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Abstract—In 2012, Google introduced the Speed Index (SI)
metric to quantify the speed of the Web page visual completeness
for the actually displayed above-the-fold (ATF) portion of a Web
page. In Web browsing a page might appear to the user to be al-
ready fully rendered, even though further content may still be re-
trieved, resulting in the Page Load Time (PLT). This happens due
to the browser progressively rendering all objects, part of which
can also be located below the browser window’s current viewport.
The SI metric (and variants) thereof have since established them-
selves as a de facto standard in Web page and browser testing.

While SI is a step in the direction of including the user
experience into Web metrics, the actual meaning of the metric
and especially its relationship between Speed Index and Web
QoE is however far from being clear. The contributions of
this paper are thus to first develop an understanding of the
SI based on a theoretical analysis and second, to analyze the
interdependency between SI and MOS values from an existing
public dataset. Specifically, our analysis is based on two well
established models that map the user waiting time to a user ACR-
rating of the QoE. The analysis show that ATF-based metrics are
more appropriate than pure PLT as input to Web QoE models.

Index Terms—Web QoE Modeling, Page Load Time (PLT),
Speed Index (SI), IQX model, WQL model

I. INTRODUCTION

Reliably measuring Web users Quality of Experience (QoE)
has proven to be equally challenging and useful. These chal-
lenges are clear considering the availability of numerous timing
events from the browser!, the implementation of which may
very well differ between browsers. As such, simple events like
the Page Load Time (PLT) are still broadly used to infer user
QoE. The usefulness of measuring Web QOoE is equally clear as
a low QoE can directly translate into a loss of revenue?, to the
point that Google started using PLT to rank® search results [1].

However, it is far less clear how to distill an accurate
estimation of subjective user QoE from the numerous browser
signals. Figure 1 introduces a few of these events: the first byte
of useful payload is received at the Time fo First Byte (TTFB),
whereas the document structure is fully loaded at the Document
Object Model (DOM) time. These timescales are generally

Thttps://www.w3.0rg/TR/2012/REC-navigation-timing-20121217/

Zhttp://www.fastcompany.com/1825005/how- one-second-could-cost-
amazon- 16-billion-sales

3In particular, mobile page speed is used http://www.thesempost.com/google-
mobile-first-index-page-speed-ranking/.
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Figure 1: Time-instant metrics when downloading and rendering a Web page.
Above-the-fold (ATF) and page load time (PLT) indicate when the content
shown in the visible part of the Web page (“above the fold”) and when the
page finishes loading, respectively. ATF is used to compute the speed index
(SI), while PLT is traditionally used in different Web QoE models.

related to network latency and are too fast with respect to human
perception. Rendering starts at the Time to First Paint (TTFP)
and completes at the Above-The-Fold (ATF) time [2], i.e., when
the current viewport is fully rendered — a timescale that is
surely more relevant with respect to user perception. Finally,
application-level Page Load Time (PLT) measures the precise
time at which the page finishes loading, which includes content
that is possibly not directly visible and that is thus less relevant
for user perception. Others metrics apt at measuring user inter-
action have also been introduced in the past, such as the Time
to Interactive (TTI), or the Time to Click (TTC). Notably, in
the A/B tests performed in [3], the TTC informs us when users
believe they have sufficient information to make a judgment on
a perceived speed difference between the two Web pages being
shown, and is thus a very good approximation of the ATF time —
yet, TTC is only artificially available in controlled experiments.

Ultimately, the experience of the user depends on the whole
process of retrieving and displaying a Web page until the PLT
has been reached [4]. But it especially depends on the browser
rendering process up to the ATF time. To better capture the
complete process, the Speed Index (SI)* metric was proposed
by Google. It is defined as the integral of complementary
visual progress (measured from histograms of pixel-level
rendering, see Section III). Due to its computational costs, SI
has been rarely used in practice, but it has raised the scientific
community’s interest. As a result, several SI variants have
been introduced such as the Perceptual Speed Index (PSI),
which uses Structural SIMilarity (SSIM) instead of pixel-level
rendering, or ObjectIndex (OI) and Bytelndex (BI) [1], which
approximate the rendering process by using simple object-level
and byte-level completion ratios, respectively.

“https://sites.google.com/a/webpagetest.org/docs/using- webpagetest/
metrics/speed-index



The SI (and its variants) represent a good step towards
including the user experience into Web metrics (Sec. II). Yet,
their actual meaning and especially their ability to predict
user QoE are far from being fully elucidated. In this paper,
we develop an understanding of the SI based on a theoretical
analysis (Sec. III) and then use the SI as input to well
established models (WQL and IQX) in order to map the user
waiting time to the user QoE evaluation on an ACR scale
(Sec. IV). Our results show that ATF-based metrics are more
appropriate than pure PLT as input to Web QoE models, but
there is still ample opportunity for future research (Sec. V).

II. RELATED WORK

QoE models for the Web are definitively not a new subject.
Seminal work on the topic started with [5] and the recent
adoption of new protocols, such as HTTP/2 and QUIC, refueled
the interest on the topic. Special attention has been given to
mobile Web browsing [6], [7], the impact of network bandwidth
fluctuations and outages on Web QoE [8], [9], the impact of
visual appeal [10] and usability [11] on QoE. Finally, a body
of work studies waiting times for Web QoE models [1], [3],
[12], [13]. In this work we are not considering session-based
Web QoE [14], nor task-driven QoE [15], [16] or real-world
distractions [17]. Instead the focus solely lies on the impact of
Web page loading times, as, e.g., performed by Speed Index.

Broadly speaking, two classes of models can be used to esti-
mate subjective user QoE from objective browser measurements.
First, there are PLT-derived Web QoE models [4], [12], [18]
that define QoE as a function f(-) of PLT and fit the design
parameters to a dataset. And second, there are data-driven
approaches [3], [6], [13] that use timings as features and employ
machine-learning to learn the function from data. In this work,
we focus on the former approach. In particular, two well known
models that tie the PLT to QoE are built upon the IQX and the
WQL hypotheses. IQX [19] is based on the assumption that,
given a fixed stimulus ¢, the resulting change of QoE depends
on the current level of QoE. Intuitively, the idea of IQX is that if
the QoE is high, a small variation in the underlying QoS metric
will strongly affect the QoE. This results in an exponential
relationship between waiting time and QoE, yielding

QoFE1%X (t)=ae Pl 4+, (1)

The WQL hypothesis [18] is instead based on the fundamental
Weber-Fechner law from psychophysics and applied to waiting
times. WQL assumes that the relationship between ‘W’aiting
time ¢ and its ‘Q’oE evaluation on a linecar ACR scale is
‘L’ogarithmic, and can be expressed as

QoEW L =4 —pln(t). 2)

The ITU-T G.1030 [18] model follows the WQL hypothesis
and uses a logarithmic regression for a session’ time ¢. ITU-T
G.1030 specifies three models with parameters a,b that depend
on the session time (short 6, medium 15s, long 60 s sessions).

S A session consists of three steps: (1) requesting, retrieving, and displaying
of a search page; (2) typing and submitting a search term on this page; (3)
retrieving and displaying of the results page.

Companies use this to measure and detect page load and to
map PLT to MOS®.

Independent of the specific mapping function, both the IQX
and WQL models relate the user QoE to the user waiting
time ¢, where ¢ is approximated with the application-level
PLT. Yet, it is well known that subjectively experienced time
and objective physical time differ [20]. In other words, we
expect a difference between network-level, application-level
and user-perceived PLT. As outlined, in Web browsing a page
might appear to the user to be already loaded although content
is still being retrieved due to the progressive rendering of
the browser and the fact that pages often stretch beyond the
browser’s viewport. This indicates that ATF might be a more
appropriate stimulus than PLT as input to QoE models.

III. DEFINITION AND UNDERSTANDING OF SPEED INDEX
A. Definition of Speed Index

For quantifying how fast a Web page is loaded over time, time-
integral metrics are proposed which generally have the form of

T T
M:/ (l—R(t))dt:T—/ (RO 3)
0 0
R(t) is the response of the Web page over time and indicates
the completion ratio of the Web page, i.e. 0 < R(t) <1. As
a consequence, since R(t) is dimensionless, M refers to a
time unit typically given in a scale of milliseconds [ms]. The
completion ratio can be computed in different ways. For the
Speed Index R(t) quantifies the visual progress by calculating
the mean pixel histogram difference (MPHD) between the
current Web page I; at time ¢ and the state of the page after
ATF Ir, i.e. when the visible part of the page is completely
rendered. Hence, the Speed Index with T'=ATF is defined as

T
SI:/ (1—R(t))dt, R(t)=MPHD(Ir,I,). (4)
0

For an image I, the histogram H for the colors C € {R,G,B}
is a vector of n elements counting the number of pixels with
the corresponding color code in, typically, 0,...,255. The
difference between the starting histograms (for the first video
frame at time TTFP) and the ending histogram (last video
frame at time ATF) is used as the baseline, namely

n—1

> Y |Hei(ATF)—He i (TTFP)].
Ce{R,G,B}i=0

AH= 4)

Then the mean pixel histogram difference is the difference
of the histogram for each frame in the video to the first
histogram and compared to the baseline. This quantifies the
completeness of each video frame as

> i‘HC,i(t)*Hc,i(TTFP)

Ce{R,G,B}i=0

()

E.g. https://www.sandvine.com/downloads/general/sandvine-technology-
showcases/web-browsing-qoe-score.pdf



with R(t)=0 for any ¢t < TTFP. Hence, ST is lower bounded
by TTFB and upper bounded by T, TTFP <SI<T.

The completion ratio R(t) uses a full reference metric of
the browser’s output images at times ¢ and 7. Other full
reference metrics lead to different time-integral metrics. The
perceptual Speed Index (PSI) [3] uses SSIM [21] for R(¢) to
better reflect user perceived quality (and provide resistance to
visual jitter and shifts in the page layout during loading). PSI
was introduced in 2016 to quantify how “most of the Web
page’s ATF content loads quickly without visually noticeable
jitter” [3]. It is defined as

T
PSI= / (1—R(t))dt, R(t)=SSIM(Ir.I,). ()
0

The computation of the full reference metrics MPHD and
SSIM are computationally expensive. Therefore, simpler
metrics were proposed which use the ratio of bytes (Bytelndex
or BI) or objects (Objectindex, Ol) at time ¢ compare to time
T [1]. OI and BI use the relative amount of download objects,
and bytes respectively, until the PLT. The downloaded bytes
B(t) over time are related to the overall volume V. BI can
then be calculated by

BI= / T(l—R(t))dt, R(t)=B(t)/V. ®)
0

B. Understanding Speed Index

We start with a basic theoretical analysis of the Speed
Index. If not mentioned otherwise, we consider the time
instant 7'= AT F when the visual progress is completed, i.e.
R(T)=1. Therefore, it does not really matter what kind of
ST variant we are looking at, since we consider only R(t).

1) Smooth Visual Progress vs. Instantaneous Visual
Completion: A (theoretical) linear visual progress is defined for

R(t)=t/T, )
leading to a Speed Index of

T 9T

1t T

I={ 1- =|t-==| ==
S /0 R(t)dt [t 5 ]0 5

as depicted in Figure 2. For an instantaneous visual completion
at time 7', without any prior progress, the Speed Index is
SI =T, ie., the upper limit of the Speed Index (cf. also
Figure 3). Hence, a smooth visual progress leads to half of
the maximum SI. Since the visual progress can not start until
the first byte arrived, the DOM is loaded and the first object
(TTFP) is painted, we arrive at

(10)

TTFP <SI<T=ATF<PLT (11)

as an inequation for the Speed Index ST (or other derivates
like PSI, BI, OI).
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Figure 4: Smooth visual progress is interrupted at to for time At=t; —tg.
The progress is completed at time T4 At.

2) Slowed Down vs. Interrupted Progress: But which kind
of progression behavior leads to a better Speed Index? Let us
consider a smooth visual progress which is interrupted at time
to for a duration of At=t; —tg, as shown in Figure 4. This
increases the SI by the ‘interruption rectangle’ with length At
and height 1—R(to)=1—t,/T. Thus, it is important to see
that the time £y when the interruption starts is as important
as the duration of the interruption due to the integral form
of the SI. In contrast, ATF or PLT are only offset by At.

We compare the index SI; of the interrupted progress with
a slower, but smooth progress which also ends at time 7T+ At
and has the same ATF. The slowed down progress yields
SI,=21(T+At). This slowed down progress leads to a better
QOE, i.e. a smaller SI, under the condition that

Hence, if the interruption occurs early (i.e. before 7'/2), the
interrupted progress is worse in terms of SI.

3) Time-discrete Progress: During practical observation
the visual progress is measured as a time-discrete process.
At n time instants ¢; for ¢=1,---,n, a certain progress R; is
observed. Thereby, an event at time ¢; increases the visual
progress by r;. Itis Ry =r1, R,=1, T'=t,, and ¢, =0, i.e.

Ri:Rifl"’_Ti:ZZ:lTk (13)
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Figure 5: Time discrete visual progress. At time ¢;, the progress is increased
by r; and the cumulative progress follows as Ry =R;_1+71; =1 ;. _1Tk-

For the SI during time-discrete progress then follows

i) Ri=T— Z i—t)> e (14)
k=1

n—1

SI=T- Z i1—

:T—Z(T—ti)n (15)
i=1
4) Periodic Measurements and Slotted Time: Typical

implementations of the SI periodically capture video frames to
compute the visual completeness. For example, WebPagetest’
currently captures at 10 frames per second. In general, we
assume that there are n measurements within time 7'=nAt.
Hence, At =T/n and t; =iAt =1iT/n. Equation (15) leads
to the SI which indicates that the first measurement at time
t1 is counted (n—1) times.

n—1
SI=T-) (n—i)At-r;

i=1

(16)

Assuming a smooth, linear progress, we can set r;=1/n and
R;=R(t;)=1/n. Then, Eq. (14) leads to

_T
25
T
T

nl

nQZ

n+1 17

S L
n

T T At
- —+— 18
) 2 2 (18)
Thus, the term % = %At indicates the absolute measurement
bias due to the periodic discrete measurement points — instead
of considering the continuous progress R(t) yielding ST=T/2
as in Eq. (10). The relative bias is then f=1+1/n=1+At/T.
Figure 6 indicates the relative bias of the SI for different
measurement periods At and smooth linear progress.

C. Summary

In practice, the Speed Index evaluates the visual progress
of Web page contents. The measurement bias is not critical
in practical implementations. When using ATF as end point
for the computation of the SI, it can be interpreted as a proxy
for the user perceived waiting time. This raises the question
whether the WQL or IQX can be applied to the Speed Index.

http://www.webpagetest.org/
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Figure 6: For the smooth linear progress, the absolute measurement bias At/2
of the SI is independent of the time 7', but the relative bias is 1+ At/T.

Table I: Characteristics of Web pages and the network characteristics in terms
of PLT and Bytelndex in the subjective study.

size (MB)  #objects PLT (s) BIplt(s) BI atf (s)
mean 1.633 157 5.403 3.169 2.695
median 1.034 102 2.293 1.481 1.332
std 1.140 123 7.977 5.042 4.517
min 0.173 20 0.366 0.167 0.150
max 26.252 876 56.268 54.793 54.793
iqr 1.338 146 3.711 1.796 1.528

IV. RELATIONSHIP BETWEEN SPEED INDEX AND MOS

The authors of [1] provide a public database of Speed Index
values and subjective ratings for many Web pages, which we
use in the following to investigate the relation between MOS
and SI. In particular, we suggest that the SI is a proxy for the
user waiting time for the visible portion of a Web page to be
rendered. Hence, we investigate the relationship between SI and
MOS for WQL and IQX. Then, the Speed Index driven QoE
model based on Eq.(1) and Eq.(2) is formulated as follows.

Web QoE (SI based QoE model SQ).

SQrox =ae P51y
SQWQL = —aln(SI)+b

A. Data Description

In [13], 8,687 Web browsing sessions were collected,
wherein 241 volunteers rate their browsing experience with
the Chrome browser. Twelve non-landing pages from the list
of Alexa top 100 pages were used in the study. The size of the
Web pages ranges from 0.17 MB up to 26.25 MB containing
from 20 up to 876 objects, see Table 1.

The users rated the Web QoE on a 5-point Absolute Category
Rating (ACR) scale, with 5-Excellent, 4-Good, 3-Fair, 2-Poor,
and 1-Bad. The dataset is published as open source database®.
Beside the subjective ratings, it contains information about
each page’s page load time and several Speed Index variants,

19)
(20)

8Web QoE dataset; https://newnet.telecom-paristech.fr/index.php/webqoe/
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Figure 7: The average Speed Index is computed over Web pages and all users
with a rating ofy €{1,2,3,4,5}.

based on both PLT and ATF. Details of the experimental
setup are described in [1]. To be more precise, we use
application-level PLT (indicated by ’onload’ in the browser)
as well as the Byte Index related to PLT as well as Byte Index
related to ATF. The median PLT is 2.29 s, while the average
PLT is about 5.40s. The maximum observed PLT is 56s.
Accordingly, the BI values are in the same order, cf. Table I.

B. Numerical Results

The first observation is that no significant correlation
between the individual user ratings and the different time
instants as well as the Speed Index can be observed in the data.
Therefore, we take a closer look at aggregated user ratings.

Figure 7 indicates the average Speed Index values for users
rating a Web page with a value of y. We see a clear relationship
between the user perception and the Speed Index. But there is
no significant difference between BI (ATF) and OI (ATF and
PLT). Nevertheless, the differences between BI PLT and ATF
are significant. Figure 8 then shows the fitting between the BI
ATF and MOS values according to the WQL and 1QX hypothe-
sis. This is performed by first grouping the BI values into bins of
equal size, i.e. each bin contains the same number of subjective
ratings; then the MOS is computed over the subjective ratings
assigned into each bin. It can be seen that the simple WQL and
IQX model lead to a very good fit. The goodness of fit values
are provided in Table II. It is amazing how well both models
captures the MOS when using the BI as input which provides a
better fitting than using PLT instead. Figure 8 shows that there
are not enough subjective ratings close to the edges. As a result,
the MOS values do not drop below 2. The significant lack of
samples in the public dataset does not allow to make conclusive
considerations whether IQX or WQL is more appropriate.

Figure 9 compares the true MOS with the estimated MOS
S@Q when using the ByteIndex (ATF) as proxy in the WQL and
IQX model for user perceived waiting time. This is compared
to the application-level PLT. It can be clearly seen that ATF
is required as proxy for user perceived waiting times. The

O measurement
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4.5 ¢
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W
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Figure 8: The WQL and IQX model leads to accurate results for Web page QoE
when the byte index (ATF) is mapped to MOS. The logarithmic scale in the
lower figure shows that there are however not sufficient user ratings at the edges.

Table II: Mean squared error (MSE), mean absolute error (MAE), correlation
p, coefficient of determination p2, maximum absolute error (max(AFE)) for
the fittings with IQX and WQL

WQLBI IQXBI WQLPLT IQX PLT
MSE 0.053 0.070 0.168 0.132
MAE 0.168 0.160 0.175 0.183

P 0.919 0.891 0.741 0.792
0> 0.844 0.794 0.549 0.628
max(AE) 0919 1.417 2.967 2.499

Speed Index nicely captures the visual progress and improves
to quantify this user perceived waiting times. Then, again the
WQL and 1QX cannot be rejected and are promising models.

Previous subjective tests (e.g., [4]) employed less complex
Web pages which yielded page load times that were almost
identical to above-the-fold times. As a result, the WQL
hypothesis was not rejected for page load times. The results
here clearly indicate that ATF is more appropriate and that the
byte index is a proper proxy for WQL. Figure 8 and Figure 9
show that the BI-WQL model leads to a very good estimation
of the MOS values. Utilizing only page load times, on the
other hand, does not lead to a good model, which is likely
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Figure 9: The estimated MOS from the byte index BI fits very well to the
real MOS value. The model using page load times is not working so well.

caused by additional loading times for non-visible content
(“below the fold”) that do not affect users.

V. CONCLUSIONS AND FUTURE WORK

This paper re-assesses the relevance of industrial standards,
such as WQL-based ITU G.1030, for the evaluation of QoE
Web users. In particular, due to the discrepancy between user-
perceived and application-level page load time, we observe
that novel metrics such at Above-The-Fold time are more
appropriate than PLT. In particular, we can reinforce the notion
that metrics in integral form, such as Bytelndex evaluated up
until the ATF mark, yield a more accurate QoE evaluation.
In other words, BI can be used as proxy for user perceived
waiting times of above the fold Web page contents. Specifically,
we show that WQL can be assumed under this requisite,
logarithmically mapping BI to MOS values. Even 1QX yields
quantitatively similar accuracy results. The largest difference
between IQX and WQL can be observed at very responsive
pages (i.e., with BI in the range of 100 ms to 500 ms), where
there is a significant lack of samples in the public dataset, that
do not allow to make conclusive considerations — although
the IQX model yields more conservative estimations here.

While results in this paper are encouraging, they open a
number of research questions. First, we observe that, while very
useful, the dataset is still limited in terms of evenly covering
MOS scale (i.e., few samples fall in the 4-5 range) and in
the Web page diversity (only 25 pages are considered). This
puts the generality of our findings into question. Enriching the
dataset would therefore be a beneficial community-wide effort.
Second, a larger dataset would allow to derive more precise
models, i.e., by classifying Web sites into appropriate categories
and determining models and parameters for each such class
separately. Third, for the ByteIndex all bytes are born equal: in-
tegrating task-driven QoE by weighting relevant parts of a Web
site to influence R(t) is an obvious but interesting extension.
The above directions are part of our future research agenda.
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