
High-speed per-flow software monitoring with
limited resources

Tianzhu Zhang

Telecom ParisTech

Leonardo Linguaglossa

Telecom ParisTech

Massimo Gallo

Nokia Bell Labs

Paolo Giaccone

Politecnico di Torino

Dario Rossi

Telecom ParisTech

1 INTRODUCTION
Software packet processing has always been a relevant so-

lution for both industry and academia. Because of its un-

paralleled flexibility with respect to proprietary hardware

solutions, software packet processing is widely used for the

prototyping and debugging of new protocols. While soft-

ware packet processing has usually been several orders of

magnitude slower than its hardware counterpart, the situa-

tion started to change with the emergence of fast packet I/O

libraries such as netmap [8] and Data Plane Development

Kit (DPDK) [6]. Of particular significance, we now assist to

the advent of flow-level high-speed applications that either

provide per-flow fairness [3], or propose a high-performance

user-space flow-level network function framework [5].

The emergence of such applications requires not only to

generate but also to monitor traffic flows in real-time, which

is particularly relevant for stress-tests during the develop-

ment phase. However, few tools are capable of high-speed

flow-level monitoring in the worst-case scenarios (i.e., 64B

packets at line rate) without sampling and by using a limited

amount of resources; the latter property is of paramount

importance when the monitor is co-located either with the

traffic generator (to allow more complex traffic patterns) or

with the device under test (DUT). As an example, DPDK-

Stat [9] focuses on advanced traffic analysis (e.g., including

full-payload TCP flow reconstruction and deep packet inspec-

tion) at 40 Gbps line rate using commodity hardware, it does

however consumes all the available resources, and geared

toward post-processing analysis. Similarly, other tools exists

in the literature for monitoring incoming traffic but rely on

heavy sampling [2], occupy too many resources [4, 7] or do

not focus on worst-case scenario [1, 9].

TXDUT

NIC RX queues

packet 
descriptor 

rings 

RX
thread 

poll

deliver
DMA

software 
rings

enqueue dequeue

monitor 
thread 

PCI

RX
thread 

poll

deliver enqueue dequeue

monitor 
thread 

RX

Figure 1: The configuration of FlowMon-DPDK

In this demo, we showcase FlowMon-DPDK [11], our soft-

ware traffic monitor capable of both packet- and flow-level

statistics by using a limited amount of resources, and that

we make available as open-source project [10].

2 FLOWMON-DPDK DESIGN
The typical usage scenario for stress-testing a network de-

vice is shown in Fig. 1: a traffic generator (TX) transmits

packets at line rate to the device under test (DUT), which

forwards packets to a traffic monitor (RX). In order to mini-

mize the amount of resources, in [11] we carefully analyzed

the design space and adopted the solutions yielding to the

best performance.

In essence, for a 10 Gbps link, FlowMon-DPDK uses 2

hardware queues to split the traffic load over 2 cores. Note

that we expect to easily extend the maximum sustainable

capacity beyond 10 Gbps by using for example 20 cores (i.e.,

a second CPU on a different socket) for capturing 100 Gbps,

provided that the PCI Express bus does not become the bot-

tleneck. RX thread polls packets from the NIC ring buffer,

transfers them via a software ring to the monitor thread.

This thread continuously polls packets from the dedicated

software ring and implements FlowMon-DPDK main pro-

cessing functionalities. FlowMon-DPDK is capable of both

per-packet or per-flow monitoring. While packet counting

can be done directly by the hardware, per-flow counting is

only minimally facilitated: particularly, to avoid the over-

head of computing a hash over the packet header, we re-use

the 32-bit hash computed by the NIC for flow identification.

FlowMon-DPDK uses a double-hash table with a vari-

able number of entries (2
16
by default). Each entry contains

two static flow buckets, and each bucket contains a packet

counter (plus additional statistics if properly configured)

which is updated when packets belonging to the correspond-

ing flow arrive. If there are more than two flows indexed

to the same entry, a linked list is used to store additional

flows. FlowMon-DPDK supports also advanced per-flow op-

erations, such as computing the flow interleaving degree (i.e.,

the number of packets of other flows in between two packets

of the current flow) as well as first, second and higher-order

moments of the variables of interest (e.g., flow rates, inter-

leaving degree distribution, etc.).

1



Submitted for review to SIGCOMM, 2018 T.Zhang. et al.

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Hardware MoonGen Speedometer Pktgen-DPDK FlowMon-DPDK MoonGen

default

tuned

default tuneddefault
tuned

default

tuned

P
ac

k
et

 D
ro

p
 R

at
io

Packet level Flow level

Hardware Software

Figure 2: Hardware vs software solutions for packet-
vs flow-level monitoring: Average PDR of different
monitoring tools with 95% confidence interval.

3 FLOWMON-DPDK DEMONSTRATION
3.1 Setup
The testbed comprises one server, equipped with Xeon E5-

2660 v3 2.60 GHz CPUs (with L1-L3 caches 32/256/25600 kB)
and 2 Intel

®
82599ES 10 Gbps NICs. Since we want to stress-

test the monitoring applications with the maximum line rate,

we directly connect the TX and RXwithout any DUT (i.e., the

DUT is a lossless fiber cable), thus the two NICs are directly

connected through an optical fiber. As TX, we deploy the

MoonGen traffic generator while FlowMon-DPDK as well

as the other monitoring tools are installed as RX. We con-

figure MoonGen to generate 5 billion minimum size packets

(64 bytes) at line rate (14.88Mpps) from 65536 flows.Whereas

traffic generation employs 4 cores, FlowMon-DPDK uses the

2 physical (Fig. 1) cores, and the RX server is configured with

optimal tunings (e.g., set the CPU frequency scaling gover-

nor to “performance", disable Turbo-boost, pin processes to

dedicated cores, etc.).

3.2 Demo scenarios
In particular, we consider applications of increasing complex-

ity, notably: (i) hardware-based packet-level counting: native

DPDK application, (ii) software-based packet-level counting:

MoonGen and pktgen-DPDK (both programmed through

lua scripts) and Speedometer [7] (DPDK application), with

default configuration from GitHub or our own tuned version,

(iii) software-based flow-level packet counting: FlowMon-

DPDK and MoonGen (flow-level version).

All the tools are tested under the same scenario as FlowMon-

DPDK (256 packet batches, 4096 rx/tx descriptors, etc.), and

the primary performance metric we consider is the Packet

Drop Ratio (PDR). While all applications have different out-

puts, their ability to keep-up with the traffic is the first indi-

cation of the scenario they can be used with, as a large PDR

testifies inaccuracy in the reported results.

Fig. 2 shows the expected performance according to [11].

In particular, from left to right: (i) already accessing hard-

ware registers yields to 10
−6

drops, so that (ii) packet-loss

of software tools is already higher for packet-level opera-

tions, (iii) where an (opportunely tune) Speedometer and

FlowMon-DPDK have similar performance. Finally, it can

be shown that (iv) FlowMon-DPDK packet loss rate only

minimally increase with flow-level operations.

3.3 Demo workflow
The demonstration will allow users to interact with both

the TX and RX, notably: (i) altering the sending process

(e.g., number of flows, flow skew, etc.), (ii) changing the

enabled FlowMon-DPDK counters (e.g., packet-level vs flow-

level; flow-rate vs flow-burstiness; instantaneous values vs

cumulated vs mean vs high orders vs percentiles), (iii) in-

teracting with the monitoring CLI (quiet mode vs periodic

writing vs ncurses based terminal with sorted flows sta-

tistics). A video showing the demonstration is available at

https://youtu.be/B8uaw9UgMm0.

ACKNOWLEDGMENT
This work has been carried out at LINCS (http://www.lincs.fr) and

benefited from support of NewNet@Paris, Cisco’s Chair “Net-

works for the Future”.

REFERENCES
[1] 2018. ntop. https://www.ntop.org/. (2018).

[2] 2018. sFlow. https://sflow.org/. (2018).

[3] Vamsi Addanki, Leonardo Linguaglossa, James Roberts, and Dario

Rossi. 2018. Controlling software router resource sharing by fair

packet dropping. In IFIP Networking.
[4] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-

fart, and Georg Carle. 2015. Moongen: A scriptable high-speed packet

generator. In Proceedings of the 2015 Internet Measurement Conference.
ACM, 275–287.

[5] Massimo Gallo and Rafael Laufer. 2018. ClickNF: a Modular Stack

for Custom Network Functions. In 2018 USENIX Annual Technical
Conference (ATC).

[6] Intel. 2010. Data Plane Development Kit. http://dpdk.org/. (2010).

[7] Rafael Leira. 2014. iDPDK-Speedometer. https://github.com/

hpcn-uam/. (2014).

[8] Luigi Rizzo, Marta Carbone, and Gaetano Catalli. 2012. Transparent

acceleration of software packet forwarding using netmap. In INFOCOM,
2012 Proceedings IEEE. IEEE, 2471–2479.

[9] Martino Trevisan, F Alessandro, Marco Mellia, Maurizio Munafò, and

Dario Rossi. 2016. DPDK-Stat: 40Gbps Statistical Traffic Analysis with

Off-the-Shelf Hardware. Technical report (2016).
[10] Tianzhu Zhang. 2017. FlowMon-DPDK. https://github.com/ztz1989/

FlowMon-DPDK. (2017).

[11] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo Giac-

cone, and Dario Rossi. 2018. FlowMon-DPDK: Parsimonious per-flow

software monitoring at line rate. In TMA Conference 2018.

2

https://youtu.be/B8uaw9UgMm0
http://www.lincs.fr
https://www.ntop.org/
http://dpdk.org/
https://github.com/hpcn-uam/
https://github.com/hpcn-uam/
https://github.com/ztz1989/FlowMon-DPDK
https://github.com/ztz1989/FlowMon-DPDK


High-speed per-flow software monitoring with limited resources Submitted for review to SIGCOMM, 2018

TECHNICAL REQUIREMENTS
Equipment to be used: The main components of the demo,

including the traffic generator and FlowMon-DPDK, run on

remote servers. So we only require one PC/laptop (with SSH

terminal applications) with a large monitor (e.g., 24 or 27

inches), so as to demonstrate the experimental results. If

needed, we can use our own laptop. We also need a big desk

to host the laptop and the monitor. To give the audience a

clear picture of the demo, we will prepare a poster (size A1),

in which the setup is described in detail, along with the ideas

and results of our work. So we also need a support for the

poster.

Space needed: For the demo, we need enough space to host

the desk (with the laptop and the monitor) and the poster

support.

Setup time required: Few minutes are needed to setup the

demo, including the time to log into the remote server, plus

the time to initialize both the traffic generator (MoonGen)

and FlowMon-DPDK.

Additional facilities needed: Since the testbed runs re-

motely, we need reliable Internet access to enable SSH ses-

sions.

3


	1 Introduction
	2 FlowMon-DPDK design
	3 FlowMon-DPDK demonstration
	3.1 Setup
	3.2 Demo scenarios
	3.3 Demo workflow

	References

