Batched packet processing for
high-speed software data plane functions

David Barach!, Leonardo Linguaglossa?, Damjan Marion'!,

1

Pierre Pfister!, Salvatore Pontarelli?3, Dario Rossi2, Jerome Tollet!
ICisco Systems, 2Telecom ParisTech, 3CNIT - Consorzio Nazionale Interuniversitario per le Telecomunicazioni
{first.last}@cisco.com, {first.last}@telecom-paristech.fr

Abstract—In the last decade, a number of frameworks started
to appear that implement, directly in user-space with kernel-
bypass mode, high-speed software data plane functionalities on
commodity hardware. Vector Packet Processor (VPP) is one of
such frameworks, representing an interesting point in the design
space in that it offers: (i) in user-space networking, (ii) the
flexibility of a modular router (Click and variants) with (iii)
the benefits brought by techniques such as batch processing that
have become commonplace in lower-level building blocks of high-
speed networking stacks (such as netmap or DPDK). Similarly
to Click, VPP lets users arrange functions as a processing graph,
providing a full-blown stack of network functions. However,
unlike Click where the whole tree is traversed for each packet,
in VPP each traversed node processes all packets in the batch
before moving to the next node. This design choice enables
several code optimizations that greatly improve the achievable
processing throughput: the purpose of this demonstration is
to introduce the main VPP concepts and architecture, as well
as experimentally showing the impact of design choices —and
especially of batch packet processing—, on the achievable packet
forwarding performance.

I. CONTEXT

To help escaping network ossification, software implementa-
tion of network function on Common Off The Shelves (COTS)
hardware has started to gradually replace dedicated network
hardware equipment. A recent tendence has further emerged
to implement high-speed network stacks bypassing the OS
kernel and bringing the hardware abstraction directly to the
user-space. A number of efforts in this space aim at providing
useful low-level building blocks for high-speed packet capture
(such as netmap [10] and DPDK [2]) whereas others target
the design of full-blown modular frameworks for high-speed
packet processing (such as RouteBricks [9] and FastClick [4]).

Initially proposed in [5], Vector Packet Processor (VPP) is
one such full-blown framework, that was recently released as
open source software in the context of the Fast Data IO (FD.io)
Linux Foundation project [3]. VPP exploits low-level building
blocks (such as DPDK) to provide a complete set of layer-
2 and 3 functionalities: in contrast with frameworks whose
first aim is performance on a limited set of functionalities,
VPP is feature-rich. As illustrated in Fig.1, the VPP processing
graphs comprises hundreds of network functions: in particular,
the picture highlights (in green and red) two of the functions
(respectively, Ethernet switching and IP forwarding) that will
be used to illustrate VPP architecture and to show performance
benefits of its design in the demonstration.

Vector Packet
Processor (VPP)

O 4°
5
o netmap DPDK
o)
7]
£
™4
Fig. 1. VPP scope and processing tree (the nodes used in the demonstration

are highlighted in red and green and blue).

II. VPP ARCHITECTURE

Due to space limits, we provide only a very brief overview
of VPP here, and refer the interested reader to a technical
report for further details [8]. In a nutshell, VPP offers the
flexibility of a modular router, retaining a programming model
similar to that of Click [7] and variants [9, 4]. Addition-
ally, VPP does so in a very effective way, by extending
benefits brought by techniques such as batch processing to
the whole packet processing path. Whereas DPDK uses low-
level batching to efficiently fetch packets from the Network
Interface Card (NIC) avoiding per-packet interrupt pressure
(that kills the peformance of traditional kernel-based network
stacks), VPP employs batched processing to increase as much
as possible the number of instructions per clock cycle (IPC)
executed by the microprocessor (making packet processing as
efficient as possible). In a sense, VPP raises and extends the
batching techniques used from low-level building blocks to
high-level packet processing functions.

The additional original idea in VPP is to rearrange the
order in which functions are executed: instead of letting each
packet of the batch to traverse the full forwarding-graph before
processing the next packet (as in the “run-to-completion”
model of Click/FastClick [7, 4]), VPP let a single node of
the forwarding-graph process all packets in the batch before
moving to the next node. Otherwise stated, VPP offers a
systematic way to efficiently process packets in a “vectorized”
fashion, that as we will show in this demonstration, provides
sizeable performance benefits. In particular, this peculiar VPP
design is explicitly tailored to (i) minimize the data cache
misses using data prefetching, (ii) minimize the instruction
cache misses, (iii) increase the instructions per clock-cycle

Q
S 1.4x10% —— ‘ ‘
o 1.2x108 - = —
Sz Ix108
52 s8xlo0] -
g e 6x107 i C (pure Cross-Connect I0) —+— 4
EI: o~ 4x107 {.— IPv4 (138K FIB entries) —>¢— —
3 2x107 L ‘ Mixed I‘Pv4/IPv6/Ethemet O]
8 0
= 43264 128 256 512
Maximum Vector Size B* [pkts]
(a)
o T T T]
E,‘l; 250 — B* limit
5 200 = x B, samples
§ i.: 150 -
=M 100
2 % XK
Q 50 + X
X

< 0 | he | Le 31 33X X2 %M

0 01 02 03 04 05 06 07 08 09 1

Normalized input load

(®)

Fig. 2. Demonstrating VPP ability to handle 10Gbps traffic rate on a single-
core: (a) packet processing rate as a function of the maximum vector size B+
in a stress-test scenario and (b) actual vector size as a function of the traffic
rate for BT = 256 in realistic scenarjos

of the CPU front-end. These software architectural decisions
all concur in efficiently exploiting the parallelism offered by
modern pipelined CPU of standard COTS hardware.

It is worth pointing out that tools such as G-opt [6] and
FastClick [4] do offer some form of “compute batching”,
which however barely resembles to batching in VPP only from
a very high-level viewpoint. In paricular G-opt batching just
avoids CPU stalls due to memory latency, whereas FastClick
implicitly process packets individually, and only specific nodes
have been augmented to also accept batched input (which
pays the price of linked-list implementation and thus provide
limited benefits as in “the forwarding test case [...] the
batching couldn’t improve the performance” [4]).

For reason of space, we cannot report on a number of other
important architectural details of VPP, such as lock-free multi-
threading, systematic function flattening, dual and quad-loop
processing, support for multi-architecture and Direct Cache
Access (DCA), that are covered in [8].

III. DEMONSTRATION SETUP AND WORKFLOW

We plan to demonstrate benefits of systematic vectorized
processing in both stress test and realistic scenarios. Our
hardware setup consists in a COTS server with 2x Intel Xeon
Processor E52690, each with 12 physical cores running at
2.60GHz in hyper-threading and 576KB (30MB) L1 (L3)
cache. The server runs a vanilla Linux kernel 4.8.0-41 and
is equipped with 2x Intel X520 dual-port 10Gbps NICs, that
are directly connected with SFP+ interfaces.

Due to space limits, this extented abstract illustrates two
main features, although in the demonstration session we
plan to additionally show benefits of multi-loop programming
practice due to the instruction parallelization (improvement in

terms of IPC) and pre-fetching (avoiding stalls due to data
cache misses). We plan to release a video of the demo at [1].

A. Stress test: Throughput gain due to vectorized processing

VPP processing model continuously polls vectors of size
up to BT packets from the NIC for processing. Changing
the size of the vector affects the number of packets that
can be processed in parallel, and in particular increasing
the vector size allow to amortize the framework overhead.
Fig.2-(a) depicts for simple cross-connect IO (XC), or for
more complex cases including forwarding (IPv4) and mixed
Ethernet switching and IPv4+IPv6 forwarding (MIX) the VPP
packet processing throughput achieved on a single-CPU core
for worst-case input traffic of 64B packets sent at 10Gbps. It
can be seen that processing throughput rapidly increase with
BT, and saturates for B > 256, which confirms the appel
of vectorized processing.

B. Realistic scenario: Delay due to vectorized processing

Clearly, vectorized processing tradeoffs with per-packet
delay experienced by packets that arrive at the NIC while a
batch is being processed. VPP controls the maximum number
of packets to be processed by varying the maximum batch
size BT, controlling the delay due to batching. In particular,
batching is especially useful for high traffic rates, where
batched processing allow to increase the instruction per clock-
cycle efficiency. Conversely, at low traffic rates the NIC queues
seldom fills, so that the vectors polled from the NIC at time ¢
typically have a size B; < B™. Fig. 2-(b) reports actual batch
sizes polled from the NIC for increasing input traffic rates,
showing that the vector size is generally small, and that only
as the input load approaches the processing capacity, the vector
size grows to B; ~ B™. Otherwise stated, vectors grow only
when this is actually needed, as per Fig.2-(a), to increase the
efficiency of the processing to sustain the incoming traffic.
This additionally confirms that the expected delay will be
negligible in practical non-overloaded scenarios.

ACKNOWLEDGMENTS

This work has been carried out at LINCS (http://www.
lincs.fr) and benefited from support of NewNet@Paris, Cisco’s
Chair “NETWORKS FOR THE FUTURE” at Telecom ParisTech
(https://newnet.telecom-paristech.fr).

REFERENCES

[1] https://newnet.telecom-paristech.fr/index.php/vpp-bench.

[2] Data plane development kit. http://dpdk.org.

[3] Fast Data Project (FD.io). https://fd.io.

[4] T. Barbette, C. Soldani, and L. Mathy. Fast userspace packet processing.
In ACM/IEEE ANCS, 2015.

[5] D. Barach and E. Dresselhaus. Vectorized software packet forwarding,
June 2011. US Patent 7,961,636.

[6] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen. Raising the bar
for using gpus in software packet processing. In USENIX NSDI, 2015.

[7]1 E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek. The Click
Modular Router. Operating Systems Review, 34(5):217-231, 1999.

[8] L. Linguaglossa et al. High-speed Software Data Plane via Vectorized
Packet Processing (Extended Version). In Tech.Rep., 2017.

[9]1 M. Dobrescu et al. Routebricks: exploiting parallelism to scale software
routers. In SIGOPS, 2009.

[10] L. Rizzo. netmap: a novel framework for fast packet I/O. In USENIX

ATC, 2012.

