4 ICN Interest, geographic-
Interest and Data frames, as well as reports the total size (as a
function of the name or location size) that is instrumental to the
model. As shown by this table, the geographic-Interest packet
format differs from the ICN Interest only by the presence of
the GPSR TLV that is used on top of the name and name-
components TLVs to perform the routing.
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B. Memory

Memory is a primary constraint in IoT. For example, an old
platform such as the MSP430-based TelosB only offers 10KB
of random access memory (RAM) and 48KB of flash memory.
Even recent hardware like the OpenMote includes only 32KB
of RAM and 512KB of flash memory. This amount is still tiny
considering that recent implementations of an IoT-ICN stack
require already between 5KB [1] and 11KB [46] of RAM.
Additionally, optimizing memory consumption is especially
interesting in the context of ICN, where caching can be used
to accommodate nodes with low duty-cycles [47].

When considering memory requirements, geographic for-
warding has advantages over name-based forwarding. Indeed,
under GPSR the size of the state retained by a node to be able
to forward any packet is bounded by the node degree, whereas
under F&L (and variants) each node needs to retain some state
for the name of every other node. In fixed ICN networks, state
explosion is alleviated by using prefix aggregation in the FIB.
However, this is hardly possible in highly-dynamic and mobile
IoT networks, and to the best of our knowledge no aggregation
scheme for IoT deployments has been proposed for ICN-IoT

Memory requirements can be computed considering that
under geographic forwarding, the FIB contains the coordinates
(having size sl) of all its d neighbours, and that the beaconing
protocol described in Section III-B additionally requires nodes
to store a persistent PIT entry (having size spit ) for each of
their neighbours. Under classic name-based forwarding, ICN
requires having one FIB entry (having size s f ib) for each of
the ns reachable names. As no aggregation scheme is currently
available for dynamic IoT topologies, ns is equal to the number
of nodes in the IoT network. This means that each node has
a FIB entry for every other node in the network. To compute
the required memory, it must be noted that both FIB and PIT
entries also contain a 1-byte pointer to an ICN face and that a
FIB entry also contains a 1-byte pointer to a strategy. We can
thus express the respective memory requirements as:

Mgeo = d(sl + spit ) = d(sl + sn + 1)
Mf ib = ns × s f ib = ns(sn + 2)

(1)

C. Computation

CPU power is another strong constraint on IoT platforms:
this holds for both old platforms such as TelosB (16-bit CPU
clocked at 8 Mhz), as well as for newer platforms such as
the OpenMote (32-bit CPU clocked at 32MHz). An inefficient
forwarding algorithm on a slow processor can delay message
forwarding, causing congestion in the network.

We remark that the CPU complexity of a forwarding algo-
rithm is also inherently dependent on the underlying hardware:
for instance, multiplication on 32-bits integers is much faster
on newer 32-bit CPUs than older 16-bit ones. It is thus only
possible to evaluate the strength of a forwarding implemen-
tation with respect to a specific platform. More specifically,
we can evaluate the number of CPU cycles nc(algo) required
in a given assembly language for a specific implementation of
any given strategy and then compute the corresponding energy

Listing 1. Benchmarking code
uint32_t do_iteration () {

//Initializes structures and counter
do_initialize ();
DWT->CYCCNT = 0;

//Performs the micro-benchmark
perform_bench ();

//returns the number of used CPU cycles
return DWT->CYCNT;

}

consumed by the CPU given its frequency fCPU and its power
drain PCPU from data-sheets:

ECPU (algo) =PCPU tCPU (algo)

=PCPU
nc(algo)

fCPU

(2)

To devise an accurate model, we need a method to reliably
measure the number of cycles nc(algo). Given that CPU emu-
lators or static code analysis are subject to low accuracy [48],
we opt for micro-benchmarking the different pieces of the
reference ICN-IoT architecture code with cycle-level accuracy,
using a simple yet powerful technique. To accomplish micro-
benchmarking, we use a special register of the Cortex-M3 CPU
dedicated to counting CPU cycles2. This register is directly
mapped in memory and can be accessed on RIOT through
the DWT->CYCCNT variable, without performance penalty. An
example of the micro-benchmark code reads as presented in
listing 1.

D. Energy

The energy cost of a specific ICN-IoT implementation
comes from three main sources: a computational cost related
to the IoT algorithms, a security cost related to cryptographic
operations and message exchanges due to the security protocol,
and a network cost related to point-to-point communication,
end-to-end transmission, and network maintenance.

During the overall lifetime of an ICN-IoT deployment,
network cost can be split into bootstrap, forwarding of Inter-
est/Data packets, and handling of route failures, all of which
are clearly dependent on the forwarding strategy employed.
Network bootstrap is the cost of setting up the forwarding
for the full network to be able to forward packets from any
node to any other. Once routes are set up, communication
under different forwarding strategies incurs different costs.
Indeed, the amount of energy spent for forwarding is related
to the computational cost of the forwarding algorithm, as
well as to communication costs because of additional state
embedded in the Interest packets, and the different numbers
of relays under each algorithm. Finally, handling route failure
is an operation common to volatile environments such as IoT
deployments, where routes to content can become unavailable
due to mobility or poor channel conditions. Reacting to this
failure triggers the (re)discovery of a path, a costly operation

2The CYCCNT register, see http://infocenter.arm.com/help/index.jsp?topic=/com.
arm.doc.ddi0337e/ch11s05s01.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/ch11s05s01.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/ch11s05s01.html
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that must be taken into account and whose cost depends on
the forwarding strategy.

In our evaluation, we assume that network load is uniformly
distributed over the ICN-IoT network, i.e., that each node
forwards probabilistically the same amount of traffic. This
simplifying assumption, necessary for the tractability of the
model, is justified by the fact that we consider networks
with either user/sensor mobility or machine-to-machine com-
munications, which tend to make the existence of a single
hotspot sink less prevalent. Furthermore, we do not aim at
precise absolute evaluation of the network energy spending
in a specific scenario but at a relative comparison of name-
based and geographic forwarding for the ICN-IoT. We can then
compute the total network cost by summing the Ebootstrap ,
E f orwarding and Echange network-related components as fol-
lows:

Etotal = Ebootstrap + NmE f orwarding +
Nm

fc
Echange

= NmE f orwarding + (1 +
Nm

fc
)Echange

(3)

where Nm is the number of useful ICN-IoT queries (i.e.,
expression of Interest satisfied by a Data packet in a multi-
hop fashion) and fc is the number of queries performed
between two route changes. Intuitively, fc represents the
level of dynamism in the network, which lumps altogether
phenomena such as (i) to the addition/removal of new names
or sensors, (ii) mobility of physical devices, (iii) route failure
due to the wireless medium. Arguably, Ebootstrap is a one-
time cost with vanishing impact over time, so we approximate
it with Ebooststrap ≈ Echange, i.e., the control-plane cost of
repopulating a FIB. E f orwarding instead represents the energy
cost of a single query in the IoT network once the FIB is
already populated, and as such accumulates the data-plane
costs to transmit an Interest over several hops in the network,
as well as the cost of receiving the corresponding Data packet
travelling in the opposite direction. E f orwarding and Echange

are addressed in Section V and Section VI respectively.
Finally, it must be noted that the number of messages Nm is

not a design parameter. Rather, we can re-express Equation (3)
to infer the total number of exchanges Nm that are possible,
as a function of the network dynamism fc , under different
forwarding strategies:

Nm =
Etotal − Echange

E f orwarding +
1
fc

Echange

(4)

Without loss of generality, in Section VII we exploit (4) where
we equate the total energy budget to the amount of energy
available in standard AA batteries, i.e., Etotal = EAA.

V. COST OF FORWARDING A SINGLE ICN PACKET

In this section, we set out to evaluate the energy spent by
a node to forward a single ICN packet as a first refinement
of our energy model. We then evaluate this model for the
OpenMote, using our own experiments and data gathered
from the literature. From the point of view of a relay, the
packet forwarding process can be divided into 5 steps, namely:
(i) frame reception, (ii) frame decryption, (iii) forwarding

TABLE IV
SUMMARY OF VARIABLES USED IN THE EVALUATION

Parameter Symbol Default value
No. of neighbours d 15
No. of ICN names ns 2000
No. of FIB entries n f 15
Size of a location info sl 8 bytes
Size of a name sn dlog2(ns )e
Size of the content sc 32 bytes
Energy cost of AES encryption EAES 10 µJ
No. of tries / transmission ntr,s eq. (6)
L2 drop probability pc [49]
No. of times a packet is forwarded
during flood (including L2 retries)

Ntr (T, D) eq. (21)

Energy cost of transmission/bit Eb
t x 1.163 µJ

Energy cost of reception/bit Eb
r x 0.96 µJ

Max number of hops of a packet
on the WSN

T 8

Size of an ICN Interest packet si 56B + sn
Size of a geographic ICN packet si,g 58B+sn+sl
No. of Interest/Content exchanges
before a route change

fc free parameter

Energy content of an AA battery EAA 15390J
Budget of Interest/Data exchanges
during the lifetime

Nm eq. (20) and eq. (19)

face selection through the forwarding strategy, (iv) frame
encryption, and (v) frame transmission. We summarize the
various variables used in the mode in Table IV.

A. Frame transmission and reception

The transmission and reception cost of an ICN packet is
given by the amount of time that the node’s antenna has to
be powered in transmission (TX) and reception (RX) mode.
Since the power consumption Ptx (resp. Prx) of the platform
is dependent on the hardware and available from the data
sheets provided by the manufacturer, only the transmission
time needs to be computed.

At any hop, the transmission time is driven by two factors:
the number of retransmissions that are necessary for a suc-
cessful reception on the wireless medium, and the size of the
message (which impacts the time taken by each retransmis-
sion). Let ntr,s(pc) be the average number of tries necessary
for a successful transmission and Cphy the channel capacity
with a collision probability pc . The transmission cost of a
frame of size s f (the reception cost can be similarly derived)
is then given by:

Etx(s f ) = Ptx

s f
Cphy

ntr,s(pc) = Eb
txs f ntr,s(pc) (5)

Let Mtr be the maximum number of L2 retransmissions of
a given frame (after which the frame is dropped). For a given
pc , we have that ntr,s(pc) is, in expectation:

E[ntr,s(pc)] =
Mtr∑
k=1

kP(k L2 transmissions needed)

=

Mtr∑
k=1

kpk−1
c (1 − pc)

=
1 − pMtr

c (Mtr + 1) + pMtr+1
c Mtr

1 − pc

(6)
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We stress that pc is not a system parameter but depends in turn
on other properties of the ICN-IoT deployment, such as node
density and radio range. We come back to pc in Section VI.

B. Data Encryption and Decryption

The cost of cryptography depends on the device’s capa-
bilities, such as CPU characteristics, and more importantly
on the availability of hardware cryptography components.
We present the energy consumption of AES-CCM encryption
in the OpenMote platform, considering both software and
hardware-assisted cryptography as a function of the message’s
size in Figure 4.

For the software implementation, we microbenchmark the
AES implementation of the crypto module of RIOT with the
previously outlined technique. Figure 4 provides the measure-
ments as well as an equation derived from the measurements.
For the hardware-assisted encryption, we point out that cryp-
tography hardware modules are not yet supported on RIOT: we
thus use as a reference the AES-CCM measurement reported
in Table 6 of [41]. The picture clearly shows the importance
of hardware modules for cryptographic operations: the AES-
CCM software implementation consumes up to 5 times more
energy than its hardware-assisted counterpart. In hardware,
AES-CCM has a maximum cost of 10µJ per packet (since the
IEEE 802.15.4 maximum transmission unit (MTU) is 127B).

In the rest of the paper, we assume that the platform is
equipped with a hardware module that is accessible through
an API of the software stack (as planned in RIOT). With
hardware-assisted encryption, as Figure 4 shows, we can
assume that costs for encryption/decryption are constant with
respect to the frame size. Finally, given that encryption/de-
cryption costs are not the main component of a packet trans-
mission, for the sake of simplicity, we assume that encryption
and decryption have an equal cost, which we indicate with
EAES .

C. Forwarding algorithm

Deducing the cost of the forwarding algorithm is fairly
simple: Equation (2) requires a microbenchmark of the for-
warding code to accurately measure the number of CPU cycles
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Name-based: nc = 70.87nf + 201.83

GPSR: nc = 621.14d+ 577.25

Fig. 5. Cycles per forwarding decision on the OpenMote based on number
of neighbours/FIB entries. Boxplots report cycle-level accurate measurements
with the method in Section IV-C, lines reports linear fitting of the data.

required to perform either name-based ICN forwarding (i.e.,
longest-prefix match in the ICN FIB) or GPSR forwarding
operations. Note that in this section, we do not yet consider
the control traffic, but that in this context the name-based
FIB would typically be populated using F&L or MPR. These
measurements are reported in Figure 5, which shows boxplots
of the number of CPU cycles as a function of the number
of entries in the FIB (for name-based ICN) or the number
of neighbours of the node (for GPSR) in the x-axis (inci-
dentally, the figure shows a linear correlation between CPU
consumption and memory occupancy irrespectively of the
forwarding algorithm). As expected, geographic forwarding
grows more steeply than name-based ICN forwarding (621
cycles per additional neighbour versus 71 cycles per additional
FIB entry). Indeed, geographic forwarding requires the node to
perform floating point multiplications to compute the distance
to the next hops, while ICN forwarding consists only of
byte comparisons. It must be noted that we could implement
geographic forwarding using fixed-point arithmetic or a more
recent CPU with embedded support for floating-point oper-
ations. However, while this would narrow the performance
gap, geographic forwarding would still be more expensive in
CPU cycles than the byte comparisons used by name-based
forwarding.

While the gap between geographic and name-based forward-
ing appears to be important, it is just one component of the
overall cost, which we detail in the next section.

D. Overall cost
We can now express the total cost for a node to relay an

ICN packet as:

Erelay(algo, s) = Etx(s)+Erx(s)+2EAES+PCPU

ncycles(algo)
fCPU

(7)
It should be noted that since Data packets are forwarded

through symmetric routing, they are not concerned by the
computation overhead. If we take into account both the Interest
and the Data packet, the forwarding cost per node adds up to:

Erelay(algo) = Erelay(algo, si)+ Erelay(exact-match, sc) (8)

Finally, we can summarize E f orwarding as the cost of
forwarding an Interest packet and its corresponding Data
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packet over a multi-hop network by considering that on the
path we have: (i) T − 1 relay nodes that must perform both
TX and RX operations, (ii) a source node that only performs
TX for the Interest and RX for the Data packet, and (iii) a
destination that performs only RX for the Interest and TX
for the Data packet. This can be rewritten as T relay nodes
performing both TX and RX operations for both packets:

E f orwarding = T(Erelay(algo, si) + Erelay(exact-match, sc))
(9)

In Figure 6, we represent the respective costs of each of
the different components for the reference use cases in Table I
with the corresponding numbers of FIB entries, neighbours and
the size of the name. In particular, we group transmission and
reception costs, and present them as L2 IEEE 802.15.4 and L3
ICN components, on which the cryptographic and forwarding
costs are stacked. For each reference use case, we gather d
and ns from the literature, then compute sn = log2(ns), and
finally select a size of sl relevant to the geographic scale of
the use case (i.e., depending on the coordinate resolution).

From Figure 6, it clearly emerges that RX and TX op-
erations are the predominant factors of energy consumption
(which is underestimated as we do not account for MAC layer
signalling nor idle listening [50]). The communication cost is
two orders of magnitude higher than the cost of forwarding
(software), even for geographic forwarding with numerous
neighbours, and one order of magnitude higher than the cost
of cryptography (hardware). Notice that the cost of software
forwarding lumps altogether energy expenditures related to
CPU (selecting the forwarding face) and memory (storing and
updating the neighbour table or the FIB), which are clearly
negligible w.r.t. the energy spent on cryptographic and network
operations.
Hence, to summarize:
• the principal overhead in energy consumption when using

GPSR is the increased header size included in each
Interest packet because of the GPSR TLV,

• the complexity of the forwarding algorithm is clearly
negligible and Equation (7) becomes:

Erelay(algo, s) ≈ Etx(s) + Erx(s) + 2EAES (10)

TABLE V
ADDITIONAL BYTES SENT IN THE REFERENCE ICN-IOT ARCHITECTURE

Beacons (per node) Interest packet (per packet & hop)
58 + sid + sl 2 + sl

VI. COST OF CONTROL TRAFFIC

An additional source of energy consumption is the back-
ground control information that is needed to discover routes
to new names, new neighbours, and to maintain the network
connectivity in spite of changes such as node mobility. That
cost is intrinsically related to the geographic (Section VI-A)
or flooding-based (Section VI-B) forwarding algorithm em-
ployed. In this section, we thus build a model to derive the
energy consumption of the network forwarding process (data
and control plane). We complete this model with simulation
to estimate the spread of flooding for the F&L and MPR
algorithms.

A. Geographic forwarding

For geographic forwarding, control information takes two
forms: (i) the beacons to transmit geographic information
between neighbours, and (ii) the additional GPSR TLV in the
Interest packet to transmit per-packet forwarding state along
the path. We now review the cost of both these factors, which
we summarize in Table V.

Beacons. Beacons are the most obvious source of control over-
head in geographic forwarding. As described in section III-B,
they are local (i.e., not routed) broadcast messages that do not
propagate in the network and only reach the nodes involved
by the L2 broadcast.

Let us consider a node whose immediate neighbourhood has
changed: this node must broadcast its current position to its
new neighbours, and receive the d broadcast messages from its
neighbours. Given sb the size of a beacon message, the energy
Echange required for this update by each node is simply:

EGPSR
change = (sbntr,sEb

tx + EAES) + d(sbntr,sEb
rx + EAES) (11)

Headers. On top of the beacons, additional control informa-
tion for GPSR is embedded in every Interest packet through
the TLV described in Section III-C. As shown in Figure 3, this
TLV contains both a flag for the forwarding mode (greedy or
perimeter) and a set of coordinates. Thus, the size si,g of an
Interest packet for geographic forwarding is:

si,g = si + 2 + sl (12)

As we have seen in Figure 6, we expect the extra control
fields in the headers to have a sizeable impact on data traffic,
lowering the efficiency of GPSR with respect to name-based
forwarding. We can now plug si,g in Equation (9) and using
Equation (10), we get:

EGPSR
f orwarding = T

(
4EAES + ntr,s(si,g + sc)(Eb

rx + Eb
tx)

)
(13)

At the same time, we expect the benefits of GPSR to come
primarily from keeping the amount of FIB state bound to the
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number of neighbours and limiting the exchanges at a local
level, unlike F&L-based strategies.

B. Flood and learn

In case of name-based forwarding, despite similar forward-
ing operations, the data-plane energy is lower due to the
smaller Interest size (si < si,g):

EF&L
f orwarding = T

(
4EAES + ntr,s(si + sc)(Eb

rx + Eb
tx)

)
(14)

However, we need to the estimate the cost of learning routes
to objects in an F&L-based ICN-IoT deployment:

EF&L
change =

Ntr (T, d)
ntr,s

2EAES + Ntr (T, d)(Eb
rx + Eb

tx)si (15)

Therefore, we have to determine the number of network-wide
transmissions required to update FIB information Ntr (T, d),
for which we model the propagation of a flooded packet
over a wireless multihop network. Let us consider a uniform
random geographic graph G(N, d) where N is the number of
nodes in G and d the average node degree, and let focus
on a message m that must be flooded over the IoT network
with a maximum Time-To-Live (TTL) of T . Denoting with
Ntr (T, d) the number of times m has been transmitted during
its propagation, including L2 retransmissions, we have:

E[Ntr (d)] =
T−1∑
t=0

E[nttr (d)] (16)

where nttr (d) is the number of times the message m is
transmitted at the t-th hop (i.e., for a TTL=T − t). Letting
Vt be the set of nodes that relay message m at hop t, and
recalling that ntr,s(m) is the number of transmission attempts
until a successful transmission, we have:

nttr (d) =
∑
i∈Vt

ntr,s(pc) (17)

and thus:

E[nttr (d)] = E[card(Vt )]E[ntr,s(pc)] (18)

To estimate the number of nodes card(Vt ) transmitting the
message at the t-th hop, we simulate the packet propagation
for both F&L and MPR. For this purpose, we have developed

multi-threaded programs that we have made available to the
community3. The tools generate random graphs with a given
density and number of nodes and use a custom version of
breadth-first search to compute card(Vt ) in the case of naive
F&L. In the case of MPR, they compute the set of MPR-
neighbours using the greedy algorithm described in [40]. For
any given density, we sample a population of 105 random
graphs on which we evaluate the number of transmission for
naïve F&L and MPR from a random source. We run the
simulations on a Linux 4.7 server with an Intel Xeon CPU
clocked at 2.40GHz: for each density, the simulation takes
about 9 hours, where the dominant4 time is represented by
the MPR strategy. As simulation time is rather long, we also
provide on our GitHub the results of our simulation rounds as
well as a Jupyter Notebook to explore them.

Figure 7 presents simulation results for the number of
messages generated by naïve F&L (left) and MPR (right) as
a function of T − t ∈ [0, 15] (x-axis) and for different density
values d ∈ [4, 15]. To quantify the advantages brought by
MPR, Figure 8 additionally reports the ratio of the messages
generated by F&L over MPR. Interestingly, regardless of the
density, MPR roughly halves the number of messages that
need to be flooded at each step. To perform a conservative
assessment of the benefits of geographic forwarding, we thus
only consider MPR as a benchmark.

Finally, plugging in Equation (18) the card(Vt ) measured
in simulations, we can accurately numerically estimate the
forwarding cost of flood-based strategies:

E[Ntr (d)] =

T−1∑
t=0

E[card(Vt )]
1 − pc (d)

Mtr (Mtr + 1) + pc (d)
Mtr +1Mtr

1 − pc (d)
(21)

where the collision probability pc(d) for IEEE 802.15.4 is
given in [49] as a function of the average node degree (that
is referred as pnetcol in [49]). Results for Equation (21) are
reported in Figure 9.

VII. GUIDELINES FOR ICN-IOT OPERATION

Using these results, we can systematically compare MPR
and geographic forwarding for both energy (Section VII-A)

3https://github.com/marceleng/geographic-icthings
4While Python is enough for F&L, we had to rewrite the tool in C for

speed efficiency in the case of MPR. Both tools are available in the GitHub
page

https://github.com/marceleng/geographic-icthings
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NMPR
m =

EAA −

(
Ntr (T,d)
ntr,s

2EAES + Ntr (T, d)si(Eb
rx + Eb

tx)

)(
Ntr (T,d)
ntr,s

2EAES + Ntr (T, d)si(Eb
rx + Eb

tx)

)
/ fc + T

(
4EAES + ntr,s(si + sc)(Eb

rx + Eb
tx)

) (19)

NGPSR
m =

EAA −

(
(sbntr,sEb

tx + EAES) + d(sbntr,sEb
rx + EAES)

)(
(sbntr,sEb

tx + EAES) + d(sbntr,sEb
rx + EAES)

)
/ fc + T

(
4EAES + ntr,s(si,g + sc)(Eb

rx + Eb
tx)

) (20)
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and feasibility (Section VII-B) metrics. In particular, we apply
the models derived in Section V and Section VI to the four IoT
reference deployments of Section II, considering a network of
OpenMote devices. Readers or ICN-IoT operators interested
in other network characteristics are referred to our Jupyter
Notebook5, whose interactive interface can be used to explore
more scenarios. For convenience, we summarize the main
parameters in the evaluation in Table IV, as well as their
default scalar or functional values when relevant.

A. Energy cost

Specifically, having modelled the energy budget required
to transmit Nm exchanges, we can derive the number of
Interest/Data exchanges for name-based forwarding (NF&L

m )
and geographic forwarding (NGPSR

m ) that can be completed
with the energy available in one AA battery EAA = 15 kJ
[51]. For completeness, the message budgets are reported in
Equation (19) and Equation (20).

These equations provide a metric for measuring the effi-
ciency of both protocols: the number of possible Interest/Con-
tent exchanges (Nm) for a given battery capacity, depending
on the density d, the average number of hops T and the
topology change ratio fc . Figure 10 shows the ratio between
NGPSR
m /NMPR

m (i.e., the relative message budget of GPSR
vs MPR) depending on the network size nnodes (y-axis) and
the average node degree d (x-axis). In this figure, the lighter
the heatmap, the more efficient geographic forwarding is with
respect to MPR. Without loss of generality, we select T = 8
and fc = 60, which corresponds to the case where, if an

5https://github.com/marceleng/geographic-icthings/blob/master/models/
geographic-icthings.ipynb
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Interest/context exchange happens every minute, then a route
change happens every 1 hour.

Several conclusions can be drawn from Figure 10. First,
let us note that the ratio takes values NGPSR

m /NMPR
m ∈

[0.95, 1.05], i.e., the respective performances of name-based
and geographic forwarding are close for these (T , fc) settings.
The inflexion point in the figure is caused by a change in the
MPR regime: i.e., at some point, the network becomes big
enough so that the flooding stops because of the TTL, rather
than because everyone in the network already received the
packet. Also, note that in these settings, 3 (out of 4) reference
deployments (A, B, D) sit below the NGPSR

m = NMPR
m contour

and would thus (slightly) benefit from using MPR. Finally, it
is easy to see that for an average node degree higher than
7 and a deployment size larger than 100 nodes, geographic
forwarding performs (slightly) better than MPR.

We next turn our attention to dynamic cases where we
vary the rate at which the network changes (e.g., due to node
churn, mobility, deployment of new nodes, etc.). Specifically,
fc represents the number of consecutive data plane exchanges
between two changes requiring control plane messages. We let
fc ∈ [1, 104], so that for fc = 1 there is a significant control
plane overhead, whereas for fc = 104 the network is mostly
stable. We report the raw number of Interest/Data messages
on an AA battery as a function of fc for the four reference
deployments on Figure 11. Two main observations hold. First,
for networks with frequent changes geographic forwarding is
up to twice as efficient as MPR for all considered scenarios.
Second, it can be seen that MPR is slightly more efficient
than geographic forwarding over relatively stable networks,
although the difference is small enough not to have practical

https://github.com/marceleng/geographic-icthings/blob/master/models/geographic-icthings.ipynb
https://github.com/marceleng/geographic-icthings/blob/master/models/geographic-icthings.ipynb
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relevance. Thus, GPSR seems a good candidate for dynamic
scenarios, while both GPSR and MPR can be used in stable
topologies at approximately the same cost.

B. Memory and CPU complexity

Finally, we concisely summarize the CPU and memory
footprint of geographic forwarding and F&L-based strategies
in Figure 12. The contour plots show the relative footprint
of GPSR versus F&L ICN, while the heatmap illuminates
areas where GPSR is advantageous on both criteria (white),
only in memory (grey) or in neither (black). The letters
show the respective positions of the use cases described in
Table I. The picture shows that GPSR has a lower memory
footprint when the number of FIB entries inflates, which is an
important factor on memory-constrained nodes in networks
where numerous names must be accessible. In particular,
three of the use cases (A, B, and D) require less memory
and CPU resources using GPSR rather than with name-based
forwarding. Furthermore, while CPU consumption is often
favourable to F&L ICN, GPSR is faster in sparse but large
networks (e.g., n f > 40 and d < 5). Overall, there are no
CPU/memory obstacles to implement geographic forwarding
in ICN-IoT. Rather, GPSR can yield to memory savings with
respect to name-based forwarding, an appealing advantage for
constrained environments.

VIII. CONCLUSION

In this paper, we introduce an ICN-IoT architecture, which
is a generic framework capable of performing secure geo-
graphic forwarding over ICN in IoT deployments. We use
this framework to assess the CPU/memory feasibility of
geographic-based forwarding, as well as to derive energy
models for geographic and name-based forwarding, that en-
compass all network-related activities of an IoT deployment.
We implement GPSR in a RIOT-based ICN stack and contrast
it to naïve flooding, as well as to an improved flooding
technique using Multi-Point Relay (MPR).

In summary, we find that GPSR-based forwarding is fea-
sible in ICN-IoT. Specifically, GPSR memory requirements
are lower than that of flood-based strategies. Additionally,
while algorithmic complexity increases when using GPSR
over flooding-based strategies, the required CPU resources are
a negligible component of the overall energy cost. Indeed,
the cost of security (including cryptographic operations and
network overhead) is at least one order of magnitude higher
than the computation cost of the forwarding algorithm, which
can, therefore, be neglected.

In terms of energy consumption, two opposite forces are
in play: the increased header size in the case of GPSR
translates into higher energy cost per unit packet while GPSR
keeps beaconing local, lowering the cost of network-wide
updates. As such while there is a clear incentive in using
GPSR for dynamic networks requiring frequent updates, the
performance gap in the case of networks with stable topologies
and infrequent changes is slightly favourable to flood-based
strategies. At the same time, that gap remains small and it
should not be a limiting factor for the use of GPSR in ICN-
IoT deployments.
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