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Abstract

When considering to passively collect and then process network traffic traces, the need to analyze raw data at several
Gbps and to extract higher level indexes from the stream of packets poses typical big data-like challenges. In this paper,
we provide a methodology to extract, collect and process passive traffic traces. In particular, we design and implement
analytics that, based on a filtering process and on the building of empirical distributions, enable the comparison between
two generic collections, e.g., data gathered from two different vantage points, from different populations, or at different
times. The ultimate goal is to highlight statistically significant differences.

After introducing the methodology, we apply it to assess the impact of Carrier-Grade NAT (CGN), a technology that
Internet Service Providers (ISPs) deploy to limit the usage of expensive public IP addresses. Since CGN may introduce
connectivity issues and performance degradation, we process a large dataset of passive measurements collected from an
ISP using CGN for part of its customers. We first extract detailed per-flow information by processing packets from
live links. Then, we derive higher level statistics that are significant for the end-users, e.g., TCP connection setup time,
HTTP response time, or BitTorrent average download throughput. At last, we contrast figures of customers being offered
public or private addresses, and look for statistically significant differences. Results show that CGN does not impair
quality of service in the analyzed ISP deployment. In addition, we use the collected data to derive useful figures for the
proper dimensioning of the CGN and the configuration of its parameters in order to avoid impairments on end-users’
experience.

Keywords: IP networks; Computer Network Management; Network Address Translation; Big Data; Network
Measurements; Performance

1. Introduction and Motivation

Traffic measurements have always played a central role
to guide traffic management, to improve network and ap-
plication design, and, in general, to understand the Inter-
net. As result, several tools are available for both active
and passive measurements. The former let the network
administrator run on-demand specific tests at the expense
of an increased network load. The latter permits a contin-
uous monitoring by simply observing traffic, a challenging
task given the several Gbps currently carried by backbone
links. Collected measurements can be gathered to form a
big data-like repository, and later leveraged to extract fur-
ther knowledge, e.g., to contrast performance before and
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after an upgrade or to monitor performance of applications
being accessed from different parts of the network. Often,
the network administrator needs “to compare” measure-
ments collected at different times and places, or, generally
speaking, different population subsets (e.g., fiber vs cop-
per cable, fixed vs mobile, etc). In case of significant and
unexpected differences in measurement results, counter-
measures can be taken to identify, and possibly fix, the
root cause of these differences.

In this paper, we present a methodology that accom-
plishes the above process, and apply it to a specific
use-case, namely the deployment of Carrier-Grade NAT
(CGN). Abstracting from the use-case for the time being,
we leverage the passive monitoring technologies recently
developed by the mPlane project, which offers a scalable
architecture to deploy, collect and analyze Internet mea-
surements. Referring to Fig. 1, we form a measurement
layer by instrumenting several Points of Presence (PoPs)
of an ISP with Tstat [1], a high-performing passive probe.
By observing packets exchanged by end-users, each probe
builds detailed logs for TCP and UDP flows in real time.
Logs are then moved to a central repository, where several
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gigabytes of raw data are collected every hour. To obtain
valuable information from the logs, we design analytics to
extract the subsets of data of interest and compute high
level performance indexes. In particular, we focus on defin-
ing a methodology that allows us to detect whether statis-
tically significant differences are present in measurements
comparing different user populations or periods of time.
While several metrics [2] allow one to compare two empir-
ical distributions, ingenuity is needed to engineer a robust
system capable of conveying simple yet telling differences
in a compact way.

While the methodology is generic and would allow the
comparison of generic populations (e.g., IPv4 vs IPv6,
HTTP/1.1 vs HTTP/2, Android vs iPhone, etc.), in this
work we apply it to quantify the impact of CGN the ISP
has deployed. Network Address Translation (NAT) tech-
niques have become a viable cheap solution to alleviate
public IPv4 exhaustion. In a nutshell, a router implement-
ing NAT functionality remaps the IP address space of a
private network into one (or more) public IP address(es).
CGN technologies extend this concept by masking a whole
ISP network using NAT [3]. In this scenario, customers’
home routers are assigned private IP addresses. When
communicating with hosts in the public Internet, the CGN
router temporary maps the private, edge-facing IP address
of the customer to one available public, Internet-facing IP
address. This approach enables the ISP to mask part of its
network as a large private network, significantly reducing
the total amount of public IP addresses to use. Indeed,
ISPs are more and more looking into these solutions as
the price of a public IP address has now reached 10$/year
per IP.1

However, NAT and CGN break the end-to-end paradigm
of the Internet communication model. On the one hand,
NAT-ed hosts cannot be directly addressed from the In-
ternet, which is unsuitable for applications that require
reachability from the public Internet. On the other hand,
the NAT mapping operations may add delay to packets
or cause loss. Despite a large body of work focusing on
NAT technologies and NAT traversal techniques (which
we overview in Sec. 7), little effort has been devoted to
assess CGN impact on actual user experience.

We study both aspects in this work, whose main contri-
butions can be summarized as follows:

• We define analytics to assess statistical differences be-
tween measurement aggregates, which allow one to ei-
ther highlight spatial (e.g., different populations) or
temporal (e.g., same population at different times)
discrepancies (Sec. 2).

• We particularize these analytics to the case of a real
CGN deployment for populations of users with either
private or public IP addresses (Sec. 3). For the pur-
pose, we consider key performance indicators that are

1http://www.ipaddressnews.com/2014/04/07/343
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Figure 1: Illustration of the measurement framework.

relevant for user quality of experience, such as connec-
tion setup time for web traffic, average transfer rate
for BitTorrent traffic, etc. (Sec. 4).

• We apply these analytics to assess the impact of CGN
from an actual ISP deployment, processing the data
collected by monitoring about 17,000 residential cus-
tomers for one month. Results show that no statis-
tically significant difference can be observed between
the two populations for the considered performance
indicators (Sec. 5).

• We leverage actual usage patterns to provide statis-
tical figures that allow the network operator to prop-
erly design and dimension the CGN deployment while
avoiding impairments to the end-users (Sec. 6).

2. Analytics to highlight and quantify statistical
differences

In this work, we focus on analytics to compare mea-
surements referring to different datasets, i.e., that help us
to quickly pinpoint eventual performance differences be-
tween different populations of users. In this section, we
provide an overall view and the necessary elements to un-
derstand the potential applications of the framework, de-
ferring detailed statistical considerations and sensitivity
analysis to Appendix A.
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2.1. Empirical distribution estimation
Fig. 1 illustrates our workflow. Several layers are visi-

ble. From the bottom, the Measurements layer consists of
passive Tstat probes installed in an operational network.
Probes are responsible for extracting traffic summaries
based on the continuous observation of packets generated
by end-users: at flow completion, Tstat logs more than
100 metrics whose schema is strictly defined. As such, the
output is a tabular database, where each row represents a
flow and each column is a specific key performance indica-
tor (KPI). More details about KPI definitions are given in
Sec. 4. Data is temporarily stored at the probe premises,
and then moved asynchronously to the central Repository
based on Hadoop and Hive, which is located in the Big
Data Laboratory of Politecnico di Torino.

Once measurements are stored in the repository, a
“Query & Filter” engine allows us to easily extract the mea-
surement samples of interest (e.g., select Round Trip Time
measurements for TCP connections where application
layer protocol is HTTP, server name matches *.google.com,
client IP address is private, and date is any day of October
2014). Thanks to the SQL-like interface offered by Hive,
the “Query & Filter” module allows us to easily access a
large dataset in a simple, intuitive and scalable way, and
quickly output sets of samples.

We next estimate the empirical Probability Density
Function (PDF) and Cumulative Distribution Function
(CDF) using a simple module that, given the size of bins
and support range, computes the frequency of samples
falling in each bin, i.e., the probability pi that the sample
takes values in the i-th bin. Given the amount of data to
process is typically limited (few millions of samples), and
the lack of iterative processing, we opted to implement this
module using Python.

2.2. Comparison and quantization functions
While extracting data involves scalability issues success-

fully solved by the Hadoop approach, the comparison of
PDFs no longer needs big-data processing, but poses sig-
nificant challenges the analyst has to cope with. For in-
stance, one should ensure to have an adequate population
of samples, carefully choose the binning size, consider the
nature of the performance indicators on which PDFs are
built, etc. We defer the formal discussion of such aspects
to the Appendix A. By now, we limit the discussion to
the description of a method to compare PDFs.

To this goal, we define a statistical method to compactly
quantify the difference between two distributions. The
output can be “soft”, i.e., a real value in a continuous range,
or “hard”, i.e., a categorical output from a (small) set of
possible values. For instance, in the first case, comparison
tells the analyst how different the statistics are, while in
the second case it just tells if they differ or not.

In formal terms, the comparison function has the form
F (p, q) : (R2,R2) → R, while the quantization function
can be defined as Q(F (p, q)) : R→ N, where p = p(x) and
q = q(x) are two empirical distributions under analysis.

Without loss of generality, in this paper we define a sim-
ple quantization function that considers three possible lev-
els, correlating with a no difference state (0), a definitively
different state (2), and a possibly different state (1) requir-
ing further, though likely not urgent, investigation. Such
quantization function can be written as:

Q(F (p, q)) =


0 if F (p, q) < Q−

1 if Q− ≤ F (p, q) < Q+

2 if F (p, q) ≥ Q+

with states discriminated by the lower Q− and upper Q+

thresholds. Selecting these thresholds requires careful at-
tention since (i) there is a dependency between the thresh-
olds Q−, Q+ values and the comparison function F (p, q);
(ii) the value of F (p, q) can be noisy when distributions p
and q are computed over small population samples; (iii)
the value of F (p, q) can be affected by class imbalance
when population samples of distributions p and q are of
different orders of magnitude; and (iv) the value of F (p, q)
can be affected by the measurement process (e.g., binning
strategy, number of bins, etc.).

2.3. Jensen-Shannon divergence

We make illustrative examples of one statistical distance
measure (SDM) on controlled distributions p, q. As repre-
sentative SDM in this class, we take the Jensen-Shannon
divergence (JSdiv), which is defined as:

JSdiv =
∑
i

{1
2
pi ln

( pi
1
2
pi +

1
2
qi

)
+

1

2
qi ln

( qi
1
2
qi +

1
2
pi

)}
where pi and qi are the empirical probabilities of samples
taking values in the i-th bin. JSdiv is a popular statistical
measure based on the Kullback-Leibler divergence, over
which it brings some notable improvements, adding sym-
metry, i.e., JSdiv(p, q) = JSdiv(q, p), and bounded sup-
port, i.e., JSdiv ∈ [0, ln(2)]. JSdiv is equal to 0 if p == q,
while it saturates to ln(2) for two completely disjoint dis-
tributions.

We focus on understanding how the JSdiv varies when
comparing two synthetic PDFs, with the aim at defining
Q−, Q+ thresholds to separate the areas into three states
in a generic case. To this extent, we consider (i) neg-
ative exponential distributions with different mean; and
(ii) Gaussian distributions with different mean and/or dif-
ferent standard deviation. These PDFs are representative
of diverse properties that may appear in network data; e.g.,
packet inter-arrival times and packet size in VoIP calls can
be approximated with Gaussian distributions [4]; requests
generated by user-activities are well approximated with
Poisson processes and have as such negative exponential
inter-arrival times [5, 6]. For the sake of the example, we
now quantify differences between controlled PDFs that are
representative of fictionary, yet plausible, processes.

Such analysis is useful both to visually tie the JSdiv be-
havior to some well-known distributions, and to identify
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Figure 2: Illustrative examples of Jensen-Shannon divergence computed on: (a) negative exponential distributions with heterogeneous mean
rates λ1 versus reference mean λ = 1; (b) Gaussian distributions with heterogeneous mean N(µ, 1) or standard deviation N(0, σ) versus the
reference distribution N(0, 1).

quantization thresholds that discriminate among signifi-
cant (2), noticeable (1) and negligible (0) differences be-
tween PDFs. The purpose is to illustrate the methodology
we followed in setting the quantization function Q(f(p, q)).
A more in-depth analysis is given in Appendix A.

We consider a dataset where samples are extracted from
synthetic p, q. We take care of avoiding any bias in the
JSdiv scores that can be tied to population size, imbalance
or binning strategy (see Appendix A). Let consider first
the comparison of p, q which are both negative exponential
distributions:

NegExp(x, λ) = λe−λx for x ≥ 0; 0 otherwise

We consider p = NegExp(x, λ0) as a reference, and
choose λ0=1, while q = NegExp(x, λ1) is instead shaped
according to a distribution of parameter λ1, with λ1 ∈
[1, 8] in our experiments. From both distributions, we ex-
tract 106 samples, obtain the empirical PDFs using 1000
bins in a [0, 100) support. This leads to bins of size
∆b = 100/1000 = 0.1. For each bin i, we estimate pi
and qi as the ratio between the number of samples falling
in the i-th bin, i.e., [i∆b, (i+ 1)∆b), and the total number
of samples.

Negative exponential PDFs p and q are depicted in the
top portion of Fig. 2(a), whereas the bottom plot reports
the JSdiv versus λ1. Without loss of generality, we se-
lect thresholds Q− = 2/100 and Q+ = 1/10, so that a
clearly visible changes in the distribution space (top) are
visible in the JSdiv space (bottom) as well. Intuitively,
when JSdiv ∈ [Q+, ln(2)], the difference between the two
PDFs is significant (red area). When JSdiv ∈ [Q−, Q+)
the difference is noticeable (green area), and negligible if
JSdiv ∈ [0, Q−) (white area).

We repeat the experiment this time considering Gaus-

sian distributions, i.e.,

N(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2

As before, we generate a reference sample p corre-
sponding to (µ, σ) = (0, 1), and samples q with different
(µ, σ) parameters. The upper-left plot of Fig. 2(b) shows
PDFs of q with parameters µ ∈ {0, 0.1, 0.5, 1, 2} and σ=1,
while the upper-right plot shows PDFs when µ=0 and
σ ∈ {0.25, 0.5, 1, 1.5, 2}. Fig. 2(b) lower plot reports the
JSdiv values when comparing the above-mentioned distri-
butions against p.

The previous threshold selection proves to be effective
also in the case of Gaussian distributions: visible differ-
ences in the upper plots of Fig. 2(b) appear to be separated
by the Q− = 2/100 and Q+ = 1/10 thresholds.

In real cases, the sensitivity of a domain expert can be
used to set thresholds. In general, any threshold choice
results arbitrary, which applies to any SDM of choice (and
possibly being even more complicated for those SDMs with
infinite support). We point out that the framework we pro-
pose is not limited to the use of JSdiv measure. Rather, in
Appendix A we consider a large set of SDMs and identify
a set of those that are equivalent in this respect, as they
share a number of desirable properties (e.g., symmetry and
boundness). While we discuss these issues further in Ap-
pendix A, the information provided in this section allows
us to understand the application of the general framework
to the CGN use-case we focus on in the reminder of this
paper.

3. Monitoring Scenario and Dataset

To characterize the implications of CGN, we rely on
passive measurements obtained by instrumenting a mon-
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Figure 3: The monitoring scenario we consider in this study.

itoring probe in the operational network of an European
country-wide ISP. Each customer device accesses the In-
ternet via an ADSL home router. The ISP assigns either
a public or private IP address to each home router accord-
ing to the customer’s subscription type. Traffic directed to
the Internet and coming from home routers with a public
IP address (public home routers) is routed directly to the
final destination, while traffic from home routers with a
private IP address (private home routers) has to cross the
CGN device first.

The CGN used by the monitored ISP is based on the
NAT444 standard [7], which relies on sessions to translate
the private, edge-facing IP address of a home router into
a public, Internet-facing one. When the CGN receives the
first packet from a private home router, it starts a new
session, temporarily mapping the private address to the
first available public address in a pool. It then converts
the address of all subsequent packets according to the same
mapping.2 After a given inactivity time during which no
packets are observed, the session expires and the public
address is put back in the pool of available addresses.

3.1. Monitoring Setup
Fig. 3 depicts the monitoring scenario in which we oper-

ate. Three regions are identified: (i) a monitored PoP; (ii)
the ISP network; and (iii) the public Internet. We deploy
a passive probe inside the PoP and we instrument it to
process the packets flowing through the PoP router. This
router forwards the traffic coming both from private and
public home routers, thus we are in the condition to mon-
itor the traffic produced by the two populations of users.

In the case of web traffic, private and public home
routers have to reach servers located in the public Inter-
net. Therefore, the traffic they produce has to cross the

2The amount of public addresses available at the NAT is smaller
than the number of customers provided with a private IP address.
Consequently, the pool size of public addresses must be carefully set
to minimize allocation costs, while guaranteeing satisfactory connec-
tivity. See Sec. 6 for a thorough discussion.

Private Public

# of TCP flows 990M 767M
# of UDP flows4 2,676M 1,941M
# of failed-TCP flows 301M 347M
Traffic Volume 168TB 105TB

Table 1: Statistics for home routers with private and public IP ad-
dresses.

PoP router, the CGN if the traffic is generated by private
home routers, and the ISP border gateway. In the case of
Peer to Peer (P2P) traffic, peers can be located both inside
the ISP network (α, β in Fig. 3) and in the public Internet
(γ). The ISP assures end-to-end connectivity among cus-
tomers within the its network, independently on the type
of IP address assigned to each home router.

3.2. Dataset description
We leverage a dataset collected during the month of Oc-

tober 2014. It consists of TCP, UDP and failed-TCP3 logs
carrying 1,757M, 4,617M and 648M records respectively,
for a total of more than 273TB of network traffic. We split
each of our logs in two subsets according to the IP address
type of the customer’s home router.

Tab. 1 provides statistics about the traces we consider,
separately for private and public home routers. In total,
we find more than 17,000 active home routers. Out of these
60% (40%) are assigned a private (public) IP address.5

Unless stated otherwise, in the reminder of the paper
we present the results obtained by focusing on October
2014. Analysis conducted on other periods show very sim-
ilar results. Overall, the dataset at our availability is large
enough to avoid biases due to population size or imbalance,
and performance indicators (see Sec. 4) are not affected by
quantization artifacts.

3.3. P2P description
For this work we consider only BitTorrent traffic as it

is the most used P2P application in our dataset. To iso-
late peers that actively use the BitTorrent, we consider
only those showing at least one flow carrying 1 MB in our
dataset, and we call them active.

According to the type of IP address at the home router
and to the location of the peer in the network (α, β, γ in
Fig. 3), peers can experience different reachability condi-
tions. To assess this, we check if peers are able to receive
incoming connections from their counterparts. We define a
peer as reachable if its home router is properly configured

3Tstat labels as failed TCP connections for which the Three-Way
Handshake is not completed (e.g., when the sole SYN message is
observed).

4In Tstat, a UDP flow starts at the first seen packet exchanged
between two endpoints and ends 65 seconds after the last seen packet.

5The home router IP address can be considered as an identifier of
the household. It may hide several devices connected to the Internet.
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Private Public
T
C
P

Reachable 631 (35%) 496 (50%)
Unreachable 1188 (65%) 499 (50%)
Total 1819 995

U
D
P

Reachable 891 (77%) 591 (95%)
Unreachable 262 (23%) 33 (5%)
Total 1153 624

Table 2: Number of active peers classified according to their reach-
ability condition.

and ports are forwarded to the P2P application. In case
the home router is misconfigured and the P2P application
is non reachable, we define a peer as unreachable.

Four classes of peers emerge:

• Private–Unreachable: any peer behind private home
routers that does not receive incoming connections;

• Private–Reachable: any peer behind private home
routers that receives incoming connection from other
peers in the ISP network (α and β in Fig. 3). Reach-
ability from peers in the Internet is not guaranteed as
the CGN limits incoming connections;

• Public–Unreachable: any peer behind public home
routers that does not receive incoming connections;

• Public–Reachable: any peer behind public home
routers that receives incoming connections from both
the ISP and the Internet. This is the only class of
peers that is reachable by everyone.

Tab. 2 characterizes the number of active peers over
TCP and UDP according to their reachability condition.
Notice that only the 35% (50%) of peers with a private
(public) IP have their home router properly configured
and are thus reachable over TCP. This potentially owes
to the scarce success of NAT traversal techniques for TCP
flows.

In the case of UDP, instead, the ratio of reachable peers
is higher both for private (77%) and public (95%) home
routers. This is due to the fact that NAT traversal tech-
niques like STUN [8, 9] are more effective over UDP, and
enable peers to receive incoming connections.

4. Key performance indicators

In this section we define the performance indicators
we are interested in when considering the CGN impact.
Among the many measurements provided by Tstat, we
consider for each traffic flow: (i) The TCP Round-Trip-
Time (RTT) between the probe and server; (ii) the Time-
To-Live (TTL) seen at the probe of packets sent by the
server; (iii) the total per-flow amount of bytes sent and
received by the client; (iv) the application layer proto-
col (e.g., HTTP, HTTPS, BitTorrent); and (v) the times-
tamps of packets that are instrumental to obtain further

Client Server 

T
im

e
 

TEstablish 

TSYN 

RTT 
TWHT 

TTFB 

TRequest 

TResponse 

TLast 

Tstat 

Figure 4: An example of HTTP transaction with metrics considered
for our analysis.

indices.6 Finally, we use the Fully Qualified Domain Name
(FQDN) [10] of the server to split traffic according to the
service generating it.

Fig. 4 shows Tstat observing a HTTP transaction. In a
nutshell, Tstat correlates TCP data segments and acknowl-
edgments, and records timestamps of significant packets.
For instance, by correlating times of a data segment with
the corresponding acknowledgment, it computes a sam-
ple of the RTT. Average and standard deviation of RTT
is then obtained by considering all samples in the TCP
flow. We defer the interested reader to [1, 11] to obtain
the detailed description of how performance indicators are
extracted from packet traces.

Since CGN may impact both network, transport and
application layer performance, we detail how we combine
basic metrics provided by Tstat to build higher level mea-
surements that we use to contrast the impact of CGN at
different layers.

4.1. Network layer metrics

Hop count from Server to PoP (#Hops).
The minimum number of hops being traversed by
packets transmitted from the server to the client. The
operating system of the server sets the initial value of
the TTL, with power of 2 values being the typical
choice.7 Each router along the path then decreases
the TTL. The values observed at the probe is thus an
indication of the number of hops on the path from the
server to the probe located in the PoP. In more details,
given a flow, we take the maximum server-to-client
TTL observed by Tstat. We then choose x as the ex-
ponent minimizing #Hops = 2x−TTL, #Hops > 0.
The resulting #̂Hops is the minimum number of hops

6Notice that the probe measures the timestamps at a vantage
point close to the customers. Therefore, for some metric X we can
only gauge its estimated measure X̂.

7http://subinsb.com/default-device-ttl-values
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that packets in the considered flow have traversed be-
fore reaching the probe. In our scenario we expect
packets received by private home routers to traverse
a possibly larger number of hops due to the presence
of the CGN (one or more hops).

PoP to Server Round Trip Time (RTT ).
The average RTT Tstat measures in a flow (R̂TT )
on packets transmitted from the client to the server.
Referring to Fig. 4, we consider only the RTT from
the probe in the PoP to the server and backward,
thus including only the backbone part of the path and
ignoring the access portion. The RTT computation is
complicated by the presence of packet retransmission,
delayed acknowledgments, etc. We refer the reader
to [11] for details. We expect packets transmitted by
private home routers to experience a higher latency
because of the CGN packet processing.

4.2. Transport layer metrics
TCP Three-Way Handshake Time (TWHT ).

The amount of time measured by Tstat ( ̂TWHT ) re-
quired to successfully establish a TCP connection us-
ing the Three-Way Handshake (TWH). Referring to
the upper part of Fig. 4, let T̂SY N be the timestamp
of the SYN packet sent by the client to start the con-
nection establishment procedure, and let T̂Establish be
the timestamp of the packet carrying the ACK mes-
sage ending the TWH. We define the ̂TWHT as

̂TWHT = T̂Establish − T̂SY N

In our scenario we expect the ̂TWHT to be higher for
private home routers due to the time needed by the
CGN to allocate the resources for the new communi-
cation session.
For the sake of completeness, we also consider some
advanced specific TCP metrics that are directly com-
puted by Tstat [11]: (i) The number of SYN mes-
sages observed during connection setup, SY N ; (ii)
the number of out of sequence segments, OoS; (iii)
the number of duplicated segments Dup. These are
measurements that we expect to be altered in case of
connectivity issues introduced by the CGN. A large
value of SY N , for instance, indicates that the client
experienced difficulties in establishing the connection
due to, e.g., exhaustion of NAT resources.

4.3. Application layer metrics
Time to first byte (TTFB).

Referring to Fig. 4, the amount of time that elapses
between the first segment containing the HTTP re-
quest sent by the client (T̂Request) to the first segment
with payload sent by the server (T̂Response). We define
the T̂ TFB as

T̂ TFB = T̂Response − T̂Request

In HTTP flows, it represents a measure of the time
span between the application request issued by the
client and the consequent response by the server. Also
in this case, we expect the CGN to eventually delay
the response time due to NAT operations.

Per-connection Goodput (G).
The average rate at which the server delivers informa-
tion to the client. This is the paramount performance
index for download services. Let T̂Response and T̂Last
(see Fig. 4) be the timestamps of the first and the last
data packet sent by the server, and let Ddown be the
size of the application payload sent by the server. We
define the download goodput as

Ĝdown =
Ddown

T̂Last − T̂Response

It is similarly possible to evaluate the goodput in the
upload direction by considering the amount of bytes
sent by the client to the server (Dup) and referring to
the timestamps relative to the client traffic. To avoid
the bias of short-lived flows, we evaluate the download
goodput only on flows for which Ddown ≥ 1 MB, and
the upload goodput for flows where Dup ≥ 500 kB.

Average Throughput (Thru).
Ĝdown is a representative measure of performance
when the download of a content is done using a sin-
gle flow, e.g., when downloading some software from
the web. For P2P applications however, the speed
at which a peer downloads a content is more compli-
cated to compute since multiple parallel connections
are used by the application. For instance, BitTorrent
typically downloads content from 5 to 10 peers at the
same time, using both TCP or UDP at the transport
layer. To measure the overall performance of a peer,
we compute the average download (upload) through-
put Thru considering all data received (sent) by a
client in a time interval of duration ∆T = 10 mins.
Only flows classified as BitTorrent are considered.
Formally, given time interval i, we consider all TCP
and UDP flows that Tstat classifies as BitTorrent, and
terminated in the time interval, F (i) = {f |T̂Last(f) ∈
i∆T}. Let Dtot(i) =

∑
k∈F (i)D(k) the total amount

of data those flows carried. Then

T̂ hru(i) =
Dtot(i)

∆T

5. Impact of CGN on users’ traffic

The goal of this section is to check whether one of the
two classes of customers experience worse performance
than the other due to the type of IP address they have
at their home router. To do so, we split flows into two
subsets, based on if they are coming from private or pub-
lic home routers. For each subset, we then compute the
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Metric
Web Traffic P2P

All Flows www.google.com TOP-50 Google phobos.apple.com Reachable Unreachable

#̂Hops 0.223 0.666 0.682 0.689 0.184 0.162
R̂TT 0.001 0.006 0.007 0.007 0.055 0.002
̂TWHT 0.002 0.010 0.011 0.016 0.029 0.008

#SY N <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
OoS <0.001 – – – – <0.001
Dup 0.001 0.001 0.001 <0.001 <0.001 <0.001
T̂ TFB 0.002 0.006 0.008 0.006 0.031 0.005

Table 3: Jensen-Shannon divergence for considered metrics and different Internet services.

empirical PDF for each metric, and we finally evaluate the
JSdiv among the two PDFs. We remind the two thresh-
olds identified in Sec. 2.3 for the JSdiv: Q− = 0.02 and
Q+ = 0.1.

5.1. Impact on network and TCP layer metrics
We start our analysis by gauging the impact of CGN on

network- and transport- layer metrics described in Sec. 4.1
and Sec. 4.2, respectively. We report the collected results
in Tab. 3. We focus on the Web traffic first, as reported on
the left-hand side of the table. We show the result of exper-
iments considering flows directed to (i) any remote server
(“all flows”); (ii) “www.google.com” servers (i.e., Google
Search); (iii) TOP-50 most used IP addresses of Google
servers (“TOP-50 Google”); and (iv) “phobos.apple.com”
servers providing iTunes Store contents.8

As shown, the only metric that consistently overcomes
the alarm threshold Q+ for both web traffic and P2P is
the number of hops, #̂Hops, which is highlighted in bold
in the table. To validate the above finding, we directly
compare the distributions of #̂Hops in Fig. 5. For the
ease of visualization, we report the CDF some services, as
results are similar for any service. A clear offset between
the #̂Hops of private and public home routers appears,
showing that private ones have to traverse more hops to
reach the Internet. Such offset is present for all services.
We verified this outcome with the ISP network adminis-
trators, who confirmed that the difference is due to some
extra routers that packets sent/received by private home
routers have to go through to reach the CGN. However,
such routers are well dimensioned and not congested, with
little to no implication on the performance, as testified by
other metrics in Tab. 3.

In summary, the JSdiv values for web traffic are below
Q−, meaning that the CGN configuration of our scenario
does not induce any significant bias.

Let us focus on the time needed to establish a TCP
connection ̂TWHT . This is a typical metric one would
expect to be affected by additional delay introduced by

8We focus on this selection of services as they appear to be popu-
lar on the monitored network, and the amount of TCP flows for each
of them satisfies the requirements for a proper use of the JSdiv .
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Figure 5: CDFs of the hop count (#̂Hops) from the server to the
client for private and public home routers against different web ser-
vices. Clear differences are visible.
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Figure 6: CDFs of time needed to complete the Three-Way Hand-
shake ( ̂TWHT ) for private and public home routers against different
web services. No significant differences are visible.

the CGN when private home routers try to establish new
connections. Indeed, the CGN may require some time to
initiate the session and translate addresses. Also in this
case JSdiv is very small for Web traffic. Fig. 6 shows
details distributions for private and public home routers
with respect to the same Internet services. Differences are
practically negligible.

5.2. Impact on application layer metrics

We complement the above findings by applying the
JSdiv on the indices presented in Sec. 4.3. The last row of
Tab. 3 shows the JSdiv of the Time to First Byte, T̂ TFB.
Results for web traffic indicate that this metric is again
not affected by the presence of the CGN, and that users
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Service FQDN JSdiv

D
ow

nl
oa
d All * 0.001

Facebook Video fbcdn-video-*.akamaihd.net 0.004
Tumblr media.tumblr.com 0.021
Phobos phobos.apple.com 0.022

U
pl
oa
d

All * 0.004
Amazon S3 eu-irl-*.s3.amazonaws.com 0.007
Whatsapp mm*.whatsapp.net 0.033
Dropbox dl-*.dropbox.com 0.046

Table 4: Jensen-Shannon divergence for goodput distributions in
download and upload directions.
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Figure 7: Normalized goodput CDFs for flows carrying Web traffic.

accessing the Internet from private or public home routers
face similar delays.

Next, we perform the same analysis for the web traf-
fic goodput Ĝ. We consider several popular services that
exchange a large amount of data, and for which Ĝdown is
thus relevant, i.e., Facebook Video, Tumblr and Phobos.
For Ĝup we selected Amazon S3, Whatsapp and Dropbox.
We report the results in Tab. 5.2, and draw the CDFs in
Fig. 7.

Observe that the JSdiv never overcomes the Q+ thresh-
old, meaning that the CGN does not significantly harm
the download/upload speed of private home routers. How-
ever, the JSdiv values for Whatsapp and Dropbox in the
upload direction, and for Tumblr and Phobos in the down-
load direction, are higher than the Q− threshold. Fig. 7(a)
details the distribution of Ĝdown (we omit Facebook Video
to ease the visualization).9 The curves referring to private

9We normalize the measured throughput to not show the actual
bandwidth provided by the monitored ISP.

Reachable Unreachable

Download 0.005 0.004
Upload 0.004 0.003

Table 5: Jensen-Shannon divergence for average throughput distri-
butions in download and upload directions.

and public home routers show indeed very similar trends,
justifying small JSdiv values, as confirmed by Tab. 5.2.
Fig. 7(b) reports results for Ĝup. Also in this case the
curves show very similar CDFs with the only exception of
Whatsapp. In this latter case, the difference between the
two distributions is confirmed by the JSdiv =0.033.

Interestingly, a relatively large amount of flows (13.98%)
in Fig. 7(b) show almost zero throughput. By double-
checking, we realize that those are long-lived flows with
a duration higher than 10 min, and showing a number of
uploaded bytes that slightly exceeds the 500 kB threshold.
For some services, indeed, clients establish a single TCP
connection with the remote server and keep sending tiny
portions of data intermittently, de facto zeroing the upload
throughput.

At last, we focus on the JSdiv for BitTorrent traffic,
distinguishing between (i) reachable peers (i.e., those who
have port forwarding properly configured at their home
router); and (ii) unreachable peers, as defined in Sec. 3.

We consider the average download throughput. Several
works in the literature (see Sec. 7 for a detailed discus-
sion) show how multiple factors impact P2P performance:
content popularity, content availability, type of peers (e.g.,
seeders, leechers) involved in the transfer, peers coopera-
tion techniques (e.g., tit-for-tat), etc. Let us assume pop-
ulation of peers in our dataset is not biased by any of
these factors. To verify such assumption, we perform 10-
fold validation: we randomly split the P2P dataset into
10 sub-groups, and we compare the T̂ hru PDF of each
group against all other groups. In none of these experi-
ments we detected statistically significant differences, i.e.,
JSdiv > Q−, validating that our population of peers shows
homogeneous performance.

This allows us to safely contrast the T̂ hru for reachable
and unreachable peers. Tab. 5 shows the JSdiv values. For
both classes of peers, the computed values are one-order of
magnitude below the Q− threshold, proving that the CGN
does not affect throughput for BitTorrent. In the nutshell,
peers obtain the same performance, no matter if they have
private or public addresses.

5.3. Discussion on P2P implications

Let us get back to the right-hand side of Tab. 3 which
shows the JSdiv values for BitTorrent traffic. JSdiv val-
ues are below Q− for unreachable peers, but they fall in
the noticeable range ([Q−, Q+]) for reachable peers. Let
us consider first the results for R̂TT . Fig. 8 shows the
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Figure 8: Round Trip Time for P2P traffic according to peers’ reach-
ability conditions.

R̂TT of BitTorrent connections.10 It is evident that the
RTT for reachable peers with a private IP address ap-
pears to be lower than the RTT measured for all the other
peers. To better understand this aspect, we characterize
the reachability condition of peers inside the ISP, and of
the counterparts with which they establish a connection.

To exemplify reachability conditions, refer to Fig. 3. It
depicts peers inside the ISP (α, β) and peers outside (γ).
Consider a reachable peer with private IP (α): it can re-
ceive incoming connections from all the peers inside the
ISP network (β), but not from peers in the Internet (γ).
On the other hand, a reachable peer with public IP (β)
can receive incoming connections from both the peers in-
side the ISP (α) and from peers in the Internet (γ).

Such reachability conditions have implications also on
the distribution of contacted peers, as shown by the Ta-
ble 6 which reports the percentage of contacted peers by
reachable and unreachable peers. Reachable peers with a
private IP establish more connections with other peers in-
side the ISP (52%) than in the Internet (42%). All other
classes of peers are more prone to connect to peers in the
Internet (>90%). This is due to peers in the ISP that
contacted private but reachable peers, like α.

As a consequence, private reachable peers experience a
lower RTT since, they contact peers inside the ISP net-
work, which are closer in space and exhibit a lower RTT.
This also reflects in the other metrics, ̂TWHT and T̂ TFB,
apparently showing noticeable differences. Being those
metrics strictly related to the RTT (cfr. Fig. 4). This
behavior is expected and is a direct consequence of lower
RTT experienced by private reachable peers. Despite this
bias no evident impact observed in download throughput,
cfr. Table. 5.

6. Resource saving for different NAT policies

In this section we aim at providing some practical guide-
lines for the configuration of CGNs. In particular, we an-
alyze different NATing policies and their saving in terms

10The measured R̂TT is inflated by the queuing delay of packets
stacked in the upload queue of home routers. All measurements
are equally biased by this phenomenon and it does not harm the
reliability of the metric.

Reachable Unreachable

Private 58% ISP – 42% Internet 7% ISP – 93% Internet
Public 10% ISP – 90% Internet 6% ISP – 94% Internet

Table 6: Distribution of contacted peers
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Figure 9: Fraction of active customers in different days.

of public IP addresses to be used to offer connectivity to
the ISP customers. We consider two different cases: i) a
simple NAT policy according to which a customer is given
a public IP address for the period of time she is active.
ii) a NAT and Port Address Translation (PAT) policy for
which a customer is given a block of ports on given public
IP address, for the time she is active. A period of activ-
ity of customer starts when the first packet is observed
and ends when no packets is been observed for a period of
time Tout, after which the resource is returned to the pool
of available IP addresses of the CGN.

To conduct our analysis, we first must determine the
number of active customers, and observe how their activ-
ity varies over the day. The analysis is conducted on the
monitored PoP, but can be easily extended to the entire
ISP customer population. We focus on the traffic directed
to destinations outside the ISP network, ignoring the traf-
fic internal to the ISP, which is not subject to the CGN. We
consider TCP and UDP traffic. In particular for TCP, we
take into account both successfully completed and failed
connections, as in both cases the CGN has to allocate a
public IP address and/or a block of port. We suppose that
any TCP and UDP connection requires a dedicated (IP
address, port) pair on the NAT, and this association must
be maintained for the whole connection lifetime. The (IP
address, port) pair will be released, freeing the resource,
only later Tout minutes have passed.

For the experiments in this section we pick a workday
(Wednesday) and an off day (Sunday), so to consider dif-
ferent activity patterns.

6.1. NAT based on simple address mapping

We first emulate the resource usage in the simple NAT
scenario. We expect that in the worst case, i.e., when all
customers are active, the ISP would need as many public
IP addresses as the overall customer population inside the
network.
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ent days vs. NAT’s Tout.

From the NAT perspective, varying Tout influences the
number of active customers in the network. We suppose
Tout is 5 min. Fig. 9 shows the evolution, over 1-day, of
the active customers, for both the weekday and the off day.
The result shows that a simple NAT policy would turn into
considering active approximately 40% of customers that
are active at the same time, and hence the ISP would save
roughly up to 60% of the public IP addresses. Finally,
observe that the user activity is rather regular and simi-
lar for different days of the week. We conduct the same
experiment on different days, and we observe very similar
results (omitted for briefness).

For completeness, we check the impact of Tout on the
estimation of active customers. In fact, the larger Tout,
the longer the customer appears as active to the NAT, and
the longer the time the NAT has to wait before redeem the
public IP address. To this end, we show in Fig. 10 how
the maximum fraction of active customers measured in
the day (typically reached at the evening) changes when
the Tout varies between 1 and 10 min.11 As shown, the
fraction of customers which have to be considered as active
increases by a 10% only when increasing Tout up to 10 min.
Observe also that there is no substantial difference between
different week days.

6.2. CGN based on PAT policy
While above NATing technique might reduce the pool

of public IP addresses to use, the actual savings are still
limited, as the number of concurrent active customers is
considerably large. Therefore, we investigate the resource
requirements when NAT and PAT policy is in place, i.e.,
each active customer is given a block of ports on an public
IP address.

For this policy, it is crucial to dimension the size of the
block of ports the CGN shall allocate per customer. Hence,
we have to count the per-customer number of concurrent
connections. We expect the CGN to assign continuous

11Notice that RFCs suggest to set Tout to 2 min for UDP [12] and
2 h for TCP [13]. However, the suggested thresholds have been shown
to be too long, and they lead suboptimal retention policies [14]. For
this reason, we explore a threshold space closer to the order of tens
of minutes.
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Figure 11: Maximum, 99.9- and 99.9-percentile of the number of per-
customer concurrent active connections (computed as the maximum
between the numbers of UDP and TCP connections).

bulks of ports to each customer. The sizing of the block
of ports should be based on the transport protocol, i.e.,
TCP or UDP, employing the largest number of ports. For
instance, let pTCP and pUDP be the number of concur-
rent active TCP and UDP connections, respectively. The
block size must then be larger than max(pTCP , pUDP ). We
proceed as follows. We choose Tout = 5 min, and we con-
sider as concurrent the connections observed in 1 min long
time bin. For each customer, we count the numbers of
concurrent TCP and UDP connections. We then pick the
maximum between the two, and use the result to build a
per-minute distributions. In Fig. 11 we report the maxi-
mum, the 99.9- and the 99-percentiles obtained from the
per-minute distributions and their evolution over time. As
shown, the number of per-costumer parallel connections
rarely overcomes 20,000. In fact, we observe that cus-
tomers employing a so wide number of ports are mostly
users running P2P applications which open many paral-
lel UDP flows. We see that 99% of customers never use
more than 2,000 concurrent connections. Allocating a bulk
of 2,000 ports for each customer would allow the ISP to
use one public IP address for 32 costumers. Consider-
ing a more conservative approach, i.e., adopting the 99.9-
percentile as a reference, we observe roughly 6,000 concur-
rent connections, leading in this case to allocate about 6
customers per public IP address. For the sake of complete-
ness, we conduct the same experiment picking different
days. The results are consistent and lead to very similar
conclusions.

7. Related work

In this section we position our paper with respect to re-
lated studies. As the a thorough comparison of available
statistical distance metrics is available in Appendix A,
this section mostly discusses how our study complements
the body of work present in the literature about NAT tech-
nologies.

In the last years, ISPs have deployed CGN in their net-
works to limit the utilization of public IPv4 addresses and
postpone their final exhaustion day [15, 16]. Given their
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strategic importance, CGNs have been matter of investi-
gation in a large body of studies conducted by both stan-
dardization authorities and academia.

The IETF RFCs [12, 13, 17] standardize the require-
ments, implementations and behaviors for CGNs. A sig-
nificant effort has been spent in standardizing mechanisms
for NAT traversal, hole punching [18] and Interactive Con-
nectivity Establishment (ICE) [19].

A remarkable amount of work has been dedicated to
the task of identifying NAT deployment in residential net-
works [20, 21, 22, 23]. Similarly, but in a mobile sce-
nario, [24] presents the results of an active measurement
campaign to detect the presence of NAT middleboxes de-
ployed in cellular networks.

Another branch of studies has focused on understand-
ing the impact of CGNs on users’ QoS and application-
level experience [25, 26, 27, 28]. This paper falls in this
category. Authors of [25] report a comprehensive classifi-
cation of NATed scenarios and speculate about which im-
pairments each of them could introduce. Authors of [26]
presents a set of results obtained in a testbed. Specifi-
cally, they analyze the impact of network delays on the
TCP connection establishment with and without CGN.
In [27] authors evaluate the hole punching technique for
NAT traversal, and how this impacts on the communi-
cation establishment in P2P applications. More similar in
spirit to our work, [28] describes a case study conducted in
controlled testbed where multiple CGN configurations are
tested to evaluate their impact on several network appli-
cations and services. These include web, video streaming,
P2P and gaming. These experiments are based on single
sessions and do not consider actual performance testing.
The results presented in [28] show that the presence of
CGN has no substantial impact on users’ browsing, thus
confirming our observations. Differently, P2P applications
like BitTorrent might be severely impaired. Our results,
obtained in a real scenario and from a passive measure-
ment perspective complement these observations. In fact,
even if we can not discriminate leeches from seeders as au-
thors of [28] do, we show that NAT444 has a deep impact
on the peer selection.

A last family of work focuses on CGN dimensioning as-
pects, such as port allocation and retention, which we as-
sess in Sec. 6. In [14] authors collect aggregate traffic traces
from a real ISP network to investigate ports allocation and
retention strategies in CGNs. The analysis shows that rec-
ommended timeout values in [13, 12] might be too long,
resulting in suboptimal retention policies. In this paper we
revisit the results presented in [14] by using more recent
traces (2014 vs. 2009), collected from an actual residen-
tial ISP vs. campus network. Our results are different,
given the evolution of Internet applications which tend to
generate more concurrent connections.

Finally, to the best of our knowledge, this is the first
work that specifically targets the problem of quantifying
the impact of CGN on end-user experience from a passive
perspective. We extend the results previously presented

in [29], by designing a more systematic methodology, and
applying it to extend the study to P2P applications. More-
over, this extended version provides a thorough discussion
(Sec. 6) about the possible resource saving which different
CG-NAT policies would guarantee.

8. Conclusions

Network administrators lack effective tools to quickly
pinpoint differences among several datasets obtained from
traffic summaries. In this work, we aimed at filling this
gap, and defined a methodology that builds on the statis-
tical distance measures (such as Jensen-Shannon) diver-
gence to assess statistical discrepancies between empiri-
cal distributions obtained from different populations or at
different times. As an application example, we employed
these analytics to study a large-scale CGN deployment,
whereby ISP customers are split in two different popu-
lations, i.e., users assigned private IP addresses vs those
assigned public IP addresses. For this particular scenario,
we delineate several key performance indicators, relevant
for user s’ quality of experience. In particular, we gauge
the impact of CGN deployment on the web browsing ex-
perience and on BitTorrent traffic.

Our results show that the CGN technology is stable and
mature. As with any study based on passive measurement,
results in the following are specific to the deployment that
is under observation. Conditioned to measurement in our
dataset, results suggest that if properly engineered and
configured, CGN does not harm users’ web browsing ex-
perience. Albeit the presence of the CGN has an evident
impact on the neighborhood construction of BitTorrent,
it does not affect the average transfer rate of peers. We
conclude that the ISP we consider in our study may have
no actual need to provide users with public IP addresses,
when not specifically required. Finally, we analyzed our
network traces to quantify the actual saving CGN policies
could guarantee. In case of simple NAT policy, the con-
sidered ISP could save about 50% of public IP addresses.
When NAT and PAT are combined, the saving can exceed
one order of magnitude.

Generalizing such results is however an entirely different
matter: in the case of CGN, admittedly there exist many
different configurations and deployments, and it would be
dangerous to project the lessons learned on our dataset
across heterogeneous deployments. Of course, gains in
terms of IP addresses savings are estimated based on the
usage pattern of the ISP under study and cannot be gener-
alized. For what instead concerns the performance impli-
cation, we point out that our study is limited to Web and
BitTorrent traffic, but does not consider VoIP or Gaming
traffic that have more stringent delay and jitter require-
ments: shall this traffic be especially important in another
CGN deployment, the impact of CGN may be different
in that case. Second, notice that our performance metrics
are computed for successfully opened connections: as such,
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we are not measuring if the deployment of CGN is chang-
ing the failure rate of connection attempts, which could
possibly harm the performance at a session level. Third,
changes in user/applications patterns can also heavily af-
fect the results: e.g., currently browsers open many con-
nections in parallel, which is unfavorable for CGN scenario
while HTTP2 opens one per domain, so that these find-
ings may need to be reassessed over long time periods with
longitudinal studies.

In spite of these limitations, which are not peculiar to
this work but that naturally arise whenever a specific
dataset is considered, we believe that the methodology
outlined in this work will survive the lessons learned by
its application to the particular question about CGN we
address here – and rather possibly enable such longitudinal
investigations.
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Properties
Name Abbrv Formula Support Metric Bounded Symmetric

Jensen-Shannon JS JSdiv(p, q) =
∑
i

{
1
2pi ln

(
pi

1
2pi+

1
2 qi

)
+ 1

2qi ln
(

qi
1
2 qi+

1
2pi

)}
[0, ln(2)] X X

Kullback-Leibler I KLdiv(p, q) =
∑
i pilog(piqi ) [0,∞)

Chi Square χ2 χ2
dis(p, q) =

∑
i
(pi−qi)2

qi
[0,∞)

Separation S Sdis(p, q) = maxi

(
1− pi

qi

)
[0, 1] X

Total variation TV TVdis(p, q) = 1
2

∑
i |pi − qi| [0, 1] X X

Hellinger H Hdis(p, q) =
[∑

i (
√
p
i
−√q

i
)2
] 1

2

[0,
√

2] X X

Kolmogorov K Kmet(P,Q) = supx |P (x)−Q(x)| [0, 1] X X

Wasserstein W Wmet(P,Q) =
∫ ∞
−∞
|P (x)−Q(x)|dx [0, 1] X X

Discrepancy D Dmet(P,Q) = sup
all closed balls B

|p(B)− q(B)| [0, diamΩ] X X

Table .7: Statistical Distance Measures. In the above formulas, p and q denote two empirical distributions on the measurable space Ω, with
pi and qi being their samples, and P and Q their cumulative distribution functions.

Appendix A. Statistical Distance Measures

In this work we selected a specific Statistical Distance
Measure (SDM) that we used as F (p, q), namely the
Jensen-Shannon divergence (JSdiv). The purpose of this
section is thus to (i) contrast the broad set of SDMs from
both a theoretic viewpoint, as well as making punctual
examples to narrow down SDMs selection; (ii) show that,
due to functional relationships between SDMs, it is possi-
ble to express the same methodology with multiple equiva-
lent metrics, among which the Jensen-Shannon divergence
(JSdiv); and (iii) assess robustness of the F (p, q) estima-
tion as function of the p, q population size and binning
strategy employed.

Appendix A.1. SDM Comparison

The authors of [2] compare a variety of SDMs, shed-
ding light on their properties and on the relationships
among them. Without aiming at completeness, we report
in Tab. 8 a list of 9 representative SDMs. Specifically, for
each SDM the table reports its name, abbreviated nota-
tion, definition, co-domain and three relevant properties:
(i)Metric, the SDM is a function defining a metric distance
between each pair of elements in a set; (ii) Bounded, the
SDM co-domain is finite; and (iii) Symmetric, the SDM is
invariant to which of the two distributions is considered
the reference, i.e., F (p, q) = F (q, p).

From Tab. 8 it is easy to see a rather heterogeneous
picture. Most SDMs are divergence measures, with the
exclusion of Kolmogorov (K), Wasserstein (W) and Dis-
crepancy (D), which are metrics. With the exception of
Kullback-Leibler (I) and Chi-Square (χ2), all other SDMs
have a bounded co-domain. Finally, only Jensen-Shannon
(JS), Total Variation (TV) and Hellinger (H) are symmet-
ric. None of the SDMs exhibits all three properties. As

we shall see later, these properties play an important role
in the SDM selection.

In terms of provenance and use, JS and I are informa-
tion theoretic measures. Loosely speaking, I expresses the
amount of information that is required to encode q know-
ing p, while JS expresses the average amount of informa-
tion carried by q which is not in p. χ2, H and K are often
used for statistical tests. Metrics coming from both fields
are apt in our framework.

We finally broaden the investigation by considering the
9 SDMs early introduced in Tab. 8, with the aim of both
highlighting the relationships among them, as well as il-
lustrating the behavior of each SDM in simple scenarios
early considered for the JSdiv. In principle, any of the
SDMs in Tab. 8 can fit the purpose of our framework, so
we illustrate here some relevant criteria to narrow down
the SDM selection to a small set of equivalent functions.

To compactly represent these metrics, we arrange SDMs
as a matrix of 9 blocks in Fig. 12(a). To show the intri-
cate relationship among them, Fig. 12(a) represents depen-
dency as arrows between block pairs, yielding an overall
network of dependencies. It can be seen that, since each
considered SDM is directly related to at least another one,
their dependency graph consists of a single connected com-
ponent. It also follows that it would be possible to adapt
quantization functions Q(F (p, q)) to the SDM in use, ob-
taining thus equivalent framework for different F (p, q).

Fig. 12(b) and Fig. 12(c) show illustrative examples of
these SDMs in action, by comparing as before synthetic
probability distributions. The aim is here to visualize how
the early illustrated SDM properties decline from practical
viewpoint, and how these properties can be leveraged to
narrow down SDM selection. For the sake of space, we fo-
cus here on the case of negative exponential distributions.
As in Sec 2, we generate a reference sample with parameter
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(b) Computed distance values with λ1=2.
Notice Separation and Wasserstein reaching
the upper bound.
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(c) Computed distance values with λ1=8.
Notice Kolmogorov and Discrepancy being
non-responsive.

Figure A.12: Distance measures overview and computed values for negative exponential distributions.

λ0=1, and two other sample sets with parameters λ1=2,
and λ1=8. These choices produce JSdiv values falling in
the green (noticeable difference) and red (significant dif-
ference) intervals, respectively, according to our Q− and
Q+ settings (cfr. Fig. 2(a)). We then compute the values
of all considered SDMs comparing the two distributions of
parameter λ0 and λ1. Results are reported in Fig. 12(b)
for λ1=2, and in Fig. 12(c) for λ1=8.

Several considerations hold contrasting Fig. 12(b) and
Fig. 12(c). First, Separation (S) and Wasserstein (W) sat-
urate to the upper bound already with λ1=2, so that their
fast varying dynamic is not able to express the greater
difference among λ0=1 and λ1=8.

Second, Kolmogorov (K) and Discrepancy (D) report a
very low value both in case of λ1=2 and λ1=8, with a
slow dynamic that is opposite to the previous case. For
all S, W, K and D, it is clear that the impact of Q− and
Q+ threshold selection in Q(F (p, q)) becomes of paramout
importance; additionally, no Q− and Q+ selection would
allow to express differences for SDMs such as S and W.

Third, I and χ2 show a good sensitivity to the changes of
the λ1 parameter. However, they not only are unbounded
measures (which makes them not practical) but are not
symmetric (which rules them out from our framework).
Asymmetric metrics can be used when one wants to test a
(suspect) population against a reference (well behaving),
however the lack of symmetry makes it harder to use I and
χ2 in the general case where one has no a priori expectation
about a population.

Fourth, we observe that the remaining measures, namely
Jensen-Shannon (JS), Total Variation (TV) and Hellinger
(H) are all good candidates. Not incidentally, JS, TV and
H are the sole SDMs in Fig. 12(a) that are symmetric and
bounded. In addition, they show to be consistently sen-
sitive to different values of the λ1 parameter, as better
detailed in Fig. A.13. Any of JS, TV and H are equiva-
lent to our purpose. For practical purposes, it is pointless
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Figure A.13: Trend of the three suitable distance measures.

to perform exhaustive analytics with each of these three
metrics, which we show to be equivalent for our purpose.
To avoid bringing redundant information and cluttering
pictures and tables, we restrict our attention to JSdiv as
reference F (p, q) measure.

Appendix A.2. JSdiv Sensitivity analysis

We now assess the SDM robustness to factors that may
affect the PDF estimation, as these may induce artificial
bias leading to wrong conclusions. Indeed SDMs can be
affected by various sources of bias, for instance, tied to (i)
the binning strategy used to compute the samples of p and
q distributions; (ii) the imbalance in the population size of
p and q; and (iii) the finitude of p and q populations.

Let us first start from the impact of the binning strat-
egy. Taking JSdiv as an example, we assess the operating
conditions of the framework that ensure proper evaluation
of the PDFs. We expect the binning adopted in estimating
the PDF to play a role for continuous metrics with sup-
port in R: intuitively, large bins smooth down differences
(JSdiv decreases, approaching 0 in the limit case where
all samples fall in the same single bin). Small bins, in
contrary, exacerbate differences (JSdiv increases and ap-
proaches ln(2) for rational bins of vanishing size, each of
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Figure A.14: Sensitivity analysis of Jensen-Shannon divergence for: (a) varying number of bins, (b) varying population size for two finite
realization of the same process.

which contains a single or few samples).
We consider p and q as negative exponential distribu-

tions, with λ0 = 1, λ1 ∈ {2, 4}. Given the previous
Q−, Q+ thresholds, we expect q = NegExp(x, 2) to be
in the intermediate state, while q = NegExp(x, 4) to
be significantly different from p. To avoid small popu-
lation noise, we use finite sequences of 106 samples for
each distributions. We then extract the empirical distri-
butions from the two dataset by considering a number of
bins which varies from 2 to 106. Support is [0, 100), thus
∆b ∈ [0.001, 50]. We then compute the JSdiv to compare
p and q. For each value of the bin, we repeat 100 runs.

Fig. 14(a) show results, where the x-axis reports the
number of bins (i.e., quantization levels) used, and the
y-axis the corresponding JSdiv value. Observe how the
JSdiv is quite stable for a number of bins in the 50-5,000
range. Conversely, when the number of bins is smaller
than 50, a underfitting phenomenon shows up, so that the
JSdiv artificially drops to smaller values. Similarly, when
the number of bins grows larger than 5,000, an overfit-
ting phenomenon is visible, so that the JSdiv artificially
increases. Note the logarithmic scales. The inset details
the relative error that occurs to JSdiv with respect to the
value obtained when using 50 bins, i.e., the reference. The
relative error is below 19%. It follows that quantization
oddities are easily controllable.

Notice that, for practical reasons, it is good practice to
select a binning strategy that is tied to the physics of the
metric: for example, use an unitary bin size for measure-
ments that takes integer values (e.g., the Number of Hops),
or relate the bin size to the unit of scale of interest (e.g.,
a ms accuracy for RTT and time-related metrics, or con-
sider bins of 10 kbps when dealing with throughput). We
thus expect binning policies to induce negligible distortion
levels if properly selected.

Clearly, a specular question is in place: for a given bin
size choice, which is the impact of the number of sam-
ples on the estimation of the PDF? Intuitively, while any
finite sequence deviates from quantiles of the theoretic dis-
tribution, small population samples tend to exhibit larger
deviations.

Taking two finite realizations of the same process, we
estimate the empirical PDFs p and q and compute the
JSdiv. To avoid binning bias, we consider real-valued dis-
tributions (i.e., Gaussian, negative exponential) and an
integer-valued distribution (Geometric). We then estimate
the two (nominally identical) PDFs using a number of sam-
ples that varies from 10 samples only, to 105 samples. We
compute the JSdiv (nominally 0) considering quantization
with 1,000 bins.

Fig. 14(b) show results. Irrespectively of the distri-
bution, JSdiv is strongly affected by the population size
(linear slope in log-log plot). As expected, an excessively
small population inflates the JSdiv value. Specifically, hav-
ing less than 1,000 (100) samples in the population causes
the JSdiv to exceed the warning threshold for noticeable
(significant) differences for all the distributions considered.
It is thus recommended to employ the JSdiv on popula-
tion larger than 1,000 samples, assumption verified in our
dataset.

However, it is important to mention that artifacts
caused by a limited population size may have an im-
pact in case the methodology is used in real-time (e.g.,
on short time window) scenarios, or to compare the same
population over different temporal samples. This possi-
bly mandates a minimum duration of the observation pe-
riod, especially in off-peak times, so to reach a minimum
level of observation samples. We stress the importance of
an adequate population size by reporting the example in
Fig. A.15. We compute the per-hour JSdiv on upload and
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Figure A.15: JSdiv per-hour on upload and download goodput badly
biased by limited population size.

download goodput (Ĝ) as defined in Sec. 4.3 for one day.
Fig. 15(a) shows the number of samples composing the
population of customers with public or private IP address
over the 24 hours considered. Notice the drop during the
night time, and the consistently lower amount of samples
for the upload direction. Now consider the corresponding
JSdiv values reported in Fig. 15(b), computed every hour.
Notice how the JSdiv is consistently higher for the upload
goodput, and the peaks in both upload and download di-
rections between midnight and 6am. This two phenomena
are not driven by an effective difference in performance
between the two populations, but owe to the finitude of
available samples.
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