ModelGraft: Accurate,

Scalable, and Flexible

Performance Evaluation of General Cache Networks

Michele Tortelli*, Dario Rossi*, Emilio Leonardi'
* Télécom ParisTech, Paris, France f Politecnico di Torino, Torino, Italy

Abstract—Large scale deployments of general cache networks,
such as Content Delivery Networks or Information Centric
Networking architectures, arise new challenges regarding their
performance evaluation for network planning. On the one hand,
analytical models can hardly represent in details all the inter-
actions of complex replacement, replication, and routing policies
on arbitrary topologies. On the other hand, the sheer size of
networks and content catalogs makes event-driven simulation
techniques inherently non-scalable.

We propose a new technique for the performance evaluation of
large-scale caching systems that intelligently integrates elements
of stochastic analysis within a MonteCarlo simulative approach,
that we colloquially refer to as ModelGraft. Our approach (i)
leverages the intuition that complex scenarios can be mapped
to a simpler equivalent scenario that builds upon Time-To-Live
(TTL) caches; it (ii) significantly downscales the scenario to
lower computation and memory complexity, while, at the same
time, preserving its properties to limit accuracy loss; finally, it
(iii) is simple to use and robust, as it autonomously converges
to a consistent state through a feedback-loop control system,
regardless of the initial state.

Performance evaluation shows that, with respect to classic
event-driven simulation, ModelGraft gains over two orders of
magnitude in both CPU time and memory complexity, while
limiting accuracy loss below 2%. In addition, we show that
ModelGraft extends performance evaluation well beyond the
boundaries of classic approaches, by enabling study of Internet-
scale scenarios with content catalogs comprising hundreds of
billions objects.

I. INTRODUCTION

Caching systems, from their simplest single-cache incar-
nation to more complex general networks, have attracted
remarkable attention over the years. Different approaches
have been proposed to study their performance, from exact
analytical models [17] with a high computational cost, to
refined approximations able to reduce the computational cost
while preserving their accuracy within acceptable bounds [}
15, 9, 18l 32 (7, 10, [31, 25, 22]]. However, with Content
Distribution Networks (CDNs) first, and then with the advent
of a new networking paradigm, namely Information Centric
Networking (ICN) [28], caches become the atomic part of
globally deployed networks. Under CDN/ICN architectures,
several factors like content replacement algorithms, cache
decision policies, and forwarding strategies, interact with each
other at a global scale: such intricate dependencies heavily
influence the performance of the whole system, thus making
it hard to rely only on pure analytical models to accurately
predict network key performance indicators (KPIs).

It follows that, especially as a first step to assess the
performance of new complex protocols, event-driven simu-

60

— a=08
50 | W o=10
—=12 89.9 %
40
S
= 30
a 100.0 %
20
0 N e
[- 55.9%
0
ICachel (C) le2 le3 led le5 le6
|Catalogl (M) leS le6 le7 1e8 1e9

Fig. 1. Hit ratio variability - 4-level binary tree, variable c, fixed C'/M =
0.01% ratio, with proportional variation of C' and M.

lation techniques represent an appealing alternative: indeed,
simulative techniques make it simpler to describe algorithmic
interactions between all the different entities with the desired
level of fidelity. At the same time, large-scale simulations
require massive computational resources (both CPU and mem-
ory), to the point that the very same fidelity of simulation
results may be compromised by the intrinsic scalability limit
of the technique itself.

To show why this may be the case, we provide in Fig. 1 an
illustrative example. Whereas it is well known that Internet-
scale catalogs approaches trillion objects [26], these scales
are hardly achievable in simulation: as such, simulation-based
studies typically resort to naive downscaling of the scenario
under investigation, to comply with memory constraints and
CPU time budgets. Using the mean hit ratio as KPI, Fig. 1
contrasts the performance of a 4-level binary tree where
the Zipf exponent is varied as o € {0.8,1,1.2}, and the
ratio between catalog cardinality M and cache size C' is
kept constant to C'/M = 0.01%, while both M and C are
jointly downscaled. Results in Fig. 1 clearly show that barely
downscaling the simulated scenario by linearly reducing the
size and cardinality of all the components does not preserve
its original properties at all: the relative error between the
smallest vs largest scenario is between 50% and 100%. This
fact has profound implications: indeed, rather typically, crucial
parameters of the scenario under investigation, such as the
Zipf exponent v (or Mandelbrot Zipf plateau ¢), are measured
over real Internet catalogs like YouTube [6] (or the BitTorrent
ecosystem [12]]) which are not only growing, but already had
a catalog in the order of hundred millions objects about 10
years ago [6]]. Clearly, Fig. 1 also implies that merely applying
catalog parameters inferred from large-scale measurements to

small-scale simulations does not make any sense, as it induces
excessive distortion of the KPIs to make results of practical
relevance.

Inspired by hybrid models proposed over the years in
different domains (see Sec. IX), we argue that grafting
components of stochastic modeling into simulative techniques
can increase the overall scalability by orders of magnitude,
without compromising the accuracy of the resulting technique,
at the same time. Specifically, our methodology exploits a
synergy between stochastic analysis of Least Recently Used
(LRU) caches [7, 22] and MonteCarlo approaches based on
Time-To-Live (TTL) caches [15} 9} 23} [25]]. In particular, our
intuition consists in using the characteristic time 7T of Che’s
approximation [7] for LRU caches as the TTL parameter in
MonteCarlo simulations: as a consequence, the complexity is
significantly reduced by simulating TTL-based caches in place
of their more complex LRU counterpart, and by subsampling
the original catalog in a way that preserves its key statistical
properties. Given that 7 in complex scenarios is not known a
priory, our system uses a feedback loop to iteratively converge
to the correct T, value, even when the initial guess is wrong
by two orders of magnitude.

We develop this intuition further to build a fully integrated
system, making the following contributions:

o we propose a novel hybrid methodology for the perfor-
mance evaluation of cache networks, that reduces CPU
time and memory usage by over two orders of magnitude,
while limiting accuracy loss to less than 2%;

« we implement the methodology as an alternative simula-
tion engine, so that users can seamlessly switch between
event-driven vs ModelGraft simulation, on the very same
scenario;

« we make the technique (and scenarios) available as open
source in the latest release of ccnSim [[1].

In the remainder of this paper, we first provide back-
ground information about the building blocks leveraged by our
methodology (Sec. II). We next provide a succinct overview
of our proposal (Sec. III) followed by an in-depth description
of each component (Sec. IV-VI). We next validate the tech-
nique (Sec. VII) and showcase its performance in very large
scenarios (Sec. VIII), before covering related work (Sec. IX),
and concluding the paper (Sec. X).

II. MODELING INTUITION

In this section we first introduce background material on
Che’s approximation [7]] (Sec. II-A), and then formalize our
intuition about the equivalence between LRU caches and
(opportunely configured) TTL-based caches [15} 9] [23| 25]]
(Sec. II-B), which constitutes a fundamental building block of
our methodology.

A. Background

Che’s approximation [7], which emerged in the last few
years as one of the most flexible models for cache networks,
is essentially a mean-field approximation which greatly sim-
plifies interactions between different contents inside a cache.
In particular, for an LRU cache, Che’s approximation consists

in confusing the cache eviction time T (m) for content m
(i.e., the time since the last request after which object m will
be evicted from the cache, unless the object is not requested
again in the meantime), with a constant characteristic time T,
which is a property of the whole cache but does not depend on
the content itself. As a consequence, content m is considered
to be in the cache at time ¢, if and only if, at least one request
for it has arrived in the interval (¢ — T, t]. Supposing an
Independent Request Model (IRM), with content catalog of
size M, and request process for content m to be Poisson of
rate A,,, the probability p;, (m) for content m to be in a LRU
cache at time ¢ can be expressed as:

pzn()‘m7TC) =1- e_)\mTC' (1)

Since, by construction, cache size C' must satisfy:

C= E[C] =E lz I]-{m in cache at t}‘| = Zpin()‘mvTC),

where 1 (A} is the indicator function for event A, then the
characteristic time 7 can be computed by numerically in-
verting (2), which admits a single solution [7]. Finally, KPIs
of the system, such as the cache hit probability p;,;;, can be
computed using the PASTA property as:

Phit = EA[pin()‘mv TC)] = Z Am,pin(Amv TC)/ Z)‘m (3)
Although apparently simple, a theoretical explanation for the
accuracy of Che’s approximation under the IRM model has
been provided only recently in [10], which shows that T(o(m)
converges to a constant independent of m as the cache grows
large, and extended in [19] to renewal request models. As far
as a single cache is concerned, Che’s approximation was orig-
inally proposed for LRU caches [7], but it has been extended
in more recent times to FIFO or Random replacement [10],
or LRU caches with probabilistic insertion [22]], possibly
depending on complex cost functions [3].

As far as network of caches are concerned, however, further
approximations are required as an alternative approach to the
computationally and algorithmically challenging characteriza-
tion of the miss stream at any node in the network [22] [25].
In arbitrary networks with shortest path [32] or more complex
routing policies [33], it has been shown that inaccuracies
can potentially cascade, with significant degradation of the
accuracy with respect to simulation [34]. Finally, analytical
approaches often assume stationary conditions, thus lacking
in characterizing transient periods, although a model has been
recently proposed only for a single cache [L1]. All these
reasons thus justify the quest for an hybrid approach, such
as the one we propose in this work.

B. Intuition

Observe that, given the characteristic time T under Che’s
approximation, the dynamics of the different contents become
completely decoupled. As a consequence, we can resort to
simpler caching than LRU to simplify the analysis of complex
and large cache networks. One such alternative is constituted
by Time-to-Live (TTL) based caches [15} |9} 23| 25]: contents

RESULTS

[IV =

<
@
]
—
l
%
]
1=
=3
=
=3
<|
Y
|

T (guess)
SCENARIO 00

T (model)

Yotta

Topology Downscaling factor (A)
Routing and Forwarding '

Cache replacement policy
Cache decision policy
Content popularity

(Y)

Request Rate (A)

Nodes (N)
Catalog cardinality (M)
Cache size (C)
Requests (R)

(a) High level view of the integrated simulation workflow

Downscaling
& Sampling

Simulation .
Cycle |

Consistency
Check

(b) Details of the ModelGraft MonteCarlo TTL-Based workflow

Fig. 2. ModelGraft overview: (a) integration in ccnSim and (b) synoptic of the ModelGraft workflow.

are evicted from the cache after a pre-configured eviction time
(also called TTL parameter) T since the last request, unless
a cache hit happens in the meantime (which resets the object
timer).

Observation 1. We argue that, the dynamics of a LRU cache
with characteristic time T, fed by an IRM process associated
to a catalog M with cardinality M, and request rates \,,
drawn from a distribution A, become indistinguishable from
those of a TTL based cache with deterministic TTL parameter
set equal to Ty operating on the same catalog:

p;ﬁL(TC) = EA[l - e_)\mTC] = EA[pin()‘mn TC)] = piﬁU(TC')

“)

Specifically, (4) equals the average hit probability of the
original LRU system to that of its TTL-based equivalent [9,
22]. Leveraging further on this intuition, we argue:

Observation 2. Large-scale LRU networks can be analyzed
through a downscaled system with M' < M, where each
cache is replaced by its TTL equivalent, with TTL set to the
characteristic time Tq of the original LRU cache. However; it
is necessary to maintain the stochastic properties of the orig-
inal catalog M, while downscaling it. This, in turn, requires
to average system performance over multiple MonteCarlo
realizations, each lasting for a duration 5T, where rates \,
for individual objects in each realization M’ of the downsized
catalogs are drawn from A. Thus, expanding (4):

IE‘A [pzn(A;anC)] = Zm P(A;n =)‘m)pin()‘maTC)
Zm)‘m

We expect, therefore, that decoupling the dynamics of
different contents would allow to downscale the system, thus
significantly reducing both memory and CPU complexity on
the one hand, while still accurately representing complex
interactions and correlations among different caches at the
same time.

®)

Observation 3. In particular, an alternative approach is to
let 6T — 0, and a convenient approximation is to vary \., at
each new request, still satisfying (4).

The remainder of this paper illustrates, describes, and val-
idates in greater details the methodology that is built upon
these observations.

III. MODELGRAFT OVERVIEW

The hybrid methodology presented herein, colloquially re-
ferred to as ModelGraft, performs MonteCarlo simulations of
an opportunely downscaled system, where LRU caches are
replaced by their Che’s approximated version, implemented
in practice as TTL based caches. Before dwelving into the
details of the approach, it is worth to both placing it into a
broader context, as well as illustrating at high level each of
its building blocks.

We implement ModelGraft as a simulation engine available
in the latest version of ccnSim [[L]. As illustrated in Fig.2(a),
starting from a unique scenario description, users can analyze
the performance of cache networks via either an analytical
model [22] (left), a classic event-driven simulation engine
(right), or via the ModelGraft engine (middle). ModelGraft
depends on a single additional parameter, namely the down-
scaling factor A, which can be automatically set, or it is any-
way very easy to tune (according to guidelines in Sec.VI-B).

As introduced in Sec. II-B, ModelGraft requires in input,
T values for each cache in the network. One option could be
to bootstrap ModelGraft with informed guesses of T gathered
via, e.g., analytical models (notice the T (model) switch
in Fig.2(a)), which would, however, limit the appeal of the
methodology. A more interesting approach, used by default
in ModelGraft, is instead to start from uninformed guesses
of T (notice the default wiring to the T (guess) switch in
Fig.2(a)), and let the system iteratively correct the 7T, value.
In other words, ModelGraft is conceived to auto-regulate, so
that by design it achieves accurate results even when the input
T values, that the user does not even need to be aware of,
largely differ from the correct ones.

Details of this iterative design are exposed in Fig.2(b),
showing each of the blocks that are thoroughly described in
the following sections. In a nutshell, ModelGraft starts with
the configuration of the downscaling and sampling process
(Sec. 1V), before entering the MonteCarlo TTL-based (MC-
TTL) simulation (Sec. V). During the MC-TTL phase, statistics

are computed after a transient period (Sec. V-A), where an
adaptive steady-state monitor tracks and follows the dynamics
of the simulated network in order to ensure that a steady-state
regime is reached without imposing a fixed threshold (e.g.,
number of requests, simulation time, etc.) a priori (Sec. V-B).
Once at steady-state, a downscaled number of requests are
simulated within a MC-TTL cycle (Sec. V-C), at the end of
which, the monitored metrics are provided as input to the
self-stabilization block (Sec. VI): a consistency check decides
whether to end the simulation (Sec. VI-A), or to go through
a Ty correction phase (Sec. VI-B), before starting a new
simulation cycle.

IV. DOWNSCALING AND SAMPLING
A. Design

The ModelGraft workflow starts with a proper downscaling
of the original scenario, controlled by the downscaling fac-
tor A > 1: specifically, the equivalent TTL-based system
has a target cache size C' = C/A, a catalog comprising
M’ = M/ A objects, and a target number of simulated requests
at steady-state R’ = R /A. In order to avoid the pitfalls caused
by a naVe downscaling process (recall Fig. 1) we need to
ensure that the downscaled catalog preserves the main features
of the original one, like its popularity distribution. While our
methodology is not restricted to a specific popularity law, in
what follows we develop the case where object popularity
follows a Zipfian probability distribution with exponent o
— which is also the most interesting case from a practical
viewpoint. Hence, we denote with A the aggregate arrival rate
of all objects in the catalog and with A, = An~“/ 22/121 ke
the rate for the n-th object in the original catalog.

The proposed approach, sketched in Fig. 3, consists in
splitting the original catalog into a number of M’ bins having
the same cardinality A, i.e., |[M,,| = A, where M,, refers to
the n-th bin with n € [1, M’]. In ModelGraft, each bin of the
original catalog is represented by a single “meta-content” in
the downscaled system, i.e., the active catalog comprises M !
meta-contents. The key idea is to let each meta-content n to
be requested with an average request rate, \',, which closely
approximates the average request rate of the contents within
the respective bin in the original catalog. More formally, for
the n-th meta-content, with n € [1, M /}, it is required that:

N, = nA/\ 6

m=(n—1)A+1

where the interval [(n—1)A+1, nA] comprises contents of the
original catalog that fall within the n-th bin. This design can
be achieved by (i) considering M’ parallel request generators,
i.e., one per each meta-content, each of which is identified by
a fixed n € [1,M ’]; (ii) considering any given meta-content
n, varying its instantaneous request rate at each new request,
so that its average complies with (6).

B. Implementation

It is easy to see that the simplest implementation of the
above requirements boils down to bind the probability of the

M —> D —> M'=M/A
OWNSCALING .
c & SAMPLING C'=C/A
R —> — R'=R/A
1 2 3 - M’ Meta Contents
NN~ "~ . e M~ .
My My M My Bins
A A A A

Fig. 3. Downscaling and sampling process.

rate \,, at which the n-th meta-content is requested P(\,, =
A) With the popularity distribution of the A contents inside
the respective bin m € [(n — 1)A + 1, nA]:

/ Am 1 A
PN, =An) = A AV (7
pIRY
j=(n—1)A+1

While the above requirement (6) is met, a significant downside
of this naive implementation is its space complexity. Indeed,
since it is based on the classic inverse transform sampling, this
approach would require to store M’ Cumulative Distribution
Functions (CDFs) having each a size A, with an overall
memory allocation equal to M'A = M elements, as in the
original scenario. Given that M is the dominant factor driving
the overall memory occupancy, it is clear that such a simple
implementation is not compatible with our goals.

We therefore resort to a better sampling technique called
Rejection Inversion Sampling [14], which is an acceptance-
rejection method that efficiently generates random variables
from a monotone discrete distribution (in this case Zipf
distribution) without allocating memory-expensive CDFs, and
which is characterized by a O(1) runtime complexity. Origi-
nally proposed in [[14] for o > 1, this technique has only very
recently [2] extended to all non-negative exponents o > 0.
Recall now that power-laws (and hence Zipf distribution)
exhibit a scale-independent, or self-similar, property according
to which the scale exponent « is preserved independently of
the level of observation. Hence, by means of rejection inver-
sion sampling, we can consider a single interval [1,A] (i.e.,
with the same cardinality of one bin) from which extracting
request rates, at each new request, from a Zipf distribution with
exponent «. Indeed, if the request generator associated to the
n-th bin, with n € [1, M ’], needs to schedule the next request
rate for the n-th meta-content, an integer ¢ € [1, A] is extracted
with the aforementioned technique: the relative request rate is,
then, computed as \,, = A(n—1)A+¢- thus satisfying condition
(6). Due to lack of space, we point the interested reader to our
technical report [35] for an extensive justification.

V. MC-TTL SIMULATION
A. Transient

Once the scenario is properly downscaled, and initial unin-
formed guesses for T are provided to ModelGraft, the warm-

up phase of the first MC-TTL simulation cycle is started. Given
that the duration of the warm-up can be affected by many
parameters (e.g., the presence of a conservative cache decision
policy, like Leave Copy Probabilistically (LCP) [4], where
the reduced content acceptance with respect to Leave Copy
Everywhere (LCE) yields much longer transient durations),
ModelGraft automatically adapts the duration of the transient
period, in order to guarantee the statistical relevance of the
monitored KPIs.

B. Steady-state monitor

The convergence of a single node 7 is monitored via batch
means on the Coefficient of Variation (CV) of the measured
hit ratio, Py;; (7). In particular, denoting with pj,;4(j,) the j-th
sample of the measured hit ratio of node ¢, node 7 is considered
to enter a steady-state regime when:

w
Z Phit(G,1) = Prae (1))

7j=1

w
1
WZ hit .]7

j=1

oV, =

<ecv, (&)

where W is the size of the sample window, and £y, is a user-
defined convergence threshold. To avoid biases, new samples
are collected only if (i) the cache has received a non-null
number of requests since the last sample, and (ii) its state
has changed, i.e., at least a new content has been admitted
in the cache since the last sample. To exemplify why this is
important, consider that with a LCP(p) cache decision policy,
where new contents are probabilistically admitted in the cache,
the reception of a request is correlated with the subsequent
caching of the fetched content only in 1 out of 1/p cases.
At network level, denoting with N the total number of nodes
in the network, and given a tunable parameter Y € (0, 1], we
consider the whole system to enter steady-state when:

CVi<eoy, Vi€, €))

where |Y| = [Y N is the set of the first Y N nodes satisfying
condition (8). The rationale behind this choice is to avoid
to unnecessarily slow down the convergence of the whole
network by requiring condition (8) to be satisfied by all nodes:
indeed, due to particular routing protocols and/or topologies,
there are nodes that have low traffic loads (hence, long
convergence time), and, at the same time, a marginal weight in
network KPIs. Although further information about a sensitivity
analysis on Y can be found in [35[], we anticipate that its
typical settings lay in the Y € [0.75, 1) interval.

C. Simulation cycle

For the original system, the duration of a simulation cycle
T at steady-state is computed as T'= R/(AN¢) where R is
the target number of requests, A =), _,, \; is the aggregate
request rate per client, and N the number of clients. In
ModelGraft simulations, instead, the total request rate per each
client is A" = Y A, ~ A/A. Keeping the simulated
time 7' = T constant, it follows that the number of simulated

events per each cycle of a MC-TTL simulation is R’ = R/A
— with an expected significant reduction of the CPU time
required to simulate a cycle.

VI. SELF-STABILIZATION

As described in Sec. III, one of the desirable properties of
our hybrid methodology is a self-contained design that allows
to simulate large scale networks even in the absence of reliable
estimates of characteristic times 7. This is achieved through
a feedback loop, which ensures that our methodology self-
stabilizes, as a result of the combined action of two elements:
a measurement step, referred as consistency check, and a
controller action, where inaccurate T values are corrected
at each iteration.

A. Consistency check

The consistency check is based on the observation that with
a downscaling factor A, and when T, = T, a TTL cache
stores, on average, c'=C /A contents at steady-state. Indeed,
adapting (2) to the downscaled scenario (i.e., M "= M /A),
we have:

= C/A. (10)

v
Cl] = Z Din ()‘iu TC)
n=1
However, unlike LRU caches that have a fixed size (and the
oldest content is selected for eviction in LRU fashion), TTL
caches have unbounded size (as the old contents remains soft-
state in the cache for a fixed TTL, but are not otherwise evicted
due to cache size limit). Considering that there exists a strong
correlation between the eviction time 7 and the number of
cached contents, it follows that we can consider the measured
cache size C as the controlled variable.
In particular, for each TTL cache we maintain an online
average of the number of stored contents as:

CE (k) t(k) + B, (k + 1) [t(k + 1) — t(k)]
t(k+1) ’
~ (1
where C*) (k) is the online average of the cache size of the i-
th node at k-th measurement time during z-th simulation cycle,
and Bi(z) (k+1) is the actual number of contents stored inside
the TTL cache of the i-th node at the (k 4 1)-th measurement
time during the z-th simulation cycle. Samples for the online
average are clocked with miss events and collected with a
probability 1/10, so that they are geometrically spaced.

At the end of each MC-TTL simulation cycle (i.e., after the
simulation of R’ requests), a conszstemy check evaluates the
accuracy of the measured cache size C®, with respect to the
target cache C’, by using the following expression:

’C/ - G(Z)(kend)

7

N AT 7
YN IShY O

CP (k+1) =

<eo, 12)

where @('Z)(kmd) is the online average of the measured cache
size of i-th node at the end of the z-th simulation cycle,
C' is the target cache, supposed to be equal for all the
nodes without loss of generality, and ¢ is a user-defined

consistency threshold. For coherence, measures are taken on
those |Y| = YN nodes that have been marked as stable in
Sec. V-B. If condition (12) is satisfied, the MC-TTL simulation
ends, otherwise a new MC-TTL cycle needs to be started: T
values are corrected (as in the next subsection), all the caches
are flushed, and the online average measures are reset.

B. T correction

The direct correlation that exists between the target cache
size C' = C// A expected for a TTL cache at steady-state, and
its characteristic time T, = T, that is expressed through
equations (1)-(2)-(4)-(12), represents the basis for the con-
troller action. Intuitively, there exists a linear proportionality
between C’ and Ty: i.e., the average number of elements C'
stored in a TTL cache with TTL=T grows as T grows.

Therefore, if the consistency check block reveals that the
measured cache size C' of a particular node is smaller than
its target cache C' < C’, it means that the respective T
value provided as input is actually smaller than the actual one,
and that it needs to be increased in the next step. Viceversa,
for a C > C', the T of the correspondent node should be
decreased.

As a consequence of the linear relationship, we employ a
proportional (P) controller to compensate for 7 inaccuracies.
That is, if condition (12) is not satisfied at the end of z-th
simulation cycle, the T values are corrected, before starting
the next one, as:

!/
TCi(Z+1) _ TCi(Z) (éﬁ;))) (13)

?

where TCZ-(Z) is the TTL value assigned to the ¢-th node during
the z-th simulation cycle. In practice, (13) guarantees a fast
convergence towards the right 7~ values (see Sec VII-C),
avoiding at the same time any divergence of the control action
(provided that measures on C' are taken at steady-state). This
allows ModelGraft to guarantee considerable gains, even when
multiple simulation cycles are necessary, due to significantly
inaccurate input 7o values.

There is an important condition worth highlighting: i.e., the
controller needs to react on measurable quantities (which hap-
pens whenever the ratio C’/ a(z) can be reliably measured),
as opposite to noisy measures (which happens whenever the
numerator C’ is too small). In particular, this translates into
a very simple practical guideline, as it introduces a lower
bound to the target cache size of the downscaled system,
ie, C' = C/A > 10, practically upper bounding the
maximum downscaling factor to A < C/10. For a detailed
sensitivity analysis regarding all the parameters involved in
the ModelGraft design, we refer the reader to [33].

VII. VALIDATION

Now we validate the ModelGraft engine against classic
event-driven simulation, both (i) in the case where we provide
accurate Ty values as input (to assess the gain of a single
MC-TTL cycle), as well as (ii) in the case where we provide
completely wrong T guesses (to assess the self-stabilization

Core nodes Leaf nodes (exogenous traffic)
Access tree nodes [Repository

(5]
1

LA T
Tier 1 TN \\// \/-m
Tier 2 / \ / \ //:/‘/,\.\‘//‘//:\\
. /\ /\ /\ /\ /// A /:\\\
Tier 3 ANARK |
(a) (b)

Fig. 4. Network Topologies: (a) 4-level binary tree, (b) CDN-like.

capabilities). All the results presented in this section have
been obtained by executing both event-driven and ModelGraft
simulations on the same commodity hardware, i.e., an Intel
Xeon E5-1620, 3.60GHz, with 32GB of RAM.

A. Very-large Scale Scenario

To assess ModelGraft accuracy, we consider the largest sce-
nario we can investigate via event-driven simulation gathered
via ccnSim, already shown to be among the most scalable
ICN software tools [34]]. To stretch the boundaries reachable
by event-driven simulation, we integrate the rejection inversion
sampling — to the best of our knowledge, this represents the
first performance evaluation of ICN networks with content
catalogs in the order of billions.

The validation scenario represents an ICN access tree net-
work [24], where the topology is a N=15-nodes 4-level binary
tree depicted in Fig. 4(a). A single repository, connected to
the root node, stores a M = 10° object catalog, where objects
have Zipf popularity distribution with exponent o« = 1. An
overall R = 10° requests, following an Poisson IRM process,
are injected at each leaf nodes, at a rate of A = 20req/s per
leaf.

The cache size of each node is fixed at C' = 10°, resulting
in a cache to catalog ratio of C'/M = 0.01%. Three different
cache decision policies are considered for the comparison:
(1) LCE, where fetched contents are always cached in every
traversed node; (ii) LCP(1/10), that probabilistically admits
content in the cache (configured so that one over ten fetched
contents is cached on average); (iii) 2-LRU [16} 22], where
cache pollution is reduced by using an additional cache in front
of the main one, with the purpose of caching only the names
of requested contents: the fetched contents will be stored in
the main cache only in case of a hit event in the first cache.

According to our rule of thumb C = C/A > 10, the
maximum downscaling factor is A = 10° Additionally,
equations (9) and (12) are computed considering ¥ = 0.75,
ecy = H- 10_3, and e = 0.1: in other words, we test
convergence of 75% of the caches in the network, by requiring
the coefficient of variation of the hit rate to be below 5 - 1073,
and iterate MC-TTL simulations until the measured average
cache size of those nodes is within 10% of the expected size
C' = C/A. Tt is worth stressing that while we cannot report a
thorough sensitivity of the above parameters in this paper due
to size limits, an extensive account of their (limited) impact
is available to the interested reader at [35]].

TABLE I
T VALUES FOR VALIDATION SCENARIO
(4-LEVEL BINARY TREE, M = R = 109, C= 1067 Y =0.75)

TABLE II
MODELGRAFT VALIDATION, ACCURATE INITIAL T
(4-LEVEL BINARY TREE, M = R = 109, C = 106, A= 1057 Y =0.75)

Level LCE LCP(1/10) (Nazr:;/lfw‘;in)
0 (Root) = 16.7-10° 16.7-104 | 20.0-103/76.4 - 10*
1 g 32.5-10° 314-104 | 38.1-10°/12.5-10°
2 E 63.0+ 103 569104 | 71.9-103/20.4-10°
3 (Leaves) = 11.1-10¢ 88.3-10° | 11.1-10%/22.6-10°
Phi 33.2% 35.4% 37.0%

B. Accurate initial T

To illustrate values taken by the characteristic time T in
this large scale scenario, and its dependency on the cache
decision policy, Tab. I reports 7> measured by event-driven
simulation at different depths of the tree. It clearly appears
that the cache decision policy has the largest impact on the T
values (even larger than topological position in the network).
Specifically, the more conservative the policy (e.g., LCP or
2-LRU), the larger the T, values, which can vary up to one
order of magnitude among different policies. Intuitively, with
caching policies that are more conservative in admitting new
contents, (popular) stored contents are cached for longer time
(which increases the overall hit probability).

To validate the ModelGraft workflow, we start with a single
MC-TTL cycle: to do so, we feed ModelGraft with accurate
Tc estimates, so that no iteration is necessary. Results are
reported in Tab. II, where mean values of 10 different runs
for three KPIs are reported: mean hit ratio py;;, CPU time,
and memory occupancy (for which relative gains are also
highlighted). Results are noteworthy in that (i) the discrepancy
between p;,;; measured by event-driven vs ModelGraft remains
always under 2%, (ii) ModelGraft achieves significant gains,
of about two orders of magnitude, for both CPU time and
memory occupancy. Additionally, it is interesting to notice that
there is neither trace of the (iii) accuracy/speed trade-off, as
one could typically expect [27], nor trace of (iv) memory/CPU
tradeoff [L3]], i.e., cases where an algorithm either trades
increased space (e.g., cached results) for decreased execution
time (i.e., avoid computation), or viceversa.

C. Inaccurate initial T

For an arbitrary scenario, T is however unknown: it is,
thus, important to assess the performance of ModelGraft
when non-informed guesses are provided as input. Denote
with Tg(i) the initial characteristic time for node i, and
with T¢"™ (i) the accurate estimate of the characteristic time
gathered via simulation.

To purposely introduce errors in a controlled fash-
ion, the input characteristic time of each node is set as
To(i) = b(i)TE™ (i), where the multiplicative factor b(i) €
[1/(Bu), Bu] is obtained by multiplying a bias value B €
[1,100] (equal for all the nodes), by a uniform random variable
u € (0,1], in case of both overestimation (b(¢) > 1) and
underestimation (b(7) < 1). Notice that in case of maximum

Cache Decision . . .
Policy Technique Phit CPU | Gain | Mem [MB] | Gain
Simulation | 33.2% | 11.4h 6371
LCE 194x 168x
ModelGraft | 31.4% | 211s 38
Simulation | 35.4% | 7.3 h 6404
LCP(1/10) 90x 168x
ModelGraft | 34.0% | 291 s 38
Simulation | 37.0% | 10.8 h 8894
2-LRU 97x 234x
ModelGraft [36.1% | 402 s 38

bias (i.e., maz|B| = 100), T2(i) will differ from T2 (i) by
up to two orders of magnitude, and it will differ for each node
in the network due to the uniform variable wu.

Results are reported in Fig. 5 as a function of the mul-
tiplicative factor b, depicting CPU and memory gain (ratio
of event-driven over ModelGraft), vs accuracy loss (absolute
error of p;,;;) and number of MC-TTL simulation cycles before
convergence. Several remarks follow. First, (i) p;;; accuracy
loss is not affected by the magnitude of the bias of the initial
guess: this remarkably confirms ModelGraft to converge to the
accurate system performance even for very harsh estimation of
the initial 7 values, making the methodology very robust for
practical purposes. Additionally, (ii) even though the number
of cycles needed to reach such accuracy increases for increas-
ing overestimation/underestimation bias, it, however remains
bounded by a small number in practice. It follows that, (iii)
while CPU gain is maximum in the absence of bias (about
200x, when no iterations are required), the benefits brought
by ModelGraft are, however, still significant (above 50x-100x)
even for very large T- biases (100x overestimation - 1/100x
underestimation, respectively). Finally, (iv) memory gain is, as
expected, independent of the initial 7~ bias.

VIII. RESULTS

We finally employ the validated ModelGraft engine to ven-
ture scenarios that are prohibitively complex for classic event-
driven simulation, due to both CPU and memory limitations.

A. Internet-scale Scenarios

We now aim at investigating Internet-scale scenarios, whose
content catalogs are estimated [26] to be in the order of
O(10") = O(10"?), i.e., two orders of magnitude larger than
those considered in the previous section.

We consider two scenarios: the ICN-like one, depicted
in Fig. 4(a), which models a 4-level binary tree with a
single repository connected to the root, serving a catalog with
cardinality M = 10%°. Cache size is C = 106, which limits
the maximum downscaling to A = 10°. The second scenario,
depicted in Fig. 4(b), models a more complex CDN network,
where three repositories, serving a catalog with cardinality
M = 1011, are connected to backbone nodes interconnected
as the classic Abilene network, and where an access tree is

200
= A N U N
& 150 £\
)
1)
£
2100 o
3 50

+©+ CPU Gain

0 B Mem?ry Gain
3.5

3 T
2.5 Lo

N i

2 —

15 /s

1

0.5 1= +e+ #Cycles
0 &+ Accuracy Loss

1/(100u)

#Cycles / Accuracy Loss [%]

1/(5u) 1 Su
T~ Multiplicative Factor (b)

100u

Fig. 5. T sensitivity - ModelGraft performance in very large scenario: 4-
level binary tree, LCE cache decision policy, M = 1097 R = 109,0 =
106, A = 10°, and variable input T values.

further attached to each backbone node. In this scenario, we
let the cache size be C' = 107, which allows to increase the
downscaling to A = 10°.

As before, we set ¥ = 0.75, ey = 5 - 1073, and
€c = 0.1 and run experiments on the same Intel Xeon ES5-
1620, 3.60GHz, with 32GB of RAM. Clearly, we cannot
instrument event-driven simulations at such large scale due
to both physical memory limits (a hard constraint), as well
as time budget (a soft constraint). At the same time, we
can estimate the expected memory occupancy and CPU times
by fitting and cross-validating several scenarios with simple
models. Despite related to the very specific implementation of
the ccnSim simulator, estimates are, however, useful to project
ModelGraft gains. While a thorough analysis is provided
in [35] due to lack of space, general trends are discussed
herein: on the one hand, the event-driven approach of ccnSim
has a O(M)+ O(NC') memory cost (being N the number of
caches in the network), meaning that the allocation of memory
space is mostly influenced by the cardinality of the catalog,
rather than by the cache size (being M > C). On the other
hand, the CPU time varies linearly with the number of total
requests, i.e., O(R).

B. Projected gains

Results for the Internet-scale scenarios are shown in Tab. 111,
which reports the mean values of p;,;,, CPU time, and memory
usage, along with the number of MC-TTL cycles gathered
via ModelGraft, and estimates of CPU time and memory
occupancy for the classic event-driven approach.

TABLE III
INTERNET-SCALE SCENARIOS: MODELGRAFT RESULTS
AND PROJECTED GAINS VS EVENT-DRIVEN SIMULATION.

. CPU . .
Topology | Parameters | Technique Phic [/4 Cycles Gain | Mem Gain
M=10'" | Simulation
4-level R =10 | (estimate) na. | 4.5 days 70GB
binary tree| C =10° | 270x ~1500x
(V=15) | A =10° | NodeiGraf | 31.4% | 24 min 45 MB
Y =0.75 (1 cycle)
— 101 ; ;
M=10% | Simulation | = =1 50 4o 520 GB
CDN-like R =10" (estimate)
C =107 96x ~16700x
V=67 A =106 125h
- ModelGraft | 34.0% 31 MB
Y =0.75 (3 cycles)

Consider the ICN-like scenario first. Notice that, whereas
memory requirements for event-driven simulation increased
with respect to scenarios in the previous section (due to the
need of mapping seed copies with respective repositories),
memory usage in ModelGraft increases only slightly (since the
mapping scales as M’): consequently, memory gain increases
significantly. Second, notice that CPU gains maintain to 270X,
which happens since in this case our initial guess of T was
accurate enough to let ModelGraft converge after one cycle.

For the CDN-like scenario, instead, memory gain increases
by one further order of magnitude, in reason of the larger
downscaling factor A = 10°. Conversely, CPU time gain
reduces due to the larger number of cycles needed to end the
simulation: specifically, given that our initial 7 guess was not
accurate enough, ModelGraft took three cycles to converge,
reducing gains of the techniques to a still very significant 96 .

IX. RELATED WORK

Hybrid approaches have been considered to make it practical
to study large scale networks even with commodity hardware,
and at a reasonable time scale. The concept of inferring key
aspects of large systems from the study of equivalent and
scaled-down versions has been adopted in several domains,
from cosmology and biology, to the more closer communica-
tion networks, in the forms of large scale IP networks [30, 211,
wireless sensor networks [20], and control theory [S]].

What presented in this paper finds a strict correspondence
with the work in [30], where large IP networks are scaled
to reduce the computational requirements of simulations and
simplify performance prediction. The idea consists in feeding
a suitable scaled version of the system with a sample of the
input traffic, while changing the scaling rule according to the
type of TCP/UDP flows traversing the network.

TCP networks are also considered in [21]], where the authors
propose a scalable model which is easily comparable with
discrete event simulators due to its time-stepped nature. In
particular, by refining a known analytical model [29] based on
ordinary differential equations, they show that their approach
yields accurate results with respect to those of the original
networks, and that, at the same time, it is able to speedup the
completion time of orders of magnitude with respect to packet
level and discrete events simulators like ns.

This work is the first to apply these concepts to the study
of cache networks. Clearly, caching dynamics are intrinsi-
cally different from system-level aspects of wireless sensor
networks [20], or the steady state throughput of TCP/IP
networks [30, 21]. Our methodology is not only novel, but
also practical, as it is fully integrated in open-source tools [[L].

X. CONCLUSION

This work proposes ModelGraft, an innovative hybrid
methodology addressing the issue of performance evalua-
tion of large-scale cache networks. The methodology grafts
elements of stochastic analysis to MonteCarlo simulation
approaches, retaining benefits of both methodology classes.
Indeed, ModelGraft inherits simulation flexibility, in that it
can address complex scenarios (e.g., topology, cache replace-
ment, decision policy, etc.). Additionally, ModelGraft is imple-
mented as a simulation engine to retain simulation simplicity:
given its self-stabilization capability, ModelGraft execution is
decoupled from the availability of accurate input 7 values,
which is completely transparent to the users. Results pre-
sented in this paper finally confirm both the accuracy and
the high scalability of the ModelGraft approach: CPU time
and memory usage are reduced by (at least) two orders of
magnitude with respect to the classical event-driven approach,
while accuracy remain within a 2% band.

ModelGraft features, like decoupled dynamics of content
requests and the use of TTL caches, pave the way for a further
improvement, which we keep as future work: by resorting
to a map-reduce approach, different cores could simulate the
request process for different parts of the downscaled catalog
(i.e., bins can be assigned in order to equalize to load of each
core); then, once a consistency check is needed at the end
of a MC-TTL cycle, measurements about the actual cache
occupancy, coming from all the cores, can be linearly aggre-
gated (i.e., by simply summing them) in order to check for
(12). In case a further cycle would be needed, the T will be
corrected, and the different cores will restart to simulate their
part of the catalog. Since there would be no need of message
passing between the cores during the MC-TTL simulation, this
approach could remarkably reduce the CPU time, especially
if projected in a multi-core cluster environment.

ACKNOWLEDGMENTS

This work has been carried out at LINCS (http://www.
lincs.fr). This work benefited from support of NewNet@Paris,
Cisco’s Chair “NETWORKS FOR THE FUTURE” at Telecom
ParisTech (http://newnet.telecom-paristech.fr). Any opinion,
findings or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of partners of the Chair.

REFERENCES

[1] cenSim Simulator. http:/perso.telecom-paristech.fr/~drossi/ccnSim.

[2] Zipf distributed random number generator . https://github.com/apache/
commons-math/blob/master/src/main/java/org/apache/commons/math4/
distribution/ZiptDistribution.java.

[3] A. Araldo, D. Rossi, et al. Cost-aware caching: Caching more (costly
items) for less (ISPs operational expenditures). IEEE Transactions on
Parallel and Distributed Systems, PP(99):1, 2015.

(4]
(5]

(6]

(7]
(8]

(91
[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

(23]

[24]
[25]

[26]

[27]
[28]

[29]

(30]

(31]
[32]
[33]

[34]

[35]

S. Arianfar and P. Nikander. Packet-level Caching for Information-
centric Networking. In ACM SIGCOMM, ReArch Workshop. 2010.

M. Branicky, V. Borkar, et al. A unified framework for hybrid control:
model and optimal control theory. IEEE Transactions on Automatic
Control, 43(1):31, 1998.

M. Cha, H. Kwak, et al. I tube, you tube, everybody tubes: analyzing
the world’s largest user generated content video system. In ACM IMC.
2007.

H. Che, Z. Wang, et al. Analysis and design of hierarchical web caching
systems. In Proc of IEEE INFOCOM. 2001.

A. Dan and D. Towsley. An Approximate Analysis of the LRU and
FIFO Buffer Replacement Schemes. SIGMETRICS Perform. Eval. Rev.,
18(1):143, 1990.

N. Fofack, P. Nain, et al. Performance evaluation of hierarchical TTL-
based cache networks. Elsevier Computer Networks, 65:212 , 2014.

C. Fricker, P. Robert, et al. A versatile and accurate approximation for
LRU cache performance. In Proc. of ITC 24. 2012.

N. Gast and B. V. Houdt. Transient and steady-state regime of a family of
list-based cache replacement algorithms. In Proc of ACM SIGMETRICS
Conference, pages 123-136. 2015.

M. Hefeeda and O. Saleh. Traffic modeling and proportional partial
caching for peer-to-peer systems. /[EEE/ACM Transactions on Network-
ing, 16(6):1447, 2008.

M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transac-
tions on Information Theory, 26(4):401, 1980.

W. Hormann and G. Derflinger. Rejection-inversion to generate variates
from monotone discrete distributions. ACM Trans. Model. Comput.
Simul., 6(3):169, 1996.

J. Jaeyeon, A. W. Berger, et al. Modeling TTL-based Internet caches.
In Proc. of IEEE INFOCOM. 2003.

T. Johnson, D. Shasha, et al. 2q: A low overhead high performance buffer
management replacement algorithm. In 20th International Conference
on Very Large Data Bases (VLDB), pages 439-450. 1994.

W. King. Analysis of paging algorithms. In IFIP Congress. 1971.

N. Laoutaris, H. Che, et al. The LCD interconnection of LRU caches
and its analysis. Performance Evaluation, 63(7), 2006.

E. Leonardi and G. Torrisi. Least Recently Used caches under the Shot
Noise Model. In Proc. of IEEE Infocom. 2015.

P. Levis, N. Lee, et al. TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In Proc. of ACM SenSys. 2003.

Y. Liu, F. Presti, et al. Scalable Fluid Models and Simulations for Large-
scale IP Networks. ACM Trans. Model. Comput. Simul., 14(3):305, 2004.
V. Martina, M. Garetto, et al. A unified approach to the performance
analysis of caching systems. In Proc. of IEEE INFOCOM. 2014.

D. Berger et al. Exact Analysis of TTL Cache Networks: The Case
of Caching Policies Driven by Stopping Times. In Proc. of ACM
SIGMETRICS Conference, pages 595-596. 2014.

S. Fayazbakhsh et al. Less Pain, Most of the Gain: Incrementally
Deployable ICN. SIGCOMM Comput. Commun. Rev., 43(4):147, 2013.
N. Fofack et al. On the performance of general cache networks. In
Proc. of VALUETOOLS Conference, pages 106-113. 2014.

K. Pentikousis et al. Information-centric networking: Evaluation
methodology. Internet Draft, https://datatracker.ietf.org/doc/draft-irtf-
icnrg-evaluation-methodology/, 2015.

M. Rosenblum et al. Complete Computer System Simulation: The
SimOS Approach. IEEE Parallel Distrib. Technol., 3(4):34, 1995.

G. Xylomenos et al. A survey of information-centric networking
research. Comm. Surveys and Tutorials, IEEE, 16(2):1024, 2014.

V. Misra, W. Gong, et al. Fluid-based Analysis of a Network of AQM
Routers Supporting TCP Flows with an Application to RED. SIGCOMM
Comput. Commun. Rev., 30(4):151, 2000.

R. Pan, B. Prabhakar, et al. SHRINK: A Method for Enabling Scaleable
Performance Prediction and Efficient Network Simulation. IEEE/ACM
Trans. Netw., 13(5):975, 2005.

E. Rosensweig, D. Menasche, et al. On the steady-state of cache
networks. In Proc. of IEEE INFOCOM. 2013.

E. J. Rosensweig, J. Kurose, et al. Approximate Models for General
Cache Networks. IEEE INFOCOM, pages 1-9, 2010.

G. Rossini and D. Rossi. Coupling caching and forwarding: Benefits,
analysis, and implementation. In Proc. of ACM SIGCOMM ICN. 2014.
M. Tortelli, D. Rossi, et al. ICN software tools: survey and cross-
comparison. Elsevier Simulation Modelling Practice and Theory (SIM-
PAT), 63:23, 2016.

M. Tortelli, D. Rossi, et al. Modelgraft: Accurate, scalable, and flexible
performance evaluation of general cache networks. Telecom ParisTech
Tech. Rep., http://www.enst.fr/~drossi/paper/ModelGraft.pdf, 2016.

http://www.lincs.fr
http://www.lincs.fr
http://newnet.telecom-paristech.fr
http://perso.telecom-paristech.fr/~drossi/ccnSim
https://github.com/apache/commons-math/blob/master/src/main/java/org/apache/commons/math4/distribution/ZipfDistribution.java
https://github.com/apache/commons-math/blob/master/src/main/java/org/apache/commons/math4/distribution/ZipfDistribution.java
https://github.com/apache/commons-math/blob/master/src/main/java/org/apache/commons/math4/distribution/ZipfDistribution.java
http://www.enst.fr/~drossi/paper/ModelGraft.pdf

	Introduction
	Modeling intuition
	Background
	Intuition

	ModelGraft overview
	Downscaling and sampling
	Design
	Implementation

	MC-TTL Simulation
	Transient
	Steady-state monitor
	Simulation cycle

	Self-stabilization
	Consistency check
	TC correction

	Validation
	Very-large Scale Scenario
	Accurate initial TC
	Inaccurate initial TC

	Results
	Internet-scale Scenarios
	Projected gains

	Related Work
	Conclusion
	References

