
Telemetry-based stream-learning of BGP anomalies
Andrian Putina, Dario Rossi,

Albert Bifet

Telecom ParisTech

name.surname@telecom-paristech.fr

Steven Barth, Drew Pletcher,

Cristina Precup, Patrice Nivaggioli

Cisco Systems

name.surname@cisco.com

ABSTRACT
Recent technology evolution allows network equipments to

continuously stream a wealth of “telemetry” information,

which pertains to multiple protocols and layers of the stack,

at a very fine spatial-grain and high-frequency. Processing

this deluge of telemetry data in real-time clearly offers new

opportunities for network control and troubleshooting, but

also poses serious challenges.

We tackle this challenge by applying streaming machine-

learning techniques to the continuous flow of control and

data-plane telemetry data, with the purpose of real-time de-

tection of BGP anomalies. In particular, we implement an

anomaly detection engine that leverages DenStream, an un-

supervised clustering technique, and apply it to features col-

lected from a large-scale testbed comprising tens of routers

traversed by 1 Terabit/s worth of real application traffic. In

spirit with the recent trend toward reproducibility of re-

search results, we make our code and datasets available as

open source to the scientific community.

1 INTRODUCTION
Nowadays network Operations and Management (OAM)

increasingly rely on the ability to stream and process, in

near real-time, useful “features” from network equipment.

An integral part of the OAM process is, e.g., to ascertain

whether the operational conditions are normal or anomalous.
Simple Network Management Protocol (SNMP) has long

been the de facto standard to gather fairly coarse informa-

tion from the network management, control and data planes.

Consequently, SNMP has been used for anomaly detection

for long time [21]. In the SNMP paradigm, the server ini-

tiates the data collection from hundreds of devices, with a

pull-based approach, at traditionally low frequency (i.e., in

the order of minutes). More recently, Model-driven telemetry

(MDT) [1–4, 22] has emerged as an interesting alternative

to SNMP: instead of having to periodically poll at a low rate

(as in SNMP), under MDT subscribers receive continuous

stream of operating state information in a standard struc-

tured format. In addition to supporting periodic export, MDT

further enables, e.g., to trigger data publication when specific

conditions are met.

Rather typically, a workflow common to several vendors

(such as Cisco [1], Arista [2], Juniper [3] and Huawei [4]) is

to express features via YANG [10, 11] data models, encoded

with the Google Protocol Buffer (GPB) format, that are then

transmitted via the Google Remote Procedure Call (GRPC)

protocol. While the use of standard formats and protocol for

their export is very desirable, and while the abundance of in-

formation is desirable for fine-grained monitoring, however

it becomes necessary to also process MDT data as they are

streamed – a challenging task at the heart of our work.

While anomaly detection is surely not a green field [13],

however there are three key differences from this work and

others related effort. Notably, we are first to leverage a dataset

of features directly exported by network software via YANG,

which makes the features more easily identifiable – and pos-

sibly portable across vendors. Second, whereas there is an ex-

tensive literature on BGP anomaly detection (see [9] and ref-

erences therein), however the literature has mostly focused

on the BGP inter-domain context. In this work we instead

consider Content Service Provider (CSP) datacenter that, fol-

lowing recent trends[19], are designed with BGP as the only

routing protocol. To the best of our knowledge, this study is

the first to perform telemetry-based BGP anomaly detection

on CSP networks. Last but not least, we remark an important

methodological difference: whereas there is a growing atten-

tion to data stream clustering techniques[15, 20], to the best

of our knowledge DenStreaming has only seldom [17, 18]

been used in network-related anomaly detection (raw head-

ers are used as simple features in [17], whereas [18] deals

with twitter spam). Summarizing our contributions:

• (Sec.2) We engineer a realistic CSP testbed, loaded

with up to 1 Tbps aggregate traffic, that we use to

generate telemetry datasets annotated with manual

ground truth about anomalous injected events. We

make these datasets available to the community at [5]

• (Sec.3)We devise an unsupervised clustering algorithm

based on DenStreaming[12] that is apt at operating

over streaming data, offering its open-source imple-

mentation at [6]

• (Sec.4) We perform an exhaustive evaluation of the al-

gorithm over the released datasets, comparing it classic

approaches (e.g., K-Means or DBScan), gathering sev-

eral findings coming from both machine-learning (in

terms of portability and accuracy) as well as domain-

expert (in terms of feature selection and timeliness).

1

SIGCOMM’18, August 21-23, 2018, Budapest, Hungary A.Putina et al.

Figure 1: Topology

2 TESTBED AND DATASETS
Testbed. Our testbed is depicted in Fig.1 and replicates a

traditional clos topology of a CSP datacenter. On the physical

level, it comprises 8 leaf nodes interconnected via 4 spine

nodes. For redundancy, each leaf is connected to each spine

via 4×100Gbps fiber links, so that the average testbed node

has 25 interfaces. On the operational level, the datacenter is

designed with BGP as the only routing protocol, following

guidelines in [19].

Real application mixtures are generated from servers in

the racks (not shown in the picture) connected to the ToR

switches (the Nexus 2/3/5000 and 9000 series) to generate up

to 1 Tbps of aggregated traffic (a mixture of TCP, AMR-WP

VoIP and G.711a calls, Skype-1050P and Blue Ray and 4K

YouTube streaming). Therefore, whereas the testbed does

not involve real users, it do however uses real equipment,

protocols and applications used in production networks.

Data collection and labeling. We use the testbed to per-

formmultiple experiments with different characteristics, that

are listed in Tab.1. At a sampling rate of 5 seconds, each of

the N nodes streams a snapshot of its F features to the col-

lector: each experiment is a point X ∈ RNSF
where N is

the number of nodes, S is the number of collected samples

during that experiment and F the number of features. All

the available features are described by the YANG models [7]

and then extracted, decoded and stored by Pipeline [8] as

compressed CSV files available at [5].

In particular, we vary the traffic load (null, 0.5 Tbps and

1 Tbps), the number (from 0, to few 10s to some hundreds)

and type (BGP port flapping, BGP leaks and BGP clear) of

injected anomalies and the duration of the run. To assist

reproducibility, the table is also annotated with the specific

section of the paper in which a particular dataset is used.

We classify the working condition of our system in two

categories, i.e., normal vs anomalous. The system works by

default in normal mode, and each experiment starts with

Table 1: Experimental datasets available at [5]

Traffic load No. Anomalies Duration Used for

0 0 0 1 h Tuning ϵ (sect. 4.1)

1 500Gbps 0 1 h Tuning ϵ (sect. 4.1)

2 1Tbps 11 1 h Tuning parameters (sect. 4.1)

3 1 Tbps 8 0.55 h Tuning parameters (sect. 4.1)

4 1 Tbps 5 0.72 h Tuning parameters (sect. 4.1)

5 1 Tbps 12 2 h Test parameters (sect. 4.2)

6 0 12 2 h Valid. CP vs DP (sect. 4.3)

7 0 130 72 h Ext. valid (sect. 4.3)

8 0 238 262 h Execution time comparison (sect. 3.3)

0

1000

Co
nt

ro
l P

la
ne

Pa
th

s-
Co

un
t

0 25 50 75 100 125 150 175
Time [samples]

100

200

Da
ta

 P
la

ne
Ou

t-l
oa

d
in

t0

Figure 2: Example of control plane (top) vs data plane
(bottom) features, and annotated ground truth

a normal period (lasting 40 samples), after which we start

injecting controlled anomalous events at randomized node

locations. We only inject a single anomaly at a time, spacing

out anomalies by either 120 or 300 seconds (depending on

the dataset), and keep track of the injected event in a ground
truth database available at [5].

We point out that we do not leverage ground truth infor-

mation to build our data-driven models (i.e., as one would to

in case of supervised classification), but rather use ground

truth only to assess the precision and recall of our unsuper-

vised methods (see Sec.3-4).

Telemetry features. The features (in machine-learning

terms) available in the testbed are a subset of the state avail-

able by YANG[11] models of the Cisco routers in the testbed.

In a nutshell, YANG modules define a hierarchy (i.e., tree)

of data that can be used for configuration, state sharing and

notifications; in the model, each node has a name, and either

a value or a set of child nodes. All the leafs of the tree are

features that could be exported in our testbed.

At the same time, it is worth stressing that, e.g., routers

in the testbed are equipped with Cisco IOS-XR 6.2.2, whose

YANG hierarchy comprises over 378,000 lines, describing

a hierarchy of over 45,000 features, with nearly 5,000 types
pertaining to the BGP protocol alone. Since collecting and

exporting features consumes CPU and bandwidth resources,

2

Telemetry-based stream-learning of BGP anomalies SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

it would be impossible to collect, for all nodes and interfaces,

the totality of the supported features.

We thus perform a preliminary feature selection step, us-

ing domain-expertise to configure the most relevant features

in the collection process. In particular, the selected features

can be ascribed to either data plane1 vs control plane2 cate-
gories. The full list of about 750 data-plane

3
and 25 control-

plane
4
features cannot be reported here for lack of space, but

is available at [5] for the interested reader. An example of

data vs control plane features is depicted in Fig. 2 showing an

example of a control- (paths-count) vs a data-plane (output
load on interface 0) features during our testbed, depicting

also the annotated ground truth.

We point out that, whereas experimental results in Sec.4

show very good accuracy and recall, confirming the experts’

choices, we recognize the need for a more systematic feature

selection (part of our ongoing work).

3 METHODOLOGY
Two families of approacheswould fit our experimental datasets.

Indeed, the ground truth at our disposal would allow to build

very detailed supervised multi-class models, precisely detect-

ing the anomaly type; at the same time, these models would

probably have a narrow application, as they would hardly be

portable to different topologies, traffic matrices and load lev-

els. Therefore, we prefer to adopt an unsupervised machine

learning approach, to gather more coarse anomaly indica-

tion, that however incur less the risk of overfitting the model

to a particular dataset.

Under these premises, algorithms suitable for our prob-

lem include classic approaches such as K-Means [16] or

DBScan [14] and stream-based approaches such as Den-

Stream [12]. Briefly, K-Means [16] is a simple clustering

algorithms, based on centroids and distances: the points are

assigned to the nearest centroid, then the centroids are up-

dated until all samples remain in their cluster. DBScan [14]

instead computes the distances between points, and clus-

ters altogether the points which are neighbors (i.e. whose

distance is less than ϵ): by computing the ϵ neighborhood

of each point, it is possible to discover clusters of arbitrary

shape. Since K-Means and DBScan are fairly well known,

we only provide here a terse description of DenStream, and

compare the three approaches experimentally in Sec.3.3

1
Cisco-IOS-XR infra-statsd-oper and fib-common-oper models

2
Cisco-IOS-XR ip-rib-ipv4-oper and ipv4-bgp-oper models

3
We select 14 (11) features of the interface/generic-counters
(interface/data-rate) group per-interface, and 20 features of the

node/drops group per-node

4
We select 11 (14) features of the bgp/as/information
(vrf/process-info) group per-node

3.1 DenStream
DenStream [12] is an algorithm designed for clustering in

data streams: DenStream extends the density-based strategy

introduced in DBScan making it viable for online model con-

struction. First of all, the algorithm uses a damped window

model to weight the samples, so that older ones are less im-

portant than newer ones, via a fading function f (t) = 2
−λt

,

where λ > 0 is the aging parameter. The main idea of the

algorithm is the introduction of the so called micro-cluster
(MC), i.e., group of close points pi j with creation time stamps

Ti j defined asMC = (w, c, r) wherew =
∑

j f (t −Ti j) is the

weight of the micro-cluster, c = 1

w
∑

j f (t −Ti j)pi j is its cen-

ter and r = 1

w
∑

j f (t −Ti j)d (c,pi j) its radius with d (·, ·) the
Euclidean distance. By breaking clusters in MCs, DenStream

allows to obtain clusters of arbitrary shapes.

The MC weightw plays a key role in the model construc-

tion, as it discriminates between outlier (w < βµ) vs core
(w > βµ) micro-clusters (where β and µ are free parameters).

When a new sample is available, DenStream merges it to

the nearest core MC provided that the radius of the merged

cluster does not exceed a given threshold ϵ ; otherwise, Den-
Stream attempts at merging the point to the closest outlier
MC, and a new outlier MC is finally created if the merge fails.

In our context, when a sample is merged to a core MC, we

consider the sample as normal (and anomalous otherwise).
Not only MCs are easy to maintain incrementally at each

new data point, but notice that model construction is a con-

tinuous process in DenStream: an outlier MC can indeed

become a core MC when its weight increases as new points

are added to it, and similarly a core MC becomes an outlier

MC (and ultimately vanish) if no new data points are added

for long periods – which makes it suitable for dynamic en-

vironments. Whereas DenStream introduces a number of

parameters (namely, λ, ϵ, β and µ) we show in Sec.4.1 that

their tuning is relatively straightforward and that DenStream

performance are quite robust for a large range of settings.

3.2 Telemetry-based anomaly detector
We next define two simple criteria for raising alarms based

on DenStream clustering, which we which we experimen-

tally evaluate in Sec. 4.2 using the classic key performance

indicators of information retrieval.

Temporal order κT . : each node operates independently and
an alarm is raised only upon reception of κT consecutive out-
lier samples at a node. In particular, a true positive detection

(false alarm) occurs when κT consecutive samples are labeled

as anomalous and the ground truth labels the system as being

in anomalous (normal) state. The parameter κT tradeoffs pre-

cision for recall and delay: intuitively, increasing κT reduces

the amount of false alarms, but at the same time reduces the

3

SIGCOMM’18, August 21-23, 2018, Budapest, Hungary A.Putina et al.

overall amount of raised alarms, and mechanically inflates

the delay by a factor of κT .

Spatial order κS . : all nodes operate altogether and an alarm
is raised when, during the same time slot, at least κS nodes
label a sample as an outlier. As before, the ground truth

labels assist in evaluating the accuracy of the method. As

before, increasing κS tradeoffs high precision for lower recall

(as anomalies that affect fewer than κS nodes in the same

time-slot can go unnoticed), although the detection delay is

minimized in this case.

3.3 Comparison at a glance
We report a brief experimental comparison of K-Means, DB-

Scan and DenStream in Tab. 2. In particular, we employ the

longest dataset #8 lasting for 262h hours, corresponding to

187,777 samples, and focus on the execution time of each al-

gorithm. K-Means is used as a baseline: since we don’t know

a priori the number of clusters K , for the sake of compari-

son we feed K-Means using the number of clusters returned

by DBScan or DenStream respectively (execution time is

exponential in the worst case, but typically much lower). DB-

Scan solves the main issues of K-Means, as it automatically

finds the number of cluster and supports clusters of arbitrary

shapes, but is not directly suitable for an online application:

we thus apply DBScan either on an∞-horizon window, or

on a windowed approach where we breakdown the analysis

by batches of 60 samples (i.e., 5-minutes horizon). Finally,

we apply DenStream in incremental fashion to the whole

dataset (with settings that we defer to Sec.4.1 but that how-

ever only minimally alter its execution time). Tab. 2 clearly

shows that DenStream is significantly faster than K-Means

and DBScan, processing the whole dataset in 23s, whereas

DBscan requires 87s – 120s (depending on the horizon) and

K-Means about 64s – 276s. This computational advantage,

coupled to the ability to continuously evolve the model on

streaming data, confirms DenStream a good candidate for

our problem.

4 EXPERIMENTAL RESULTS
4.1 DenStream sensitivity
We start by tuning the parameters of the DenStream algo-

rithm, using datasets #1–#5 described in Tab. 1.

Radius threshold ϵ . DenStream performance depend on

the choice of the radius parameter ϵ . We advocate for a

ϵdynamic selection of the threshold, that is automatically

computed as the radius of the cluster obtained clustering

together the first S = 40 samples at the beginning of the

model construction. We contrast this choice with an ϵf ixed
choice of the threshold, where a network expert suggests

Table 2: Algorithm comparison at a glance (dataset 8,
180k samples)

Algorithm Complexity Execution time Parameters

K-Means O (knT)
KDBScan : 64s K
KDenStream : 276s

DBScan

O (n log (n)) ∞-horizon: 87s
ϵ ,MinPTS

O (nw log (nw) · (n − nw)) 5min-horizon: 120s

DenStream O
(
W
βµ + n

)
23s ϵ , λ, β , µ

to compute it as the radius of the cluster obtained during

an experiment in which no anomalies are injected (datasets

#0–1) and tested on the remaining datasets (#2–5).

Experiments (not shown for lack of space) show that the

use of a ϵf ixed threshold reduces recall and precision by over

a factor of 2×. The radius indeed, depends on the normal

working condition of the network as traffic load, number of

neighbors, on the topology, etc., which makes a fixed selec-

tion fragile and impractical. Dynamic threshold selection is

easy to compute (as few samples suffices) and relevant (as it

is, by construction, portable to any scenario).

Maximum weight µ+. The weight parameter µ is used

jointly with the potential factor β to decide when a given out-

lier MC becomes a new core MC (particularly, whenw > µβ).
Given the exponential fading function f (t) = 2

−λt
, and con-

sidering a fixed-rate sampling as in our case, the maximum

weight a micro-cluster can reach is µ+ =
∑

j f (j) =
1

1−2−λ

(since | f (t) | < 1 for λ > 0) which solely depend on λ.
By setting µ = µ+ we therefore reduce the parameter car-

dinality, and the rule for outlier MC promotion becomes

w > β/(1 − 2−λ).

Fading λ and Potential β factors..
The only free parameters in our setup are thus λ and β , which
both have a physical interpretation. In particular, λ is a time-

related parameter that tunes the timescales at which old
samples should be considered as totally independent from the
current system state. Once lambda is fixed, the potential factor
β has then a geometric interpretation, as it determines the
minimum number of samples needed for outlier MC promotion
to core MC.

We point out that a machine-learning expert would select

λ and β as a result of a “grid selection” procedure, whereas a

network domain expert could be tempted to select λ and β ac-

cording to physical properties of the system. We adopt both

viewpoints in what follows. For instance, a network domain

expert could thus decide to set λ according to the expected

convergence time of the BGP protocol (e.g.. imposing that a

5-minutes old sample has at most 1% of its initial contribu-

tion equals to selecting the largest arдmaxλ2
−λ ·60 < 10

−2
—

λ ≈ 0.111 and requiring that an outlier MC should have at

4

Telemetry-based stream-learning of BGP anomalies SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

0.8

1.0

Recall KT = 1

Precision KT = 3

Recall KT = 3

Precision KT = 1

0.0 0.2 0.4 0.6 0.8

0.8

1.0 Recall KT = 1

Precision KT = 3

Recall KT = 3

Precision KT = 1

Figure 3: Sensitivity analysis of the fading λ and po-
tential β factors.

least 3 samples before becoming a core MC. We perform a

sensitivity analysis and question these choices: Fig. 3 shows

the precision and recall results varying λ ∈ [0, 1] with fixed

β = 0.05 (top) as well as for varying β ∈ [0, 1] for fixed
λ = 0.15 (bottom). Without loss of generality, we show re-

sults for two values of the temporal order κT = {1, 3}.
Several important takeaway can be gathered from the

picture: first, performance are smoothly varying on λ and

β , which can be chosen from large plateau. Second, perfor-

mance are less impacted by λ and β than they are from the

detection order κT . The fact that performance do not vary

abruptly as a function of the inner DenStream parameters is

a very desirable finding, since the detection order is a more

intuitive knob to tune for the operator using the system (see

Sec.4.2). Third, as far as the BGP timescale is concerned, the

domain expert choice for λ falls in the acceptable range that

the machine-learning expert would suggest (highlighted in

green in the picture). Fourth, it is preferable to let DenStream

produce small micro-cluster (low β).
A last remark is worth making. While we have seen that

performance are smoothly varying on β and λ, we point

out that their selection is still primarily correlated with the

telemetry sampling rate: as such, in case of device reconfigu-

ration and especially for very different sampling timescales,

a sensitivity analysis would be recommended.

4.2 Temporal κT vs spatial κS orders
We now assess the portability of our settings, applying the

parameters on a different dataset (#5). In particular, Fig. 4

illustrates the KPIs obtained for κT and κS . With the excep-

tion of the delay, precision, recall and false alarm exhibit

a similar trend for both κT and κS . As expected, requiring
multiple consecutive outliers from the same node (κT > 1)

induces a sizeable delay, as κT ≈ 3 samples are needed to

1 2 3 4 5
KT

0.0

0.5

1.0
Precision Recall False Alarms

0

40

80

De
la

y
[s

]

Delay

1 2 3 4 5
KS

0.0

0.5

1.0

0

40

80

De
la

y
[s

]

Figure 4: KPI for Temporal detection of order κT (top)
and Spatial detection of order κS (bottom)

avoid false alarms. Converselty, κS ≈ 3 allow perfect recall

and precision with no additional delay (while we do not ob-

serve false negative in our dataset, it is however possible for

anomalies local to a single node to go unnoticed). As such,

depending on the operator preferences on the above metrics,

the choice will fall into κ (S |T) ∈ {2, 3}.

4.3 Feature selection
Finally, we perform a “domain expert” feature selection by us-

ing control plane (CP) only, data plane (DP) only or all DP+CP

features. Fig. 5 shows the KPIs considering κ (S |T) ∈ {2, 3},
where we use shading and pattern to differenciate the fea-

tures set. An interesting observation can be learned from

the experiment: using only CP-related information, no false
alarms are raised already for κS = 2 and κT = 2. Conversely,

using DP-related features only generally yields to poor
5
per-

formance, and DP+CP to intermediate performance.

As such, these experiments suggest the following. First,

the algorithm is extremely reliable in detecting anomalies

even with a few (20 out of nearly 5,000) features related to

the protocol under investigation (CP-only case), testifying

its precision. Second, the very same algorithm is still able

to detect BGP anomalies even without having any informa-

tion on the BGP protocol itself (DP-only case), testifying its

robustness.

5 DISCUSSION
Anomaly detection is surely not a green field. Yet, the recent

emergence of model-driven telemetry opens new challenges,

and particularly makes the use of stream-based unsupervised

5
Notice that DP features also bring valuable information beyond the noise:

e.g., combining DP an CP features the recall increases for κT = 3.

5

SIGCOMM’18, August 21-23, 2018, Budapest, Hungary A.Putina et al.

KT = 2 KT = 3

0.00

0.25

0.50

0.75

1.00

Pre
cis

ion
Reca

ll

Fal
se

Rate

Pre
cis

ion
Reca

ll

Fal
se

Rate

KS = 2 KS = 3
Pre

cis
ion

Reca
ll

Fal
se

Rate

Pre
cis

ion
Reca

ll

Fal
se

Rate

CP CP+DP DP

Figure 5: Domain expert feature selection: Data Plane
(DP) only vs Control Plane (CP) only vs all DP+CP fea-
tures

machine learning tools very appealing. In this paper: (i) we

engineer a full blown testbed representative of a BGP-only

datacenter network of a Content Service Provider, that we

load with up to 1 Tbps aggregated traffic; (ii) we use the

testbed to produce datasets with annotated ground truth,

collecting several tens of thousands samples reporting hun-

dreds of features from tens of devices, that we make available

to the scientific community[5]; (iii) we develop, implement,

open-source and thoroughly analyze an anomaly detection

engine based on the DenStreaming[12] clustering algorithm,

that we also compare with state of the art techniques such

as DBScan.

Our results show that: (i) despite DenStreaming is ap-

parently plagued with several parameters, their selection is

quite straightforward, and performance are robust to inner

parameter selection; (ii) low spatial and temporal orders are

sufficient to jointly attain high recall, high precision and low

delay; (iii) detection of BGP-related anomalies is more effec-

tively based on control-plane only features, which is due to

the implicit separation of timescale between data plane and

control planes.

These results opens up future work, along the following

directions: (i) given the low computational complexity of

DenStreaming and the better performance, it would be ad-

visable to run models in parallel, each of which would detect

anomalies from different protocols/layers/planes; (ii) indi-

vidual learners could be complemented with a macroscopic

model, that would learn from alarms of individual learners,

as opposite to as from the raw telemetry features; (iii) finally,

a more systematic experimental study of the maximum num-

bers of features that can be exported at the same time is a

clear necessity.

ACKNOWLEDGEMENTS
This work has been carried out at LINCS (http://www.lincs.fr)

and benefited from support of NewNet@Paris, Cisco’s Chair

“Networks for the Future” at Telecom ParisTech (https:

//newnet.telecom-paristech.fr).

REFERENCES
[1] 2018. (2018). https://www.cisco.com/c/en/us/solutions/

service-provider/cloud-scale-networking-solutions/

model-driven-telemetry.html

[2] 2018. (2018). https://www.arista.com/en/solutions/telemetry-analytics

[3] 2018. (2018). https://www.juniper.net/documentation/en_US/junos/

topics/concept/junos-telemetry-interface-oveview.html

[4] 2018. (2018). http://support.huawei.com/enterprise/en/doc/

EDOC1000173015?section=j006

[5] 2018. (2018). https://github.com/cisco-ie/telemetry

[6] 2018. https://github.com/anrputina/OutlierDenStream. (2018).

[7] 2018. https://github.com/YangModels/yang. (2018).

[8] 2018. (2018). https://blogs.cisco.com/sp/

introducing-pipeline-a-model-driven-telemetry-collection-service

[9] B. Al-Musawi, P. Branch, and G. Armitage. 2017. BGP Anomaly Detec-

tion Techniques: A Survey. IEEE Communications Surveys Tutorials 19,
1 (Firstquarter 2017), 377–396. https://doi.org/10.1109/COMST.2016.

2622240

[10] M. Bjorklund. 2010. YANG - A data modeling language for NETCONF.

RFC 6020 (Oct. 2010).
[11] M. Bjorklund. 2016. The YANG 1.1 Data Modeling Language. RFC

7950 (Aug. 2016).

[12] Feng Cao,Martin Ester,WeiningQian, andAoying Zhou. 2006. Density-

based clustering over an evolving data stream with noise. In 2006 SIAM
Conference on Data Mining.

[13] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly

detection: A survey. ACM computing surveys (CSUR) 41, 3 (2009), 15.
[14] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996.

A Density-based Algorithm for Discovering Clusters a Density-based

Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In ACM KDD.
[15] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. 2014. Outlier Detection

for Temporal Data: A Survey. IEEE Transactions on Knowledge and
Data Engineering 26, 9 (Sept 2014), 2250–2267. https://doi.org/10.1109/
TKDE.2013.184

[16] J. MacQueen. 1967. Some methods for classification and analysis of

multivariate observations. In Proc. Berkeley Symposium on Mathemati-
cal Statistics and Probability.

[17] Zachary Miller, William Deitrick, and Wei Hu. 2011. Anomalous

Network Packet Detection Using Data Stream Mining. J. Information
Security 2, 4 (2011), 158–168.

[18] Zachary Miller, Brian Dickinson, William Deitrick, Wei Hu, and

Alex Hai Wang. 2014. Twitter spammer detection using data stream

clustering. Information Sciences 260 (2014), 64 – 73. https://doi.org/10.

1016/j.ins.2013.11.016

[19] P. Lapukhov, A. Premji, J. Mitchell. 2016. Use of BGP for Routing in

Large-Scale Data Centers. (Aug. 2016).

[20] Jonathan A. Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R. Hr-

uschka, André C. P. L. F. de Carvalho, and João Gama. 2013. Data

Stream Clustering: A Survey. ACM Comput. Surv. 46, 1, Article 13 (July
2013), 31 pages. https://doi.org/10.1145/2522968.2522981

[21] Marina Thottan and Chuanyi Ji. 2003. Anomaly detection in IP net-

works. IEEE Transactions on signal processing 51, 8 (2003), 2191–2204.

[22] Q. Wu, J. Strassner, A. Farrel, and L. Zhang. 2016. Network Telemetry

and Big Data Analysis. IETF draft-wu-t2trg-network-telemetry-00 (Mar

2016).

6

http://www.lincs.fr
https://newnet.telecom-paristech.fr
https://newnet.telecom-paristech.fr
https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-solutions/model-driven-telemetry.html
https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-solutions/model-driven-telemetry.html
https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-solutions/model-driven-telemetry.html
https://www.arista.com/en/solutions/telemetry-analytics
https://www.juniper.net/documentation/en_US/junos/topics/concept/junos-telemetry-interface-oveview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/junos-telemetry-interface-oveview.html
http://support.huawei.com/enterprise/en/doc/EDOC1000173015?section=j006
http://support.huawei.com/enterprise/en/doc/EDOC1000173015?section=j006
https://github.com/cisco-ie/telemetry
https://github.com/anrputina/OutlierDenStream
https://github.com/YangModels/yang
https://blogs.cisco.com/sp/introducing-pipeline-a-model-driven-telemetry-collection-service
https://blogs.cisco.com/sp/introducing-pipeline-a-model-driven-telemetry-collection-service
https://doi.org/10.1109/COMST.2016.2622240
https://doi.org/10.1109/COMST.2016.2622240
https://doi.org/10.1109/TKDE.2013.184
https://doi.org/10.1109/TKDE.2013.184
https://doi.org/10.1016/j.ins.2013.11.016
https://doi.org/10.1016/j.ins.2013.11.016
https://doi.org/10.1145/2522968.2522981

	Abstract
	1 Introduction
	2 Testbed and Datasets
	3 Methodology
	3.1 DenStream
	3.2 Telemetry-based anomaly detector
	3.3 Comparison at a glance

	4 Experimental results
	4.1 DenStream sensitivity
	4.2 Temporal T vs spatial S orders
	4.3 Feature selection

	5 Discussion
	References

