
Framework, Models and Controlled Experiments
of Network Troubleshooting

Francois Espineta, Diana Joumblattb, Dario Rossib,a

aLIX,CNRS, Ecole Polytechnique, Université Paris Saclay, Palaiseau, France
bLTCI, CNRS, Institut Mines-Telecom, Telecom ParisTech, Université Paris Saclay, Paris, France

Abstract

Growing network complexity mandates automated tools and methodologies for troubleshooting. In this paper, we follow a
crowd-sourcing trend and argue for the need to deploy measurement probes at the edge of the network, which can be either under
the control of the users (e.g., end-user devices) or the ISP (e.g., home gateways), and that raises an interesting tradeoff.

Our first contribution consists in the definition of a framework for network troubleshooting, and its implementation as open
source software named NetProbes. In data mining terms, depending on the amount of information available to the probes (e.g., ISP
topology), we formalize the network troubleshooting task as either a clustering or a classification problem. In networking terms,
these algorithms allow respectively end-users to assess the severity of the network performance degradation, and ISPs to precisely
identify the faulty link. We solve both problems with an algorithm that achieves perfect classification under the assumption of a
strategic selection of probes (e.g., assisted by an ISP), and assess its performance degradation under a naive random selection. Our
algorithm is generic, as it is agnostic to the network performance metrics; scalable, as it requires firing only few measurement
events and simple processing; flexible, as clustering and classification stages are pipelined, so that the execution naturally adapts
to the information available at the vantage point where the probe is deployed; and reliable, as it produces results that match the
expectations of simple analytical models.

Our second contribution consists in a careful evaluation of the framework. Previous work on network troubleshooting has so
far tackled the problem with either more theoretical or more practical approaches: inherently, evaluation methodologies lack either
realism or control. In this paper we counter this problem by conducting controlled experiments with a rigorous and reproducible
methodology that contrasts expectations yielded by analytical models to the experimental results gathered running our NetProbes
software in the Mininet emulator. As integral part of our methodology, we perform a thorough calibration of the measurement tools
employed by NetProbes to measure two example metrics of interest, namely delay and bandwidth: we show this step to be crucial,
as otherwise significant biases in the measurements techniques could lead to wrong assessment of algorithmic performance. Albeit
our NetProbes software is far from being a carrier-grade solution for network troubleshooting (since it does not consider neither
multiple contemporary measurements, nor multiple failures, and given that we experiment with a limited number of metrics), our
controlled study allows to gather several interesting observation that help designing such an automated troubleshooting system.

Keywords: Troubleshooting, Emulation, Modeling, Experiments, Root-cause analysis

1. Introduction

Nowadays, broadband Internet access is vital. Many people
rely on online applications in their homes to watch TV, make
VoIP calls, and interact with each other through social media
and emails. Many businesses similarly offer their services over
the Internet, on which the very same health of its business thus
depends. Unfortunately, dynamic network conditions such as
device failures and congested links can affect the network per-
formance and cause disruptions (e.g., frozen video, poor VoIP
quality, lost customers and revenue).

Email addresses: francois.espinet@polytechnique.edu
(Francois Espinet), diana.joumblatt@telecom-paristech.fr
(Diana Joumblatt),
dario.rossi@{telecom-paristech.fr,polytechnique.edu}
(Dario Rossi)

Currently, troubleshooting performance disruptions is com-
plex and ad hoc due to the presence of different applications,
network protocols, and administrative domains. Collection of
this information in a central place is already a daunting task in
reason of the volume of logs: this generally leads to terse de-
scription such as flow records, that are furthermore aggressively
sampled to limit the explosion of measurement data. This ten-
dency negatively impacts the ability to perform troubleshoot-
ing, e.g., as seeking correlation from coarse features, with some
records missing1 due to sampling is a far from ideal situation.

Yet, network troubleshooting is also complex due to the
limited reach ISP have outside their network. Typically, trou-

1While sampling preserves information pertaining to the same flow, how-
ever in case of fault or anomaly, dependencies between protocols necessitates
that all flows for the host experiencing performance disruption are observed,
which per-flow sampling cannot guarantee.

Preprint submitted to Computer Networks March 22, 2016

bleshooting starts with a user call to the ISP help desk: how-
ever, the intervention of the ISP technician is useless if the root
cause lies outside of the ISP network. The fault may be lo-
cated in the Cloud offering the service, in some Autonomous
System (AS) along the path, or even within the home network
of its very same user. Concerning this last point, we argue
that a cooperation of ISPs and user-applications can be bene-
ficial for troubleshooting purposes. From the ISP viewpoint,
it would be of course valuable to extend its reach beyond the
home-gateway, i.e., by instrumenting experiments directly from
end-user devices. Indeed, through home-gateway, ISPs only
have a limited view of user home-network, which can be a
primary source of troubles (e.g., in the case of gateways that
are not directly managed by the ISPs, interference with neigh-
bouring access points, congestion in the home network, or end-
user device issues). From the complementary user-viewpoint,
ISPs can provide extremely valuable information: indeed, while
(tech savvy) users can leverage a number of troubleshooting
tools [1, 2, 3, 4] which automate a number of useful measure-
ments, however these tools are generally ISP-network agnostic
and cannot embed tomography techniques [5, 6] to identify the
root causes (e.g., faulty links) of network disruption.

In this paper, we propose a practical methodology to auto-
mate the identification of network performance disruption based
on end-to-end measurements. Our proposal is to decouple mea-
surement from inference: we let end-device the burden of con-
trolling experiments and collecting results, but do not mandates
the troubleshooting process to run on the same end-devices.
This distributed approach implicitly alleviates control bottle-
necks, while still allowing the ISPs to assist the measurement
process (e.g., by biasing the set of measurement, or their spa-
tial reach). At the same time, decoupling measurement collec-
tion from measurement analysis requires to cope with a flexible
workflow, where the amount of knowledge at disposal of the
inference algorithm may vary. Indeed, devices participating in
the troubleshooting task can be either under the control of the
ISP or the end-user: in the former case, knowledge of the ISP
topology can be leveraged by IETF ALTO servers to realize a
strategic nodes selection, whereas in the latter case absence of
topology information means that only simpler randomized se-
lection can be implemented. This difference further exacerbates
in the troubleshooting task, that we formalize as a pipelined al-
gorithm: a first clustering stage available to all users allows to
just assess the severity of the fault, whereas a second classifica-
tion stage further allows ISPs to identify the faulty link.

While our work is not the first to address the problem of net-
work troubleshooting, we note that related effort can be roughly
split in two main branches. On the one hand, there is a number
of previous work with a mostly practical focus [1, 7, 2, 3, 4],
which are very valuable in terms of domain knowledge and en-
gineering effort, but lack otherwise theoretical foundations and
rigorous verification. On the other hand, prior analytical work
exists that is cast on solid theoretic basis [5, 6], whose vali-
dation is however either simplistic (e.g., simulations) or lacks
ground truth (e.g., PlanetLab).

In this work, of which a preliminary version appeared at [8],
we take the best of both worlds, and make the following main

contributions:

• we propose a practical and general framework for net-
work troubleshooting with an open source implementa-
tion;

• we provide simple yet instructive models of the expected
fault detection probability, that we contrast with experi-
mental results;

• we use an experimental approach where we emulate con-
trolled network conditions with Mininet [9] and perform
a thorough calibration of the emulation setup – an often
neglected albeit mandatory task;

• sharing the same reproducibility spirit of Mininet, we fur-
ther make all our source code available for the scientific
community at [10, 11].

Aside our models, algorithm and its open-source software
implementation –which are interesting per se– we believe that
the rigor of our experimental evaluation is another crucial con-
tribution of this paper, which is structured as follows. We first
describe the problem we address from a networking viewpoint,
and introduce two use-cases where our approach can be ap-
plied, that mainly differ in the amount of topological knowledge
that the root-cause algorithm has at its disposal (Sec. 2). We
then introduce a more formal system model, and phrase more
rigorously the above problems, proposing two simple yet in-
sightful analytical models of the expected troubleshooting per-
formance under randomized selection, as well at its degrada-
tion with respect to a strategic selection (Sec. 3). We next
describe our generic troubleshooting algorithm that, depend-
ing on the amount of available information, can be formal-
ized as a clustering vs. classification problem (Sec. 4). The
scenario of our controlled experimental evaluation is discussed
next, carefully calibrating tools for delay and bandwidth em-
ulation and measurement (Sec. 5). We report results of a thor-
ough Mininet emulation campaign, investigating several impor-
tant system and scenario parameters, contrasting experimental
vs. modelings results (Sec. 6), and discuss practical aspects
that a full-blown troubleshooting framework needs to take into
account (Sec. 7). Finally, we cast our work in the context of
related effort (Sec. 8) and summarize our main lessons learned
and contributions (Sec. 9).

2. Network scenario

We describe the network scenarii we address in this work
with the help of Fig.1. Specifically, the picture describes two
scenarii, where we assume troubleshooting software to be de-
ployed in the user home, and more precisely in the user termi-
nals. In the leftmost case, users are connected as an overlay
over the Internet, of which they hardly have any topological in-
formation (due to its large scale and temporal variability). In
the rightmost case, users belong to the same ISP, whose topo-
logical information is smaller in scale, varying at a slower pace,
and possibly available (at least to some extent, as described in

2

(a) (b)

p ?
?

Service of
interest

p

Detected
fault

Detected
fault

ISP
probes

Figure 1: Network scenarii: (a) Internet case with limited information (e.g., where only randomized target selection policies are feasible) vs. (b) ISP-case with
additional information (e.g., topology, for which a strategic target selection is possible) and additional means (e.g., controlled probes; ALTO server; etc.)

what follows). Additionally, in the latter case, troubleshooting
software can be deployed in the home gateway, or in special
network locations managed by the ISPs, complementing tools
deployed in the user terminals.

2.1. The status quo

Currently, troubleshooting is not only complex due to the
huge diversity of network apparatus, but even considering a
single ISP network, by the existence of multiple “ownership”
domains. While from the end-user perspective, the network is
opaque and users have no means to identify where the problem
happens, the same holds true for ISPs when the troubles hap-
pen inside the user’s home network (e.g., in the case of gate-
ways that are not directly managed by the ISPs, interference
with neighbouring access points, congestion in the home net-
work, or end-user device issues). This is even more true con-
sidering the increasing heterogeneity of connected equipments
in user households: routers, computers, tablets, phones, smart-
TVs, distributed storage, and so on, of which any is a candidate
root cause of the network disruptions experienced by end-users.
Objective diagnostics is hard to achieve because troubleshoot-
ing is often done remotely (most likely over the phone or the
Internet). The remote operator has very little knowledge of the
environment in which the problem occurs, and very little con-
trol when the problem is located in the user network. Further-
more, users have generally scarce troubleshooting knowledge
while tech-savvy users have limited control over the network.

To break this status quo, we advocate as in [4] to crowd-
source the troubleshooting process by using software probes at
the edge of the network. With respect to [4], we further envi-
sion these probes to be either managed by either the end-users,
or by the ISPs. User-managed probes run only on end-user de-
vices and lack topology information. In contrast, ISP-managed
probes can reside in home gateways, in special locations inside
the ISP network, and can also be available as “apps” on user de-
vices (e.g., smartphones and laptops). As we shall see, end-user

and ISP collaboration can greatly enhance the troubleshooting
process.

2.2. Internet vs ISP cases
Specifically as depicted in Fig.1, we envision an observer

(denote with an “eye” in the picture) experiencing problems
to a particular service of interest, to trigger a set of measure-
ment to the same service from a multitude of other distributed
vantage points. Results of these experiments are returned to
the observer: depending on the level of cooperation with the
network, the observer is either able to merely assess the sever-
ity/generality of the fault –similarly to a “Do You See What I
See” (DYSWIS) [1] framework of an Internet scenario–, or pos-
sibly more precisely pinpoint the location of the fault (similarly
to a tomography study [12, 13] in an ISP scenario). Notice that
even in case where ISP-managed probes do precisely pinpoint
the root-cause link using topology knowledge, the information
passed back to users need not to be extremely detailed: the user
is most likely interested in knowing whether the problem re-
sides in his access network, shared within his ISP or general in
the broader Internet. In turn, in case the issue is shared by many
users in the ISP, this knowledge hopefully assists the ISP trou-
bleshooting process, or at least assigning priorities to events.

As for the Internet scenario, note that Web-based services
with an aim similar to ours do exist2: however, fault detection
comes from analysis of third-party sources3 as opposite to in-
ference coming from measurements of real user data. Since
analysis of third-party sources (e.g., twitter hashtags) requires
active user contributions, is prone to interpretation errors, in-
troduces a delay and makes automated troubleshooting very
hard, a service such as the one we propose here is thus still
valuable for the end-user. Moreover, web-based services re-
port historical information, whereas the proposed service of-
fers automated on-demand measurement, which are extremely

2See for instance https://downdetector.com/
3As for instance Twitter, see https://downdetector.com/

about-us/

3

useful in the case of any new and unreported fault. The value
of this kind of crowd-sourcing approaches is clearly shown by
work such e.g., DYSWIS [1] and Ono [4], where users can in-
tentionally install troubleshooting applications running in the
background [1, 4], or trigger them on demand [2, 3]. Espe-
cially, the popularity enjoyed by Ono [4] and Netalyzr [3] testi-
fies an interest from the end-users, confirming it to be a viable
model. Given a good footprint of the monitoring application
over the Internet, and assuming that a shared AS-level Inter-
net map can be leveraged [14], the approach we outline in this
paper could be applied in this scenario as well. Even in the
worst case where Internet topology information would be ab-
sent, informations concerning the extent of the problem would
still be of value – e.g., providing simple and immediate answers
to questions such as “is YouTube down for everybody (again4)
or just for my ISP?” However, given the scale of the problem
and the complexity of its evaluation, we prefer to focus on an
Intra-ISP case in this paper.

As for the ISP-scenario, note that even more valuable in-
sights can be gathered via an exchange of information. On the
one hand, ISPs are interested in extending the reach of the mea-
surement infrastructure beyond the home-gateway, since lim-
itedly performing experiments from the home-gateway could
possibly miss congestion in the user home wireless network,
which is a frequent cause of performance degradation [15]. Sim-
ilarly, the ability to issue measurement a plethora of protocols
including L4 TCP connections, L7 handshakes, running DNS
queries, and measuring in-path QoS properties such as band-
width, throughput and delay from the end-user terminal (as op-
posite as to from home gateways) could enrich the level of de-
tails available to the diagnosis (and provide a picture closer to
the quality of experience perceived by user of that terminal).
On the other hand, end-users can greatly benefit from ISP assis-
tance to e.g., discriminate ambiguous cases (as we will later), is-
suing measurement from specific locations deeper in the opera-
tor network, make informed decisions based on topology infor-
mation and possibly leverage complementary information from
the home-gateway (when available and reliable [16]) or the net-
work. Of course, confidentiality and privacy matters may arise,
since ISPs may need to share information with “apps” running
on end-user devices on the one hand, and given that ISPs may
automatically trigger experiments from the end-user device on
the other hand. In this paper, we consider the first problem and
offer (i) an ALTO interface to avoid sharing of sensitive infor-
mation in the measurement process as well as (ii) a decoupling
of the measurement and inference processes to facilitate anal-
ysis of sensitive ISP information. Albeit we do not explicitly
address the problem from the side of the end-user, we argue
that it is necessary to provide users with sufficient control on
(and information about) the experiments running on their de-
vices (e.g., building on [17, 2, 4, 3]).

We address both use-cases with the same two-steps algo-
rithm: a first clustering step (in both scenarios) separates mea-
surement probes into two sets (i.e., un/affected sets), whereas

4http://research.dyn.com/2008/02/
pakistan-hijacks-youtube-1/

a second classification step (available only in the ISP-scenario)
requires an additional, trivial mapping to pinpoint the root cause
link. Our viewpoint is thus to build a single probe capable of
a rich set of tests yielding data for the above algorithm. This
probe runs a diagnosis algorithm that can either rely exclusively
on measurements to other distributed probes, or can leverage
additional information (e.g. topology and forwarding) to refine
the inference. We argue that such an approach is flexible and
can cope with both use-cases in an incremental fashion, and im-
plement this approach in our open source NetProbes [10] soft-
ware (whose thorough description is out of the scope of this
paper, and of which we report a terse description in Sec.4.2).

2.3. Topology information
Tomography work usually assume that the topology can

be reliably measured based on end-to-end measurements [18],
with traceroute or inference techniques. Albeit simplistic, this
is done to decouple the topology inference process from the
identification of the faulty link on the inferred topology. This
assumption is, to some extent, reasonable as topology inference
happens over a longer timescale with respect to the one of the
fault, where it can be assumed that topology is not evolving –
with the exception of the fault itself. Along the same lines, to-
mography work generally focuses on trees: the justification in
this case is that, while most network topologies are not trees,
it is however possible to use multiple trees and merge them to
obtain a single view [19, 5]. Finally, in spite of more complex
topologies, to avoid loops the subset of data paths from a given
observer to any other node in the network is usually a tree.

In this work we slightly depart from these assumptions in
that we however do believe that fine-grained topology informa-
tion is possibly very hard to get. This is due to the operational
obscurity of ISP networks which limits the visibility to portion
of the network links [20, 21], to measurement unreliability of
traceroute [22] and even ping tools[23]. As such, rather than de-
coupling the problems and taking accurate topology inference
for granted, we factor in the architecture a technique to avoid
topology inference problem. We do so by proposing a viable
cooperation path with ISP, that hold ground truth information
about their network at all layers, but are of course not willing
to share such sensitive information. Our key solution to design
such a practically viable system that does not directly lever-
age topology information, involves the use of an IETF Appli-
cation Layer Traffic Optimization (ALTO) server. Specifically,
IETF ALTO [24] defines a protocol to let servers assist hosts in
making informed decisions: ALTO was initially cast for peer-
to-peer (P2P) network management, and its use has since then
evolved to Content Delivery Networks (CDN). For instance, in
P2P networks, ALTO was used to bias the overlay topology by
in a cost-aware manner without explicitly disclosing such sensi-
tive business/topology information. Specifically, ALTO servers
were used as BitTorrent trackers that returned a set of candi-
date peers for a swarm based on sensitive ISP information, as
opposite to in a random fashion as regular trackers would do.

We argue that the very same interface could be seamlessly
leveraged in the troubleshooting context. Indeed, by yielding
a list of prioritized alternatives to end-hosts, an ALTO server

4

Monitor GW Crowd ISPsrv
Target

MonitorGWCrowdISPsrv

Measurement

Selection

ALTO query

Control

Piggybacking

Measurement

Piggybacking

Notification

Control

Selection

ALTO query

(Clustering)
Inference

(Clustering+
Inference

 classification)

(a) (b)

Notification

Figure 2: Synoptic of the troubleshooting and inference process in the ISP-case. Solid lines denote control traffic, dotted lines indicate data-plane measurement;
results of data-plane measurement are possibly piggybacked into control messages. Two cases are considered: (a) ISP-assisted crowd selection via ALTO server,
local processing with limited information vs. (b) ISP-assisted crowd selection via ALTO server, ISP-managed troubleshooting with extensive information (a subset
of which is then notified to the end-user application)

.

can suggest crowd-sourcing candidates for troubleshooting pur-
poses in a topology-aware manner, without directly disclosing
topology information to the end-host. To stress the viability of
an ALTO-like solution, it is worth recalling that (i) network-
aware BitTorrent trackers were one of the first use of ALTO
servers [25], and that (ii) tracker technology has proven signif-
icant scalability, up to million of torrents[26], in reason of this
very simple interface. Hence we expect the same scalability
properties in this context.

2.4. Troubleshooting and inference

An ALTO-like interface non-only allow to protect sensi-
tive information such as topology, but further decouples the
measurement task from the inference process. In turn, these
measurement could be leveraged by a topology-agnostic (i.e.,
a end-user probe) or topology-aware (i.e., residential gateway,
ISP server) troubleshooting process. In both cases, measure-
ment where target selection have been biased by an ALTO inter-
face could benefit from strategic sampling choices, as we shall
see later. In case of ISP-processing, the end-user probe would
just extend the reach of ISP troubleshooting process in the user
household, accessing a wealth of additional information (e.g.,
SNMP, topology, etc.).

This is exemplified in Fig. 2 that consider two ISP-cases,
where either (a) target probe selection is assisted via an ALTO
server deployed by the ISP, but troubleshooting process is lo-
cally performed by the node with limited information vs. (b)
ALTO-assisted target probe selection, and troubleshooting pro-
cess is run by the ISP and has access to an extensive set of
information. In both cases, a end-user monitor experiencing a
problem triggers an ALTO query to obtain a set of candidates
probes. By doing so, the management burden is then shifted

from the ISP to the end-user application, reducing the opex cost
(i.e., less powerful servers are sufficient, recall [26]). The end-
user agent contacts candidates of the target set, instructing them
to perform measurement toward a destination of interest (pos-
sibly, but not necessarily, the source itself) and report results
back. Measurement and inference processes are decoupled, so
that upon completion of the measurement, results of the exper-
iments are piggybacked back from the probes to either (a) the
original agent or (b) an ISP-dedicated server.

Upon reception of a set of measurements, the troubleshoot-
ing process can take place. Notice that in case (a) only results of
clustering are available: output of local execution can be possi-
bly notified back to the ISP to assess the severity of the damage.
Conversely, in case (b) a richer set of information translate into
a richer output (e.g., root cause link) at the end of the trou-
bleshooting process. Still, the ISP can decide which subset of
information can be signaled back to the user, retaining control
on the amount/sensitivity of the information to be disclosed.

The flexibility of this framework allows for completely or-
thogonal solutions where, e.g., ISPs are willing to reduce their
costs and externalize as much as possible the troubleshooting
process, to solution where ISPs aims at refining their infer-
ence process and can afford investing (or leverage their exist-
ing) computing and big-data facilities to ameliorate their trou-
bleshooting process, where furthermore the diagnosis process
can leverage other ISP-sensitive sources of information.

3. System model

We formalize the problem tackled in this paper with the help
of Fig. 3 and for the sake of clarity, we summarize the notation
used in Tab. 1. Without loss of generality, we start by consider-
ing a regular k-ary access network tree (and depict for the sake

5

Table 1: Summary of the notation for the k-ary tree model
ID source probe (1), ISP probe (0), target (> 1) M size of target probes set
`i link at depth i in the path from source→ root N size of overall probes set

`k, .., `1 path source→ root α = M/N probe budget
D+ = logk(N) depth of a k-ary tree f ∈ [1, D+] fault depth

Di = (kD
+−i, kD

+−i+1] set of target probes with ID ∈ Di, whose
shortest path from the source probe ID = 1
passes through `i, but not through `i−1

E[pX(f, α)] probability of root cause
identification for a failure at
depth f (involving link `f)

card(Di) = kD
+−i size of set Di p−X(f, α) probability to randomly sam-

ple a target in Df (model X)

Figure 3: Synoptic of the network scenario and model notation

of simplicity a binary tree in the figure) and develop simple
probabilistic models of the troubleshooting detection process.

In the user-only case, the troubleshooting software only runs
in the leaf nodes of the tree and has access to very few topo-
logical information: hence, it is important to assess the perfor-
mance of a random target selection policy. However, the ISP
can strategically place probes inside the network (e.g., probe
0 in the picture attached to the root) or dispose of topological
information that allows probe to perform strategic target selec-
tion: it is thus important to assess the gain brought by the addi-
tional knowledge and degree of freedom that ISPs have in probe
placement.

Our algorithm runs continuously in the background to gather
a baseline of network performance (i.e., in absence of faults),
and troubleshooting is triggered by the user (e.g., upon expe-
riencing a degradation of network performance) or automati-
cally by a change point detection triggered by the deviation of
some relevant metric from the baseline (outside the scope of this
work). In the reminder of this section, we introduce a simpli-
fied view of the previous scenarii, that allow us to not only for-
malize the problem, but also to provide different models of the
expected detection capabilities of a end-user vs ISP-managed

troubleshooting system.

3.1. Notation and general framework

For the sake of simplicity, we consider the case where a
single fault happens in the system. We here consider “fault” in
a loose sense, i.e., more generally any detectable event in any
metric of interest.

Without loss of generality, we consider that this fault is lo-
cated at a depth f on a k-ary tree, and we focus on the perspec-
tive of a troubleshooting process triggered by a source probe5

having ID= 1. We can safely assume that the root cause is lo-
cated somewhere in the path from the user device or gateway
towards the Internet, which in the example illustrated in Fig. 3
comprises the sequence of links (`4, `3, `2, `1). In order to iden-
tify which among `4, .., `1 is the root cause of the fault, the
source node ID = 1 sends probing traffic to a number M

5Notice that the following model can be developed irrespectively of which
source probe triggers the measurement: i.e., the same process can indepen-
dently be performed from any source. However, focusing on probe ID = 1 as
a source allows to simplify the notation, on which case we therefore limitedly
focus in what follows.

6

of targets probes, among the overall available N nodes in the
network. Let us denote, for convenience, by D+ = logk(N)
the maximum depth (i.e., height) of a k-ary tree and by Di the
set of probes Di =

(
kD

+−i, kD
+−i+1

]
. By definition, the set

Di includes targets whose shortest path from the source probe
ID = 1 passes through `i, but does not pass through `i−1. In
the access tree, whenever a link `f (located at depth f in the
tree) is faulty, all probes whose shortest path from the diag-
nostic probe (probe 1 in our example) passes through `f will
also experience the problem, unlike probes that are reachable
through `f+1: it follows that the troubleshooting algorithm re-
quires target probes from both sets Df and Df+1 to infer with
certainty that the fault is located at `f .

In this section, we provide simple probabilistic models for
the fault detection probability under strategic vs a random tar-
get probes selection. While the case of random selection is
more involved and is developed next, in the case of strategic
selection it is easy to convince that in order to identify faults at
any depths, by construction, the source must select exactly one
target from each set. Particularizing this to a k-ary tree, the min-
imum number of probes that allows to identify the faulty link
irrespectively of the depth f of the fault is M = O(logk(N))

– i.e., one probe in each of the {Di}logk(N)
i=1 strata suffices to

accurately pinpoint the root cause.
Such a strategic probe selection requires either topology

knowledge or the assistance of a cooperating server managed by
the ISP (e.g., an IETF ALTO server as previously illustrated).
However, this strategy is not feasible with user-managed probes,
in which probe selection is either uniformly random or based on
publicly available information such as IP addresses. It is thus
important to assess the detection probability of a naïve random
selection as well, to get a performance lower bound – or equiv-
alently, the added value of an ALTO-like server.

One further point is worth elucidating. While neither the
algorithm (nor the model) we present in this paper are limited
to a regular tree, the use of regular trees simplify the tracta-
tion and additionally provides a reasonable test case. Indeed,
the model can be trivially extended to unbalanced trees, except
that the size of the strata cannot be simply expressed as a func-
tion of the depth in the tree. Similarly, access topologies are
often considered to have a (logical) tree shape [27] due to loop-
free forwarding (so that physically redundant links are used for
protection and fault management, and only seldom for equal
cost multi-path routing). Finally, while the complete ISP topol-
ogy can be ultimately more complex, this work considers the
case where an observer triggers a measurement: by rooting the
topology on the data path from this observer to any other user
in the topology, even faraway users (e.g., in other access trees
beyond different DSLAMs) can be seen as belonging to differ-
ent branches of the tree (that have at least the egress gateway
in common). For the above reasons, unless otherwise stated we
limit the tractation to regular trees in what follows.

3.2. Lower bound of the detection probability

We now focus on the case where the source probe performs
a random selection of its target probes set. With respect to the

strategic selection, the source cannot longer leverage an oracle
to select exactly at least on probe per each of the Di strata –
which is expected to have a significant impact on troubleshoot-
ing performance. Notice indeed that, by definition, the sets
Di have an exponentially decreasing size: i.e., in the example
Fig. 3 the set D1 comprises 8 nodes (i.e., half of the leaves of
the whole binary tree), D2 has size 4 (i.e., the half of D1), D3

has size 2 and D4 has size 1. Clearly, without any topological
knowledge, sampling targets inD4 is 8 times less probable than
for targets in D1.

Consequently, the deeper is the fault location, the smaller is
the number of probes available to identify the faulty link. As the
size of Df exponentially decreases as f increases (for the tree
card(Df) = kD

+−f), we expect the random selection strategy
to easily locate faults at small depths (close to the root) and fail
at large depths (close to the leaves) where a stratified selection
is necessary to sample probes in the smaller set Df . Missing a
strategic selection, a tradeoff arises on increasing the target set
size vs reducing the root cause identification probability.

More formally, let us denote by p−(f, α) the probability
that a random selection includes a probe that is useful to locate
a fault at depth f ∈ [1, D+], with a probe budget α = M/N .
In our previous work [8], we proposed to compute a lower
bound of the detection probability by leveraging on the just de-
scribed intuition: denoting this model as TMA6 the probability
that none of the M vantage points falls into Df decreases ex-
ponentially fast with the size of Df , i.e., PTMA(X = 0) =
(1 − α)card(Df). Consequently, the probability to sample at
least one probe in Df is approximated by:

p−TMA(f, α) = 1− PTMA(X = 0) = 1− (1− α)k
(D+−f)

(1)

The model (1), albeit admittedly simplistic, has the advantage
of a simpler formulation with respect to the expression of the
exact Hypergeometric (HG) model, which estimates the proba-
bility to have k successes in n draws without replacement in a
finite population ofN probes withK successes. In our settings,
the n draws correspond to the probe budget M , and the number
successes K correspond to the number of probes in the Df set,
so that the probability to have 1 or more probe in Df can be
computed as:

p−HG(f, α) = 1− PHG(X = 0) = 1−
(
N−card(Df)

M

)(
N
M

) (2)

While the presence of a binomial coefficient makes it hard to
give an intuitive explanation to equation (2), it is possible to re-
sort to (a chain of) known approximations to provide another,
more insightful and yet still accurate formulation. Indeed, it is
well known that the HG model can be approximated for large
population, with a binomial one: the intuition is that when N
is large, chances of selecting multiple times the same probe

6Acronym of Traffic Monitoring and Analysis (TMA), the original venue [8]
where the model was first presented

7

lessens, so that explicitly accounting for replacement plays a
marginal role. In turn, the binomial distribution is well approx-
imated by a Poisson distribution, so that the exact combinatorial
formulation of (2) is better expressed for our purposes as:

p−Poisson(f, α) = 1− PPoisson(X = 0) = 1− e−αk
(D+−f)

(3)

Interesting insights can be gathered from (1) and (3). For faults
located high in the tree (f = 0), it appears that p−(0, α) ≈ 1.
Conversely, for fault close to the leafs (f = D+), the approx-
imation degenerates into p−Poisson(D+, α) = 1 − e−α or even
simply p−TMA(D+, α) = α. We thus expect p− to take val-
ues in the support ∈ [α, 1], with a fast varying dynamic as a
function of the fault depth f .

3.3. Average detection probability
Expressions (1), (2) and (3) all represent lower bounds on

the detection probability with random selection. However, even
when a random subset of probes does not contain any probe
in Df , it is still possible to correctly guess the root cause link.
Here, there will be ambiguity because multiple links are equally
likely to be root cause candidates. At any depth d, ambiguity
will be limited to the links located between the fault and the
root of the tree (i.e., `d, .., `1): since, at depth d, ambiguity in-
volves d links, the probability of a correct guess is 1/d. To
compute the average probability of a correct guess E[pguess],
we have to account for the relative frequency of the different
ambiguity cases, which for depth d happen proportionally to
kd/klogk(N) = kd/N ,

E[pguess] =

logk(N)∑
d=1

1

d

kd

N
=

1

N

logk(N)∑
d=1

kd

d
(4)

For the sake of completeness, we point out that partial sum of
kd/d can be expressed as:

E[pguess] =
1

N
klogk(N)+1

(
− Φ(k, 1, logk(N) + 1)− log(1− d)

)
(5)

where Φ(k, 1, logk(N) + 1 is the Lerch trascendent,i.e.,a gen-
eralization of the Hurwitz zeta and polylogarithm functions,
typically used to compactly express sums of reciprocal powers.
[28]. Irrespectively of the model adopted to compute the lower
bound, we can then compute the expected discriminative power
of a random selection, expressed in terms of the probability to
correctly identify a fault at depth f as:

E[p] = p−(f, α) +
(
1− p−(f, α)

)
E[pguess] (6)

where the first term accounts for the proportion of random se-
lection that is structurally equivalent to a stratified selection (so
that the root cause link can be found with probability 1), and the
second term accounts for the proportion of random selection
able to pinpoint the faulty link by luck (thus with probability
E[pguess]).

We limitedly particularize (6) to the TMA and Poisson ap-
proximations, to gather different expectations of the detection
probability. Specifically, by plugging (1) and (4) into (6), after
some algebra we get:

E[pTMA] = 1− (1− α)k
(D+−f)

(
1− 1

N

logk(N)∑
d=1

kd

d

)
(7)

whereas by plugging (3) and (4) into (6) we similarly get:

E[pPoisson] = 1− e−αk
(D+−f)

(
1− 1

N

logk(N)∑
d=1

kd

d

)
(8)

Notice that both (7) and (8) structurally have the form 1−ploss.
The term ploss can be interpreted as the loss of discriminative
power of a simple randomized selection with respect to a per-
fect strategic selection that always achieves correct detection.
Similarly, the ploss term can also be interpreted as the expected
performance gain following an IETF ALTO deployment for tar-
get selection. Clearly, this model is simplistic as it does not
consider all combinatorial aspects which could be used to ob-
tain finer-grained expectations at each depth of the tree. Yet,
the main purpose of the model is to serve as a reality check for
our experimental results.

3.4. Model comparison

For the sake of illustration, we contrast the TMA, Hyper-
geometric and Poisson models for variable fault depth f and
different probe budgets α = M/N . The purpose is to select
a single, simple model against which to contrast experimental
results in Sec. 6.

To this aim, we start by contrasting the TMA (1), hyperge-
ometric (2), and Poisson (3) models for the lower bound de-
tection probability in the left-hand side of Fig. 4. Discrepan-
cies of the TMA (1) and Poisson (3) formulations are addition-
ally reported in the left-hand side of Fig. 5, where discrepan-
cies are computed as simple differences p−HG(f, α)− p−X(f, α)
for X ∈ {Poisson, TMA} with respect to the Hypergeomet-
ric model of (2). Fig. 4 reports the case for α = 9/512 (i.e.,
the case where a strategic selection achieves perfect classifica-
tion) and α = 50/512 (less challenging since a greater probe
budget is available). To avoid cluttering the pictures, Fig. 5
instead only shows the largest deviations, which are obtained
when α = 9/512.

Two interesting observations can be made from the plots.
First, Fig. 4 shows that both the TMA and Poisson models very
closely approximate the exact Hypergeometric one: notice in-
deed that lines are hard to distinguish, meaning that for any
depth, the Hypergeometric model and the different approxima-
tions are all in agreement, as they closely capture the average
detection probability for that depth. Second, Fig. 5 allows to
better exacerbate these very fine-grained difference between the
Hypergeometric model and its approximations: particularly, the
figure shows the TMA model to be slightly optimistic and the
Poisson model to be slightly conservative (in both cases, abso-
lute error is lower than 3% in the worst case).

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9

L
o
w

er
 b

o
u
n
d
 p

- (f
,α

)

Fault depth

M/N=50/512

M/N=9/512

Hypergeometric
TMA’15
Poisson

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

E
x
p
ec

te
d
 d

et
ec

ti
o
n
 p

ro
b
ab

il
it

y
 E

[p
]

Fault depth

M/N=50/512

M/N=9/512

Hypergeometric
TMA’15
Poisson

Figure 4: Model comparison: lower bound (left) and expected identification probability (right) for random probe selection and two probe budgets α = M/N ∈
{9/512, 50/512}. Notice that lower bound and average detection probability of Hypergeometric, Poisson and TMA’15 models are quite close.

-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04

 1 2 3 4 5 6 7 8 9

L
o
w

er
 b

o
u
n
d
 d

is
cr

ep
an

cy

Fault depth

p
-
(f,α): TMA’15 vs HG

p
-
(f,α): Poisson vs HG

-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04

 1 2 3 4 5 6 7 8 9A
v
er

ag
e

d
is

cr
ep

an
cy

Fault depth

E[p]: TMA’15 vs HG
E[p]: Poisson vs HG

Figure 5: Model comparison: discrepancy between combinatorial Hypergeometric model (HG) vs TMA and Poisson approximations, lower bound (left) and
expected identification probability (right) for random probe selection and the smallest probe budget α = M/N = 9/512

The average detection probabilities for the TMA (7) and
Poisson (8) models are compared to that gathered by an hyper-
geometric model in the right-hand side of Fig. 4 for α = 9/512
and α = 50/512. As before, discrepancies of the TMA (1) and
Poisson (3) formulations are additionally reported in the right-
hand side of Fig. 5 for α = 9/512. Two remarks are worth
making. First, discrepancies remain of the same order of mag-
nitude: given that the Poisson model is simple and accurate
(with respect to the Hypergeometric one) and additionally con-
servative (unlike the TMA model[8]), we select this model as a
benchmark for experimental data. Second, as per our previous
interpretation, the vertical gaps between the unit detection prob-
ability and the curves shown in the right plots of Fig.4 are due
to the loss of discriminative power intrinsic to the random se-
lection. This non marginal gap reinforces the soundness of our
system design that attempts at exploiting topology-related in-
formation (e.g., made available through a simple interface such
as IETF ALTO), to exploit benefits of simple yet powerful strat-
ified selection.

4. Troubleshooting Methodology

In this section, we first describe the troubleshooting algo-
rithms in abstract terms, i.e.,mapping on the system model de-
scribed in the previous section. We then briefly describe Net-
Probes, the open source diagnosis software we develop for this
work, which is available at GitHub [10].

4.1. Troubleshooting algorithm

We treat both clustering and classification problems with a
single algorithm, whose pseudocode is reported in Algorithm 1.
Assuming the algorithm runs at a source node s, for any per-
formance metric Q (e.g., delay, bandwidth), s collects base-
line statisticsQ0(p) with low-rate active measurements towards
other peers p.

Troubleshooting is either triggered automatically (e.g., on
a changepoint detection of the metric of interest) or on user
intervention in case of faults. Irrespectively of the trigger, the
troubleshooting originator s iteratively selects up to R batches
of B probes, so that R ·B represents a tunable probing budget.
Selection is made according to a selection policy Sp, based on a
probe score S(p). The probe selection is iterative because S(p)

9

Algorithm 1 Detection algorithm at source probe s
B size of the probe batch R number of measurement rounds
P target probe set, card(P) = M = R · B P = P+ ∪ P− results of clustering along Q(p)−Q0(p)

Q(p) sample of metric Q toward target probe p Q0(p) baseline for metric Q (e.g., min(Q(p)) or E[Q(p)]
S(p) score of target probe p (for selection policy) Sp probe selection policy (random, IP, balanced, etc.)
S(`) score of link ` (for detection policy) S` link selection policy (naive, argmax, proportional, etc.)

1: Get a baseline Q0(p) for metric Q(p), ∀p . Initialization, over long timescale
2: for round ∈ [1..R] do . When triggered upon user/ISP demand
3: select a batch of B probes according to a probe selection policy Sp, based on score S(p)
4: for p ∈ B do
5: perform active measurements with p to get Q(p)−Q0(p)
6: add probe p to probed set P
7: partition P into P+ and P−, by K-means clustering on Q(p)−Q0(p)
8: end for
9: update probe scores S(p), ∀p

10: end for
11: if topology is not available then . Clustering results
12: return P+ and P−

13: else . Classification results
14: for probe p ∈ P do
15: for link ` ∈ shortest path SP (s, p) do
16: S(`)← S(`) + 1(p ∈ P+)− 1(p ∈ P−)
17: end for
18: end for
19: return link ` according to a link selection strategy S` based on scores S(`)
20: end if

can vary, and thus the next batch is selected based on the results
of the previous batch.

4.1.1. Clustering vs Classification
At each step, upon collecting B spatial measurements sam-

ples, we compute, for each probe p, Q(p) − Q0(p) and add it
to the set P : we cluster partitions P into P+ and P− with K-
means. Clearly, the choice of partitioning in two sets is rooted
in the fact that we are considering a single failure, by which
probes are either affected or undisturbed.

Two points are worth stressing: first, the algorithm does not
associate any semantic to clusters. For instance, a node in P+

can be affected by a large delay (so that P+ represents the clus-
ter of nodes affected by an impairment), whereas in a different
experiment a node in P− can suffer from small available band-
width (so that P− represents in the case the cluster of nodes
affected by an impairment).

Second, in case of a single failure, it can be expected that
probes in the unaffected of the two clusters exhibit no notice-
able difference Q(p) − Q0(p) ≈ 0, so P+ and P− should be
interpreted as a syntactical difference. Once the probe budget
is exhausted (or once other stop criteria, that we don’t mention
for the sake of simplicity, are met), the algorithm either returns
P+ and P− (user-managed case, line 12), or continues with the
mapping. When no clear partition can be established, only one
set is returned.

While we do not investigate multiple independent failures
in this work, K-means enables us to partition P in more that 2

sets, thus the clustering is also able to discriminate situations in
which there is more than one anomaly (e.g., clusters will form
according to distance from the baselines). Similarly, while we
do focus on a metric-by-metric case, K-means naturally copes
with cases where ~Q(p) represents a collection of heterogeneous
metrics and ~Q0(p) is the baseline vector.

To map probes in P+ and P− to links, the algorithm re-
quires the knowledge of the links ` in the shortest path SP (s, p).
The score S(`) of ` ∈ SP (s, p) is incremented by +1 for p ∈
P+ and decremented by -1 for p ∈ P−. Since we make no
assumption on the semantic of the metric of interest, the algo-
rithm needs to know if links with the largest (smallest) S(`)
scores have to be returned (line 19 of Algorithm 1), as other-
wise both links with extremal score (i.e., argmax and argmin)
are to be returned. For each new metric in the set of observable,
(simple) domain-expert knowledge is thus required for correct
interpretation of the results.

4.1.2. Link selection strategy
Root cause identification (line 19 of Algorithm 1) is done

according to a link selection policy S` ∈ {naïve, proportional, argmax}.
The naïve random method makes an informed guess by

selecting one of the D+ links in the path `D+, . . . , `1 to the
root. We say the guess is “informed” since the naïve strat-
egy has a success probability of 1/D+, which is much larger
than the lowest bound 1/kD

+

= 1/N in case of a “blind”
random guess over all N links: indeed, conditioning over the
fact that the origin monitor launched a measurement campaign

10

since it observed an anomaly, it follows that the anomaly lays
in the path to the root, which comprises D+ links. A better
strategy is to select links proportionally to their score: specif-
ically, in this case one random link `i is returned with proba-
bility S(`i)/

∑
j S(`j). In an attempt to bound the maximum

error, the risk-adverse proportional policy however suffers from
a larger average error, since it considers non-faulty links by de-
fault (albeit with a smaller probability). A final strategy is to
select a single link: namely, the link with the largest (smallest)
score: i.e., link `i with argmaxiS(`i), where ties are broken at
random. The risk-prone argmax (argmin) instead aims at reduc-
ing the average error, at the price of a larger maximum error in
case the selected link is not the faulty one.

Clearly, the suitability of argmax vs argmin depends on
the metric Q semantic (e.g., larger packet loss deviation re-
quires argmax detection, while bottleneck bandwidth mandates
argmin criterion). Instead, suitability of proportional vs argmax/
argmin also depend on how well the clustering algorithm sep-
arates the data, which in turns depend on how robust/noisy are
the measurement results. We expect argmax/argmin to perform
well where clusters are well separated along the considered
metric.

4.1.3. Probe selection strategy
In terms of probe selection strategy Sp, we consider both

the ISP case where an oracle is able to perform a strategic se-
lection as earlier illustrated, as well as the end-user case where
we experiment with Sp ∈ {random, |IP (s)− IP (p)|, balance}
and combinations of the above.

Stratified selection is performed with an ALTO-like oracle
as earlier discussed. Random selection is useful as a baseline
and to compare with the model, yet we do not expect it to be
well performing. We additionally consider probe selection poli-
cies that are more complex to model, such as the absolute dis-
tance in the IP space: the |IP (s)− IP (p)| metric (where each
IP is interpreted as a 32 bits integer) however implicitly makes
assumption on the way ISPs allocate IP addresses, and is thus
not expected to be resilient across different setup. Finally, the
balanced selection attempts at equalizing the size of P+ and
P−, by selecting an IP that is close to IPs in the small cluster,
and far from IPs in the large cluster. In other words, denoting
P small = argmin(|P+|, |P+|) so that P large = P\P small
is the largest cluster, the balanced policy will attempt at select-
ing a new node n such that |IP (p) − IP (n)| for p ∈ P small

is minimized. Clearly, balanced selection also suffer from as-
sumptions on IP addresses allocation.

Notice that among the outlined strategies, the balanced one
is the only one that directly benefits of incremental probe selec-
tion (i.e., R batches of size B each in line 2-3 of Algorithm 1).
Yet, the batch size B also roughly expresses the maximum par-
allelism of measurement processes, to limit possible mutual in-
terference between measurement results. We discuss this issue
further in Sec.7.

4.2. Software implementation
We implement the above algorithm in NetProbes, a dis-

tributed software written in Python 3.x that runs on end-hosts

Figure 6: Schematic organization of the main NetProbes classes

and executes a set of user-defined active measurement tests.
NetProbes, which is available at [10], consists of over 7000
lines of codes, scattered in about 70 files, and arranged in over
150 classes. The software suite comprises agents having a client
and a server interface, and includes an orchestrator to facilitate
launching small scale experiments in automated or interactive
way (textual ncurses and graphical Tk user interfaces).

It is worth pointing out that the set of measurement tasks
that can be performed by NetProbes agents (e.g., HTTP or DNS
requests, multicast UDP tests, etc.) is far larger than what we
consider within the scope of this paper. NetProbes agent can
more generally perform a set of measurement tasks (or actions):
to avoid mutual interference between experiments, agents run
a single action at a time, as illustrated in Fig. 6, and manage
queue of measurement tasks. As this limits, but does not avoid,
mutual interference, we come back on this later in Sec.7.

In the context of this work, NetProbes agents are deployed
at end-user devices and gateways form an overlay. They per-
form a set of periodic measurements to monitor the paths in the
overlay and collect a baseline network performance. When the
user experiences network performance issues, the NetProbes
agent running at the user device launches a troubleshooting
task. To perform this task, measurement requests are sent to
other agents, over HTTP. For the sake of simplicity, we avoid
decoupling measurement and inference processes. Hence, upon
reception of measurement results, the origin monitor assess the
severity of the performance issue and the location of the faulty
link by executing the clustering and classification steps illus-
trated in Algorithm 1.

5. Calibration experiments

Before running a fully-fledged measurement campaign, it
is mandatory to perform a rigorous calibration phase – yet this
phase is often neglected [29]. In this work, we follow an exper-
imental approach using emulation in Mininet, to control the du-
ration and the location of the faults. However, it is unclear how
well state-of-the-art delay and bandwidth measurement tech-

11

Figure 7: Calibration of delay measurements: baseline Q0(p) for two sample end-to-end paths (left) and boxplots of Q(p) − Q0(p) for several protocols and
controlled delay ∆ (right)

niques perform in Mininet. In order to disambiguate incon-
sistencies due to Mininet from measurement errors intrinsic to
measurements techniques, we perform calibration experiments
for a set of delay (expectedly easy) and bandwidth (notoriously
difficult) measurement tools and assess their accuracy in Mininet.

5.1. Emulation environment setup

Mininet [9] is an open source emulator which creates a vir-
tual network of end-hosts, links, and OpenFlow switches in a
single Linux kernel and supports experiments with almost arbi-
trary network topologies. Mininet hosts execute code in real-
time, exchange real network traffic, and behave similarly to
deployed hardware. All the software developed for a virtual
Mininet network can run in hardware networks and be shared
with others to reproduce the experiments. Mininet provides
the functional and timing realism of testbeds in addition to the
flexibility and full control of simulators. Experimenters con-
figure packet forwarding at the switches with OpenFlow and
link network characteristics (e.g., delay and bandwidth) with
the Linux Traffic Control (tc). Reproducing experiments from
tier-1 conference papers indicates that results from Mininet and
from testbeds are in agreement [9]. This happens provided that
the emulated network size does not yield to CPU, memory or
PCIx bandwidth bottlenecks, which we care to avoid.

We use Mininet to build a virtual network with the topology
depicted in Fig. 3 on a Quad-Core Intel Xeon E5-1603 (2.8GHz
10MB cache) equipped with 24 GB of RAM. Given our setup,
we perform preliminary stress tests to discover that this practi-
cally limits our overlay size to 512 nodes. The size of overall
emulated network is of course larger due to all switches at in-
termediate depths: e.g., in a binary tree case, the network size
is roughly the double of the overlay size. In practice, this over-
lay size allow us to consider two extreme cases corresponding
to fairly deep trees with depth 9 and fanout 2, or fat trees with
fanout 8 and depth 3 that both have 29 = 83 = 512 leaves.

In the calibration phase, we run the selected measurement
tools on probes 1 and 2. In our delay experiments, we impose

five different delay values (∆ ∈ {0, 10, 50, 100} ms, so that
the expected RTT=2∆) on `3 located at depth d = 3 in the
tree. At each delay level, probes 1 and 2 perform 50 mea-
surements of round trip delays to probes 7 and 6 respectively
(250 measurements in total for each pair of probes). We use
Mininet processes through the Python API to issue ping and
traceroute to measure RTTs (we test traceroute with
UDP, UDP Lite, TCP, and ICMP).

Similarly, in the bandwidth experiments, we vary the link
capacity of `3 (100 Mbps, 10 Mbps, 1 Mbps) under three differ-
ent traffic shapers, namely the hierarchical token bucket (HTB),
the token bucket filter (TBF), and the hierarchical fair service
curve (HFSC). Among the set of measurement tools designed
by the research community to estimate the available bandwidth [30],
in this work we limitedly report the calibration of five such
tools. Namely, we select Abing [31], ASSOLO [32], IGI [33],
Iperf[34] and Spruce[35] and perform 30 measurements of the
available bandwidth between probes 1 and 7 and probes 2 and
6 (450 experiments for each probe pair).

We use these two metrics as a non-exhaustive example of
metrics that sit at the opposite spectrum in terms of complexity:
delay is easy to enforce and measure, unlike available band-
width. We note that while a full-blown system shall extend the
set of metrics (e.g., from signal to noise ratio at Layer-2, to
loss rate at Layer-3, to reordering at Layer-4 and to application-
specific metrics at Layer-7, possibly combined in a single fea-
ture vector), however the fundamental properties of our system
are well understood even with a limited set of metrics. Hope-
fully, in reason of their different complexity, these two metrics
not only provide illustrative examples, but are also representa-
tive of the boundaries within which performance for other rele-
vant metrics may lay.

5.2. Delay calibration
We expect delay measurements to be flawless. Yet we ob-

serve that the first packet sent between any two hosts exhibits a
large delay variance: this is due to the fact that the correspond-
ing entry for the flow is missing in the virtual switch and thus

12

 1

 10

 100

 1000

Probes 1→7

Probes 2→6

1

10

100

1000

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

1

10

100

1000

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

1

10

100

1000

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

1

10

100

1000

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

Samples

A
v
ai

la
b
le

 b
an

d
w

id
th

 [
M

b
p
s]

Abing

ASSOLO

IGI

Iperf

Spruce

HTB TBF HFSC

Figure 8: Calibration of bandwidth measurements: temporal evolution of {Abing, ASSOLO, IGI, Iperf, Spruce} × {HTB, TBF, HFSC}.

requires data exchange between the OpenFlow controller and
the virtual switch, whereas the forwarding entry is ready for
subsequent packets. We thus do the baseline Q0(p) over mul-
tiple packets (50 for delay) to mitigate this phenomenon. Do-
ing a baseline and subtracting it from each delay measurement
enables an accurate study of the effect of the imposed delay
value on the accuracy of the measurement technique. The left-
most plot in Fig. 7 show baseline RTT measurement between
a pair of hosts with ping (IMCP) and traceroute (UDP, UDP
Lite, TCP, and ICMP). Baseline measurement already show no-
ticeable variability, with TCP and UDP traceroute measurement
exhibiting a 5ms average delay.

The four boxplots in Fig. 7 then show differences with re-
spect to the baseline for ∆ ∈ {0, 10, 50, 100}ms. The leftmost
boxplot (∆ = 0) shows that as expected, by computing a dif-
ference with respect to the baseline, the mean error is close to
2∆ = 0 (except for TCP traceroute). Also in the other box-
plots, difference to the baseline approaches 2∆ as expected.
Still, ICMP measurements exhibit the smallest variance among
all techniques. Fig. 7 already reveals that, even simple delay
measurement in a controlled emulation environment are sub-
jects to noise. In our testbed, we however observe the extent of
this noise to be low: for all the delay measurement techniques,
the bulk of the distance from the baseline is less than 1 ms: it
follows that changepoints can be detected with a very fine grain.
Moreover, we note that using ICMP brings the absolute error to

less than 0.1 ms for both traceroute and ping.
Of course, the kind of noise in a controlled environment

(e.g., container based virtualization overhead) differ from the
sources of noise that can be expected in an Internet environ-
ment. Internet delay measurement can be noisy due e.g., to
interfering traffic and bufferbloat [36, 37, 38], or by proper-
ties of the crafted ICMP packets [23]. It follows that the cal-
ibration we perform can hardly be portable to other scenarii:
hence, our contribution here is on illustrating the need for this
methodological step, more than merely describing general re-
sults cast in stone. Rather, we advocate that similar method-
ological calibration steps need to be performed for each new
environment/testbed.

Summarizing, from this calibration phase, we select ICMP
ping to measure delay: as the measurement noise is insignifi-
cant in the Mininet testbed, errors in the classification outcome
should be solely attributed to our troubleshooting algorithm.

5.3. Bandwidth calibration

We expect bandwidth measurements to be difficult. Addi-
tionally, we stress that while comparison of bandwidth estima-
tion tools under the same experimental conditions has already
been carried on (see [30] and references therein), we are not
aware of any study jointly considering bandwidth estimation
and bandwidth shaping. Yet we believe this to be an important
detail, as we expect different shaping techniques to alter packet

13

inter-arrival time in different ways, possibly affecting accuracy
of the bandwidth inference technique. While a preliminary joint
selection of bandwidth shaping and measurement tools is nec-
essary, as far as calibration of our test is involved, we deem
a thorough study, albeit interesting, outside the scope of the
present study.

We compare the performance of five bandwidth estimation
tool (Abing, ASSOLO, IGI, Iperf and Spruce) in the absence
of cross traffic under three traffic shapers (HTB, TBF, HFSC).
Among the bandwidth estimation tools, we point out that Iperf
is particularly intrusive as it designed to measure throughput by
sending data through backlogged transfers, whereas the other
tools are designed to infer the available bandwidth by sending
a very limited amount of traffic, so that the inferred bandwidth
is available to the user application unlike in the Iperf case. As
such, we use Iperf to get a reliable reference, but we do not
otherwise expect Iperf to be of practical use in reason of its
intrusiveness. The remaining tools, namely Abing, ASSOLO,
Spruce and IGI are instead characterised by lower intrusiveness,
inferring the available bandwidth based on the dispersion of
packet pairs/trains measured at the receiver, and differ in the
way the packets are spaced [30]. Of course, our aim is not
to perform a deep and thorough study of the mutual impact of
shaping and bandwidth estimation techniques, but to select a
pair of techniques that avoids (or at least) minimizes unwanted
artifacts in our emulation.

Fig. 8 reports the evolution of the estimated available band-
width as a function of three link capacity values for the cross
product of {Abing, ASSOLO, IGI, iperf, Spruce} × {HTB,
TBF, HFSC}. As expected, we see artifacts arising, with a com-
plex dependency patterns of shaping techniques biasing results
of some bandwidth measurement techniques. These results and
tradeoffs are interesting per se and would deserve an attention
that is however beyond the scope of this work, were we are
more interested in ruling out biases, than explaining their ulti-
mate causes.

With this aim in mind, we can see from Fig. 8 that Abing
systematically fails in estimating the available bandwidth un-
der HTB and TBF shaping, while the estimation is correct with
HFSC. Similarly, ASSOLO fails in estimating 1 Mbps available
bandwidth under all shapers, and additionally fails the estima-
tion of 10Mbps under TBF. In contrast, IGI succeeds in accu-
rately tracking changes of available bandwidth at `3, although
outliers are still possible (see IGI+TBF). A downside of IGI
is that the measurements last longer than measurements with
Abing or ASSOLO. Finally, Iperf and Spruce are always accu-
rate; yet Iperf is too intrusive to be used in practice, whereas
Spruce makes an interesting candidate.

In addition to our measurement campaign, we can leverage
comparison work such as [30] to further guide our tool selec-
tion. Specifically, [30] observes that IGI is fast but injects a
larger amount of probe traffic in the network, while Spruce is
lightweight but slow to converge (Spruce repeats the measure-
ment 100 times, with measurements emulating Poisson sam-
pling, and the result is averaged among all samples). ASSOLO
and Abing sit in the middle of this tradeoff between speed and
intrusiveness. Finally, [30] also show that the stability and the

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 50

R
an

d
 i

n
d

ex

Probe budget

M
lo

ss

Delay Bandwidth

Figure 9: Clustering results at a glance: Rand index of experimental output of
clustering algorithm vs ground truth clusters

accuracy of measurements obtained with IGI increase when the
intensity of the cross-traffic is higher, an important and desir-
able property.

The most important takeaway from our measurement is that
unwanted interaction of shaping and packet pair techniques gen-
erate estimation errors of significant magnitude, which could
likely invalidate all experiments – which confirms once more
the importance of this calibration phase. As in the previous
case, it has to be pointed out that the relevance of this calibra-
tion study is limited to a Mininet testbed: indeed, the aim of this
calibration was to find a combination of measurement technique
and bandwidth shaper that induce the least possible distortion
in our testbed. Conversely, while in the general case the choice
of bandwidth measurement technique is a free parameter, the
bandwidth shaping or active queue management mechanisms
that are to be found in practice may differ significantly from
those found in a controlled environment, and cannot likely be
controlled. A different calibration, such as the one performed
in [30] is then needed in this context.

Summarizing, (almost) all tested bandwidth measurement
techniques appear to be accurate under the HFSC shaper, and
both the IGI and Spruce bandwidth measurement techniques
yield consistent results under any traffic shaper under test. Ad-
ditionally, related work [30]testifies IGI to be a reasonable choice
that would perform well in a more general context. As accurate
input is a necessary condition for troubleshooting success, we
thus select a pair in this intersection (namely, IGI and HFSC),
that we expect to perform well in our Mininet emulation envi-
ronment.

6. Troubleshooting experiments

Equipped with a calibrated testbed, we now assess Net-
Probes troubleshooting performance. Specifically, we evaluate
the quality of our clustering and classification for various probe
budgets for controlled faults (e.g., doubling delay or halving

14

bandwidth) at different depths of regular tree topologies. We
especially pay attention to the performance of the end-user only
vs ISP-assisted cases. All the scripts to reproduce the experi-
ments are available at [11].

In more details, we first assess clustering performance for
delay and bandwidth measurement (Sec. 6.1). We next compare
classification performance, which including real-world noise,
to expectations of the probabilistic models, that instead neglect
noise (Sec. 6.2). We finally perform a sensitivity analysis of
the troubleshooting algorithm in controlled settings by vary-
ing topological properties such as tree degree (Sec. 6.3), probe
selection policies Sp (Sec. 6.4), and link selection policies S`
(Sec. 6.5).

6.1. Clustering results

We perform experiments over a binary tree scenario (k = 2)
with depth D+ = 9 and N = 512 leaf nodes. In this case, a
strategic probe selection needs M/N = 9/512 probes (α =
1.75%) to ensure perfect classification, but we consider a larger
budget M = {10, 20, 50} in our experiments, where without
loss of generality probes are selected in R ∈ {1, 2, 5} rounds
of B = 10 batches each.

Unless otherwise stated, we use a random probe selection
Sp and an argmax link selection S` policies. We first evaluate
the clustering methodology by comparing the two sets of af-
fected and unaffected probes obtained from the algorithm with
the clusters that can be built using our controlled ground truth.
Intuitively, in case the measured clusters are equal to those ob-
tained via the ground truth, then the performance of the algo-
rithm are optimal. The similarity between cluster is best cap-
tured using the well-known Rand index, which takes value in
[0, 1] ⊂ R, with 1 indicating that the data clusters are exactly
the same and 0 indicating that cluster are totally different. More
information about the Rand index from an information retrieval
perspective can be found in [39].

Since we have full control over the location of the fault,
we build our ground truth by assigning the label “affected” to
all the available probes (under a given budget constraint) for
which the path to the diagnostic probe passes through the faulty
link. The remaining probes constitute the unaffected set. Fig. 9
shows that, provided measurements are accurate, the cluster-
ing methodology successfully identifies the set of probes whose
paths from the diagnostic software experience significant net-
work performance disruptions (and as a consequence accurately
identifies nodes in the complementary set of unaffected probes).
For budgets of 10, 20 and 50 probes, the rand index shows per-
fect match between the ground truth and the clustering output
in the case of delay measurement.

Results degrade significantly instead for bandwidth mea-
surements (notice that the rand index is lower than 0.6): we
point out that the loss of accuracy is not tied to our algorithm,
but rather to the measurements that are the input to it, which was
partly expected and confirms that calibration is a necessary yet
insufficient step. The hidden factor in the previous calibration is
the fact that we were performing a single capacity measurement
in isolation, with capacity set by a given shaping mechanism.

In this case, all B = 10 probes in the batch perform concur-
rent experiments, which happen to mutually interfere with each
other: when multiple measurements are scheduled at the same
time, since many bandwidth measurement tools rely on effects
of cross-traffic to estimate available bandwidth, the probe traffic
of one tool may interfere with the estimation of a host and vice-
versa [40]. It thus appears that already 10 concurrent bandwidth
measurement are able to generate significant noise; at the same
time, it also appears that situation improves over multiple inde-
pendent batches (notice a slight increase of the rand index from
R = 1 to R = 5), so that a more careful scheduling of such
experiments may be desirable to reduce (or avoid if possible)
this interference (see Sec. 7).

Summarizing, and abstracting from limits of a specific mea-
surement techniques, results indicate that our algorithm works
well in practice without requiring knowledge of the network
topology.

6.2. Classification results
Root cause link identification is a clearly more challeng-

ing and important objective, which we analyze in what follows
by restricting our attention to delay experiments: as the clas-
sification step is a deterministic mapping from the clusters, as
long as the measurement error remains small, the results of the
classification task are not affected by the specific metric under
investigation. Otherwise stated, as opposite to merely illustrat-
ing the algorithm performance under delay measurements, we
expect classification results to be representative of a large set
of metrics (although they are not representative of bottleneck
localization, as per Fig. 9).

We now show that the experimental and modeling results
are in agreement, with a random probe selection policy and a
budget ofM = 50 probes, which corresponds toα = 50/512 =
9.75%. For each fault depth f , we perform 10 experiments
by randomizing the set of destination probes. Results, as re-
ported in Fig. 10, depict the correct classification probability of
the model vs the experiments. Recall that equation (3) gives
a lower bound p−(f, α) to the experimental results, while (6)
models the average expected detection probability E[p]. It can
be seen that the models quite closely capture the experimental
results.

We additionally report results of a strategic selection with
as α = 9/512 = 1.75%, that is capable of perfect classification
with just one fifth M = 10 of the probe budget of the random
selection. Two arrows further annotate the loss of discrimina-
tive power with respect to a strategic selection. The right arrow
loosely indicate the ploss factor due to random selection; notice
that the extent of the gap has a qualitative value, since the prob-
ing budget of the strategic vs random selection differ (a quan-
titative assessment would require using α = 9/512 = 1.75%
also for the random selection; both curves are reported in [8]).

The left arrow reports a special degenerated case worth men-
tioning, that is not captured by the model (this case that was
only briefly commented in [8] due to lack of space). Namely,
faults affecting link `1 close to the root of the tree for fanout
k = 2 cannot be reliably discriminated by leaf measurement
only: indeed, all shortest path to affected probes pass through

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

R
o
o
t

ca
u
se

 i
d
en

ti
fi

ca
ti

o
n
 p

ro
b
ab

il
it

y

Fault depth

E[pPoisson]

p
-
Poisson

p
lo

ss

Lack of
probe 0

Poisson models (α=50/512)
Experiments: Random selection (α=50/512)
Experiments: Strategic selection (α=9/512)

Figure 10: Classification results at a glance: Probability of correctly identify-
ing the faulty link for the Poisson lower bound (3) and average (6) models vs
experiment

both root links, that have thus the same score: breaking ties at
random equal to correct classification in only 50% of the cases.
Notice that this holds for root-link failures and only for k = 2,
while trees with higher k-arity are not concerned. Thus, suc-
cessful classification requires being able to condition over the
set of links `D+, ..., `1 from the leaf to the root, which can be
done with the assistance of an ISP probe 0 (recall Fig. 3): in
case measurements involving Probe 0 are affected, this means
that `1 is the root cause link; in case Probe 0 is not affected, this
means that the other root link (symmetrical to `1) is affected
(while `1 is not).

Summarizing, we see our proposed models accurately es-
timate classification performance. Additionally, comparing re-
sults of random vs strategic selection, we gather that knowledge
of the network topology needs to be exploited, which is possible
to do by simply biasing probe selections without revealing the
exact topology. Finally, we see that deploying probes in specific
points in the network may be required in some cases to achieve
perfect classification.

6.3. Impact of topology

We study the impact of the network topology on the clas-
sification performance. We use two d × k trees with dk =512
probes (i.e., leaves) each. The first tree has a depth d = 3 and
a fanout k = 8 while the second tree has a depth d = 9 and a
fanout k = 2. Fig. 11 reports the correct detection probability
of the faulty link as a function of the depth of the injected fault
in the tree, along with a pictographical representation of these
topologies.

First, consider the deepest 9 × 2 tree. As expected, results
indicate that the correct detection probability decreases as the
fault depth increases: when the root cause link is located close
to the leaves of the tree, it is harder to randomly sample an-
other probe which is also affected by the fault. In this case, we

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

Depth of faulty link [w.r.t root]

k=2
k=8

(a) 2x9 tree,
Frutchterman layout

(b) 8x3 tree,
Yifan Hu layout

Figure 11: Sensitivity analysis: Impact of network topology on classification
with random selection

thus need a smarter probe selection strategy to improve the link
classification performance.

Next, comparison performance of both trees show an inter-
esting (and partly artificial) tradeoff. Notice indeed that, for
faults located close to the root, detection is only ambiguous for
k = 2, so that perfect classification is achieved for k = 8. As
the fault depth increases, the curves cross: at depth f = 2, 3
and 4 the classification is perfect for the k = 2 tree, which is no
longer the case for k = 8. This can be explained with the fact
that whereas the absolute depth is the same, the relative depth
largely differs. It follows that a fault at depth f = 3 in the
k = 8 tree should be compared with a fault at maximum depth
in the k = 2 tree: with this in mind, it is easy to see that fault
detection is easier in trees with larger fanout.

Summarizing, binary trees provide a conservative estimate
of classification performance.

6.4. Impact of the probe selection policy Sp
We have early shown that a great loss of discriminative

power is rooted in naive random selection of probes, arguing for
the need of strategic selections implemented via biased probe
suggestion through an IETF ALTO-like interface. Yet, there
may be cases where either operators are not willing to (or can-
not bare the cost of) deploying such strategies. It is thus worth
exploring whether it would be possible to devise simple criteria
to hopefully approach a stratified selection.

To this aim, we compare random selection with probe selec-
tion policies Sp policies based on IP-distance (IP), size of the
clusters (balance), and a linear combination of both. Recall that

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 50

C
o

rr
ec

t
cl

as
si

fi
ca

ti
o

n
 p

ro
b

ab
il

it
y

Probe budget

Random
IP
Balanced
IP+Balanced

Figure 12: Sensitivity analysis: Impact of probe selection policy Sp

in Algorithm 1, probes were probabilistically selected accord-
ing to a generic score. Notice this mechanism is quite generic:
while the case of uniform random selection is represented by
probes with homogeneous scores, it is possible to weight mul-
tiple scores (linearly or not) into a single score.

We average the results over all the depths of the binary
tree and contrast them with a random selection policy. Un-
fortunately, as it can be seen from Fig. 12, the discriminative
power is roughly the same over all probe selection policies.
In other words, the considered set of metrics do not bring any
useful information to bias the selection upon, so that at most
a limited gain over uniform selection appears. For instance,
the absence of any notion of netmasks and hierarchy in the IP-
distance makes it hard to extract information about how topo-
logically close/far probes are from each other. While it would
be possible to design metrics that take into account tree fanout
and depth, we point out that any further assumption about topo-
logical properties correspond to a significant loss of generality:
in this case, which implicitly means that a good knowledge of
the topology is available, an ALTO-like solution seems prefer-
able as more flexible.

It is thus worth questioning whether these discouraging re-
sults are due to the use of a limited set of metrics. At first sight,
an obvious metric that we did not explicitly took into account
is represented by the IP-TTL field: in the case of trees, hav-
ing an indication of the hop-count distance traveled by packets
in the data plane can greatly assist in understanding to which
of the different strata each probe belongs to. Yet it is easy to
convince that TTL is only apparently useful. To begin with,
TTL is easily observed a posteriori, so that it would be a more
useful filter, but could not be used to perform probe selection.
Moreover, since Mininet uses virtual switches to construct the
network, no routing operation is performed on packets, so that
the IP-TTL field remains unchanged and is therefore not helpful
in our testbed. Additionally, while it is possible to learn TTL
over time, its relevance in real operational networks remains

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 50

C
o

rr
ec

t
cl

as
si

fi
ca

ti
o

n
 p

ro
b

ab
il

it
y

Probe budget

Gain
over

Random

×1.4

×3.4

×1.3

×4.0

×1.3

×4.6

Random(1/D
+
)

Proportional
Argmax

Figure 13: Sensitivity analysis: Impact of link selection policy S`

dubious due to weak correlation of TTL with spatial location
due the widespread presence of middleboxes[22]. As a conse-
quence, TTL-based stratification cannot be considered a valid
alternative.

Summarizing, the discriminative power of a stratified se-
lection is hardly implemented in generic distributed settings,
which reinforces the need for cooperation between the network
and the applications as this work proposes.

6.5. Impact of the link selection policy S`
Finally, we use three different policies to select the faulty

links: S` ∈ {random, proportional, argmax}. Results, averaged
over all depths of the binary tree, are reported in Fig. 13. The
plot is further annotated with the gain factor over the random
selection: while proportional selection brings a constant im-
provement of about 40%, the argmax policy brings consider-
able gains (in excess of a factor 4×) which grow with the probe
budget. The reason why the argmax policy is, on average, very
effective, is that links scores are well separated, which is ex-
pected in reason of the good clustering properties early shown.
Additionally, notice that the argmax policy is not particularly
hurting even in degenerate case where the faulty links is at the
root of the tree as early shown – the error here is the same as in
the proportional case.

While the argmax policy is thus a simple and valid choice
when no measurement error appear, one last comment is worth
making. Indeed, since P+ and P− have no semantic explic-
itly associated (i.e., for low bandwidth P− = P faulty, while
P+ = P faulty for high losses) a domain expert is required to
specialize the argmax vs argmin selection policy to each met-
ric. Alternatively, metrics in the framework could be defined in
such a way to be able to deterministically associate, e.g., large
deviations with impairments. This is a crucial step required to
make the framework of practical use, other practical considera-
tions are discussed in Sec. 7.

Summarizing, in case no measurement bias or artifact arise,

17

A

B

C D

E

F

G

−1

H

0

I

1

Figure 14: Example of diagnosis tree formalism

the argmax policy appears to be a simple and good enough pol-
icy for the identification of faulty links.

7. Practical considerations

In this paper we have proposed, modeled, implemented and
experimentally evaluated an algorithm for network troubleshoot-
ing. Successful deployment of NetProbe in operational net-
works is of course conditioned to the availability (and mainte-
nance) of the software for the most popular end-user platforms
(Android, iOS, Windows, etc.), an engineering work that goes
beyond the scope of this paper. Before the NetProbe software
can be used in a operational network, there are also a number
of scientific challenges that need to be solved, that this section
discusses.

7.1. Diagnosis trees

We report considerations of practical relevance by adopting
a diagnosis graph formalism, exemplified in Fig. 14 for the sake
of clarity, where diagnosis actions are arranged as a tree. Depth
in the tree represents a loose temporal sequence, so that items
at the same depth are actions happening in parallel. (e.g., ac-
tions B and E, or any in {C,D,G,H, I}). Branches can be
either conditionally or systematically followed: for instance, ir-
respectively of results of action A, the system launches actions
E and B (the former is faster than the latter, so their execution
is not necessarily happening or completed at the same time).
Similarly, C and D are launched after completion of task B.
Conversely, depending on the result of action F , either action
G (when F = −1) or H (when F = 0) or I(when F = 1) is
launched.

This simple formalism allows to both express (complex)
sequence of measurements, as well as encode drill-down trou-
bleshooting [41]. In the case of drill-down methodologies, chains
of actions are followed depending on values of their predeces-
sor actions, so that one single path of the tree is followed from
the root to the leaves (i.e., in case all edges have conditions de-
pending on results at the previous node) In the case of measure-
ment sequences, the digraph representation immediately con-
veys a variable degree of parallelism and loose scheduling prop-
erties, that ultimately allow to gather a set of measurement fea-
tures (namely, in the example of Fig. 14 the feature vector will
be constituted by all the A,B,C,D,E, F measurements and

one of the {G,H,I}) over which data mining or big data ap-
proaches can be applied).

With the above formalism, we now list challenges that can
be faced by an NetProbe software deployed in an operational
network, and illustrate guidelines for their solution.

7.2. Scheduling tradeoff

Assume for simplicity that measurements have no condi-
tional execution7, and represent three scheduling strategies as
shown in Fig. 15. At the extreme left, all measurements are
scheduled in sequence. The main drawback of this scheduling
strategy is the long execution time: as the measurement condi-
tions evolve over time, diagnosis decisions are possibly taken
over measurements that represent a different behaviour of the
network service to be measured, weakening the correlation be-
tween measurements. At the extreme right, all measurements
are scheduled in parallel, which guarantees the shortest execu-
tion time, but possibly raises problems due to possible interfer-
ence of multiple measurements happening in parallel. Notice
that while the figure represents a single tree, this tree will pos-
sibly be instantiated per user. Therefore, the number of simul-
taneous measurements due to the fanout of the per-user tree has
to be scaled up by the scale of the measurement campaign. The
intermediate scenario represents a tradeoff between the long du-
ration of sequential scheduling and the possible interference of
parallel scheduling. Remapping a sequential or a parallel tree to
an intermediate one is not easy in the general case; yet, schedul-
ing implications have a possibly determinant effect on the result
of the clustering/classification algorithms, which are thus worth
discussing.

Clearly, the existence of many independent and concurrent
instances of per-user diagnosis graphs only makes the problem
harder. To cope with this, baseline measurements are easily
desynchronized in fully distributed settings (e.g., by random-
ization and low frequency). However, in case of a troubles with
a very popular Internet service, it is important to avoid a mea-
surement flash crowd: a global view is needed in this case to
avoid mutual interference across diagnosis trees (or even de-
nial of service to the troublesome service), and an ALTO-like
interface could provide some loose yet effective means of coor-
dination.

7.3. Implications of temporal properties and guidelines

Timely detection and temporal coherence would benefit of a
parallel scheduling, which may not however be feasible in prac-
tice, and which raises other potential issues. In machine learn-
ing terms, the vector of measurements (A, B,C,D) represents
a scenario where all measurements are taken at possibly differ-
ent times (A(tA), B(tB), C(tC), D(tD)), where tA,tB , tC ,tD
represent the measurement start time (that is t = tA = tB =
tC = tD only for parallel scheduling in Fig. 15).

7In case measurements have conditional execution, considerations devel-
oped in this section still hold, but this would unnecessarily lead to a more cum-
bersome notation.

18

Scheduling strategies

Sequential

A

B

C

D

Intermediate

A

C

B

D

Parallel

A B C D

Figure 15: Illustration of the measurement scheduling tradeoff

Clearly, in the case of sequential scheduling, the network
conditions can potentially change during the measurement pe-
riod (or the phenomena causing performance degradations can
possibly vanish, depending on the length of the chain). This
also implies that correlation between any pair of measurements
X,Y ∈ {A,B,C,D}may weaken, making the detection prob-
lem harder: ifX(t) and Y (t) are correlated at time t, it does not
mean that they are necessarily correlated at times tX and tY .

This becomes especially problematic if measurement A,B,
C,D are carried from different probes, implying that a new
HTTP(S) connection has to be established (and a TLS hand-
shake performed). To reduce unnecessary delay ‖tX − tY ‖ be-
tween any pair of measurements X,Y ∈ {A,B,C,D}, and of
the whole measurement chain, it would be desirable to oppor-
tunistically establish connections in parallel at the root of the
tree, and then sequentially schedule measurements over these
established connections. Consequently, the time delay between
a pair of consecutive measurements would be bound to the dura-
tion of the measurement itself (which is generally either known,
deterministic and tunable, or can be statistically bound). This
holds unless an agent is already performing a measurement task,
in which case in our current action management policy the new
incoming measurement request will be queued up by the agent
(recall Fig.6).

7.4. Interaction of homogeneous/heterogeneous measurements
When measuring any given metric of interest, precision and

accuracy are intrinsic to each tool, and can limit the usefulness
of the measurement, or even possibly lead to misinformation in
case of a large bias. More importantly, there may be side effects
for the measurement tools, that are possibly well-known and
thus avoidable or hidden and thus more insidious. An example
of a well-known effect is represented by delay measurement
under load, exploited to infer buffer size and assess the extent
of bufferbloat [3, 36, 38]; an example of hidden effect is rep-
resented by mutual interference of simultaneous measurements
of a bottleneck link as early noted in this work and [40].

At the same time, general guidelines are hard to precisely
formalize here – notice indeed that concurrent measurements
do not necessarily imply interference. For instance, consider
the example in Fig. 16 where host i is scheduling parallel band-
width measurements to hosts j and k (i.e.,Bw(i, j) andBw(i, k)),

Diagnosis root at node i, measure:

Bw(i, j)

RTT (i, j) Loss(i, j)

Bw(i, k)

RTT (i, k) Loss(i, k)

Figure 16: Interaction of homogeneous measurements: Bw(i, j) andBw(i, k)
may mutually interfere

Diagnosis root at node i, measure:

Bw(i, j)

RTT (i, j) Loss(i, j)

Loss(i, k)

RTT (i, k) Bw(i, k)

Figure 17: Interaction of heterogeneous measurements: RTT (i, j) may be
affected by Bw(i, k)

and subsequently scheduling parallel measurements of RTT and
losses to the same hosts (RTT(i,j), RTT(i,k), Loss(i,j), Loss(i,k)).
Clearly, measurements Bw(i, j) and Bw(i, k) will interact if i
is using the same physical interface for both measurements (in
case a multi-homed host i probes j, k over unrelated interfaces
such as 3G and WiFi, this would not cause interference). Addi-
tionally, the bottleneck towards Bw(i, j) and Bw(i, k) should
be located in the path segment common to both i, j and i, k
pairs (which may not be the case when per-flow load balancing
techniques are used,etc.). Clearly this is even more challeng-
ing since any apparently unrelated measurement Bw(i, j) and
Bw(m,n) may interfere when data paths i, j and m,n share a
bottleneck link.

As such, while it is known that measurements may interfere,
and that thus it would be good practice to reduce their potential
interference by scheduling them in series, at the same time it
would be perfectly legitimate to schedule them in parallel in
the case of a non shared bottleneck, which is hard to assess in
the general case. It follows that the problem of distributed mea-
surement scheduling cannot be solved in the general instance in
completely distributed settings. Without managing fine-grained
scheduling, an ALTO-like interface could facilitate at coarse
grained, keeping track of active measurements sharing com-
mon resources between peer pairs. Such a server would not
of course take into account dynamic components (that will be
hard to assess in real time), but it would be easy to exploit static
topological information to limit the number of concurrent mea-
surement that crosses the same path.

Morever, even heterogeneous measurement may interfere as
illustrated in Fig. 17: RTT (i, k) may be affected by Bw(i, k),
depending on the technique employed to measure Bw(i, k).
Additionally, in case the bottleneck is located in a segment com-
mon to both the i, j and i, k paths, then bandwidth measurement

19

Bw(i, j) can possibly affectLoss(i, k) when the probing rate is
too high with respect to the available bandwidth, and provided
that the buffer fills up during the measurement timescale (simi-
lar considerations hold forBw(i, k) vsRTT (i, j) andLoss(i, j)).
Exposing interference between measurements allows to arrange
scheduling trees that, at least for a NetProbe agent, minimizes
the interference. Additionally, as in the previous section, it is
possible to select tools that are less intrusive, to reduce the in-
terference, though this may lead to loss of accuracy for some
measurements.

Assessing the combination of tools, and the selected schedul-
ing of measurements, that will not cause interference while re-
taining sufficient accuracy to meet the analysis objective, re-
quires rigorous calibration and validation — which is not dif-
ferent than the methodology outlined in this work, and yet re-
quires a considerably larger experimental effort to make such a
system usable in operational networks.

8. Related work

From a very high-level viewpoint, network troubleshooting
efforts [1, 7, 2, 3, 4, 42, 43, 12, 13, 18] can be roughly parti-
tioned into work having a more practical [1, 7, 2, 3, 4, 42] or
theoretic [43, 12, 13, 18] flavor. While most work, including
ours, uses active measurements [1, 2, 3, 4, 43, 12, 13, 18], there
are exceptions that either use passive measurements [7] or have
access to a multitude of logs [42]. In terms of network segment,
previous work focuses on home/ access [1, 7, 4], enterprise [42]
or backbone [43, 6, 44] networks. Some studies do not target
a network segment in particular [12, 13, 18] and remain at a
more abstract level. In this paper, we focus on home and access
networks.

Our methodology is based solely on end-to-end measure-
ments to localize the set of links that are the most likely root
cause of performance degradations. Closest to our work with
this regard [43, 12, 13, 1]is the large body of work in network
tomography which exploits end-to-end measurement from a source
to multiple receivers due to common paths to infer properties
of internal network links such as network outages [43], de-
lays [12], and packet losses [13]. However, these studies make
simplifying assumptions that do not hold in real deployments [6,
45] such as the use of multicast [12]. In addition, the pro-
posed algorithms are computationally expensive even for net-
works of reasonable scale and their accuracy is affected by the
scale and the topology of the network [6]. Conversely, more
practical work such as [1] that leverages, as we do in this work,
application-layer multicast is more focused on the design of
the system as opposite to its performance evaluation, which re-
mains anecdotal at best [46, 1].

In this work, we take the best of both worlds by presenting
a practical, general framework to identify faulty links that we
study from both an analytical as well as from an experimen-
tal perspective. We instantiate such framework on two specific
metrics: delays (as in [12]) and bottleneck bandwidth (which is
notoriously more difficult to measure). When full topological
information is available (e.g., in a ISP-managed case), our al-
gorithm identifies the root cause (as in classic tomography). In

case topology information is unavailable (e.g., in the Internet in
general), our algorithm limitedly performs a clustering of mea-
surement probes (as in binary network tomography [5]), where
the inference problem is simplified by separating links (in our
case probes) into good vs failed ones.

Additionally, one major limit of the related literature is the
realism of ground truth data to evaluate the accuracy of the algo-
rithms. Even in practical approaches, ground truth in the form
of user tickets [42] or user feedback [7] is extremely rare, so
that the absence of ground truth is commonplace [1, 2, 3, 4].
Theoretic work builds ground truth with simulations [13], or
using syslogs and SNMP data in operational networks [43]. On
the one hand, although simulations simplify the control over
failure location and duration, they do not provide realistic set-
tings. On the other hand, the ground truth is either completely
missing in real operational networks (such as PlanetLab [5])
or partially missing in testbeds [43, 45], where network events
outside of the control of researchers can happen. For instance,
[45] evaluates several existing network tomography techniques
on the VINI testbed [47]: the evaluation results show that tech-
niques under study possibly detect faults that are not injected
in the study as part of the controlled faults – which happens be-
cause the emulated links in VINI are part of paths that traverse
the wide-area network, and show once more the difficulty to
generate a reliable ground truth in realistic settings.

To cope with this, our setup employs controlled emulation
through Mininet [9] which is (relatively) fast to implement, uses
real code (including kernel stack and our software), and allows
testing on fairly large scale topologies. This setup allows full
control on the number, duration, and location of network prob-
lems. Additionally, by running the full network stack, Mininet
keeps the real world noise in the underlying measurements, thus
providing a more challenging validation environment with re-
spect to simulation. This allows to retain control over the exper-
iments, while adding realism tied to the use of the real protocol
stack. As a side effect of this choice, the NetProbes software
that we release as open source [10] has also undergone a sig-
nificant amount of experimental validation. Most importantly,
any peer researcher is capable of repeating our experiments in
order to validate our results, compare their approach to ours,
and extend this work.

With respect to our own preliminary work [8], in this paper
we not only more thoroughly describe our framework and its
application scope, but also present an extensive set of analyti-
cal (notably, we contrast the original model [8] with the exact
Hypergeometric solution and its Poisson approximation), and
experimental results (e.g., in terms of both an extended set of
calibration as well as probe selection schemes). However, aside
of results of punctual experiments that are discussed in this ex-
tended version, we believe that our methodological contribu-
tion, as well as the NetProbe software we release, is a more
important contribution, as it empowers peer researchers with
tools to not only replicate our results, but also to enlarge the
boundaries of the present investigation (e.g., by comparing their
approach to ours in a different set of scenarios).

20

9. Conclusions

This paper proposes, models, implements and experimen-
tally evaluates an algorithm for network troubleshooting. The
algorithm we implement in NetProbe is able to diagnose net-
work performance disruptions in the home and access networks,
in terms of clustering or classification. The algorithm is also
flexible as it decouples the measurement from the inference pro-
cess, making it suitable to cover a wide range of troubleshoot-
ing cases. We follow an experimental approach and use an em-
ulated environment based on Mininet to validate our proposed
algorithm. Our choice of Mininet is guided by our requirements
to have flexibility in designing the experiments and full control
over the injected faults. We perform a thorough calibration of
the emulation environment, an often neglected but necessary
step to achieve scientifically sound results.

Provided that measurement tools are not biases, our clus-
tering methodology is very reliable in evaluating the severity
of the performance issue. In case of ISP-assistance via simple
strategic probe selection, our classification methodology further
achieves perfect classification, correctly identifying the root cause
links when the network topology is known. We further con-
trast the experimental results with simple analytical model(s)
that compute the expected correct detection probability under a
random probe selection strategy, with good accuracy. We also
evaluate the impact of topology, probe budget and various probe
selection strategies on our algorithm.

Our proposed solution is a first step towards the goal of hav-
ing reproducible network troubleshooting algorithm, for which
we make all the code we used in this paper publicly available to
the scientific community.

Acknowledgement

This work has been carried out at LINCS http://www.
lincs.fr. The research leading to these results has received
funding from the European Union under the FP7 Grant Agree-
ment n. 318627.

References

[1] K. Kim, H. Nam, V. K. Singh, D. Song, H. Schulzrinne, DYSWIS: crowd-
sourcing a home network diagnosis, in: Proc. of International Conference
on Computer Communications and Networks (ICCCN), 2014.

[2] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman, N. Weaver,
V. Paxson, Fathom: A browser-based network measurement platform, in:
Proc. of ACM IMC, 2012.

[3] C. Kreibich, N. Weaver, B. Nechaev, V. Paxson, Netalyzr: Illuminating
the edge network, in: Proc. of ACM IMC, 2010.

[4] Z. Bischof, J. Otto, M. Sánchez, J. Rula, D. Choffnes, F. Bustamante,
Crowdsourcing ISP characterization to the network edge, in: Proc. of
SIGCOMM WMUST, 2011.

[5] H. X. Nguyen, P. Thiran, The boolean solution to the congested IP link
location problem: Theory and practice, in: Proc. of IEEE INFOCOM,
2007.

[6] D. Ghita, C. Karakus, K. J. Argyraki, P. Thiran, Shifting network tomog-
raphy toward a practical goal, in: Proc. of ACM CoNEXT, 2011.

[7] D. Joumblatt, R. Teixeira, J. Chandrashekar, N. Taft, Hostview: Annotat-
ing end-host performance measurements with user feedback, ACM SIG-
METRICS Performance Evaluation Review 38 (3) (2011) 43–48.

[8] F. Espinet, D. Joumblatt, D. Rossi, Zen and the art of network trou-
bleshooting: a hands on experimental study, in: Proc. of Traffic Meau-
rement and Analysis (TMA), 2015.

[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McKeown, Repro-
ducible network experiments using container-based emulation, in: Proc.
of ACM CoNEXT, 2012.

[10] NetProbes, https://github.com/netixx/NetProbes.
[11] Emulator scripts, https://github.com/netixx/

mininet-NetProbes.
[12] F. L. Presti, N. G. Duffield, J. Horowitz, D. F. Towsley, Multicast-based

inference of network-internal delay distributions, IEEE/ACM Transac-
tions on Networking 10 (6) (2002) 761–775.

[13] N. G. Duffield, F. L. Presti, V. Paxson, D. F. Towsley, Network loss to-
mography using striped unicast probes, IEEE/ACM Transactions on Net-
working 14 (4) (2006) 697–710.

[14] [link].
URL http://www.caida.org

[15] S. Sundaresan, N. Feamster, R. Teixeira, Locating throughput bottlenecks
in home networks, Proc. of ACM SIGCOMM, Demo Session, 2014, pp.
351–352.

[16] L. DiCioccio, R. Teixeira, M. May, C. Kreibich, Probe and pray: Using
upnp for home network measurements, in: Proc. of Passive and Active
Measurement (PAM), 2012, pp. 96–105.

[17] [link].
URL http://www.apisense.com/

[18] N. G. Duffield, J. Horowitz, F. Lo Presti, D. Towsley, Multicast topology
inference from measured end-to-end loss, IEEE Transactions on Informa-
tion Theory 48 (1) (2002) 26–45.

[19] T. Bu, N. Duffield, F. L. Presti, D. Towsley, Network tomography on gen-
eral topologies, in: Proc. of ACM SIGMETRICS, 2002.

[20] B. Donnet, M. Luckie, P. Mérindol, J.-J. Pansiot, Revealing mpls tunnels
obscured from traceroute, ACM SIGCOMM Computer Communication
Review 42 (2) (2012) 87–93.

[21] N. Spring, R. Mahajan, D. Wetherall, Measuring isp topologies with rock-
etfuel, in: ACM SIGCOMM Computer Communication Review, Vol. 32,
ACM, 2002, pp. 133–145.

[22] P. Marchetta, V. Persico, A. Pescapé, E. Katz-Bassett, Don’t trust tracer-
oute (completely), Proc. of CoNEXT Student Workhop, 2013.

[23] C. Pelsser, L. Cittadini, S. Vissicchio, R. Bush, From paris to tokyo: On
the suitability of ping to measure latency, in: Proc. of ACM IMC, 2013.

[24] [link].
URL https://datatracker.ietf.org/wg/alto/charter/

[25] J. Seedorf, S. Kiesel, M. Stiemerling, Traffic localization for p2p-
applications: the alto approach, in: IEEE Conference on Peer-to-Peer
Computing (P2P), 2009.

[26] C. Zhang, P. Dhungel, D. Wu, K. W. Ross, Unraveling the bittorrent
ecosystem, IEEE Transactions on Parallel and Distributed Systems, 22 (7)
(2011) 1164–1177.

[27] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, S. Shenker, Less Pain, Most of the Gain:
Incrementally Deployable ICN, in: Proc. of ACM SIGCOMM, 2013.

[28] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products,
Academic Press, 2000.

[29] V. Paxson, Keynote: Reflections on measurement research: Crooked
lines, straight lines, and moneyshots, in: Proc. of ACM SIGCOMM,
2011.

[30] E. Goldoni, M. Schivi, End-to-end available bandwidth estimation tools,
an experimental comparison, in: Proc. of Traffic Meaurement and Analy-
sis (TMA), 2010.

[31] J. Navratil, R. L. Cottrell, Abwe: A practical approach to available band-
width estimation, in: Proc. of Passive and Active Measurement (PAM),
2003.

[32] E. Goldoni, G. Rossi, A. Torelli, Assolo, a new method for available band-
width estimation, in: Proc. of International Conference on Internet Mon-
itoring and Protection, (ICIMP), 2009, pp. 130–136.

[33] N. Hu, P. Steenkiste, Evaluation and characterization of available band-
width probing techniques, IEEE J. Selected Areas in Communications
21 (6) (2003) 879–894.

[34] [link].
URL https://iperf.fr/

[35] J. Strauss, D. Katabi, F. Kaashoek, A measurement study of available

21

bandwidth estimation tools, in: Proc. of ACM IMC, 2003, pp. 39–44.
[36] H. Jiang, Y. Wang, K. Lee, I. Rhee, Tackling bufferbloat in 3G/4G net-

works, in: Proc. of ACM IMC, 2012, pp. 329–342.
[37] V. Cerf, V. Jacobson, N. Weaver, J. Gettys, Bufferbloat: what’s wrong

with the internet?, Communications of the ACM 55 (2) (2012) 40–47.
[38] C. Chirichella, D. Rossi, To the moon and back: are internet bufferbloat

delays really that large, in: Proc. of Traffic Meaurement and Analysis
(TMA), 2013.

[39] M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation tech-
niques, Journal of Intelligent Information Systems 17 (2-3) (2001) 107–
145.

[40] D. Croce, M. Mellia, E. Leonardi, The quest for bandwidth estimation
techniques for large-scale distributed systems, ACM SIGMETRICS Per-
formance Evaluation Review 37 (3) (2010) 20–25.

[41] B. Gregg, Thinking methodically about performance, Communications of
the ACM 56 (2) (2013) 45–51.

[42] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, M. Zhang,
Towards highly reliable enterprise network services via inference of
multi-level dependencies, in: Proc. of ACM SIGCOMM, 2007.

[43] R. Kompella, J. Yates, A. Greenberg, A. Snoeren, Detection and localiza-
tion of network black holes, in: Proc. of IEEE INFOCOM, 2007.

[44] A. Dhamdhere, R. Teixeira, C. Dovrolis, C. Diot, Netdiagnoser: Trou-
bleshooting network unreachabilities using end-to-end probes and routing
data, in: Proc. of ACM CoNEXT, 2007.

[45] Y. Huang, N. Feamster, R. Teixeira, Practical issues with using network
tomography for fault diagnosis, ACM SIGCOMM Computer Communi-
cation Review 38 (5) (2008) 53–58.

[46] V. K. Singh, H. Schulzrinne, K. Miao, Dyswis: An architecture for auto-
mated diagnosis of networks, in: Proc. of IEEE/IFIP Network Operations
and Management Symposium (NOMS), 2008, pp. 851–854.

[47] A. Bavier, N. Feamster, M. Huang, L. Peterson, J. Rexford, In vini veri-
tas: Realistic and controlled network experimentation, in: Proc. of ACM
SIGCOMM, 2006.

Vitae

Francois Espinet received a BSc diploma
for Ecole Polytechnique and is currently a
MSc student at Telecom ParisTech. This
work has been carried out as part of his re-
search stage work under the supervision of
Prof. Dario Rossi.

Diana Zeaiter Joumblatt received her BSc
in Computer Science from the American
University of Beirut (2004), and her MSc
and PhD in Computer Science, both from
Université Pierre et Marie Curie (UPMC),
in 2008 and 2012 respecively. During 2012-
2014, she held a PostDoc position at Tele-

com ParisTech.

Dario Rossi is a Professor at Telecom Paris-
Tech and Ecole Polytechnique. He received
his MSc and PhD degrees from Politecnico
di Torino in 2001 and 2005 respectively,
and his HDR degree from Université Pierre
et Marie Curie (UPMC) in 2010. During
2003-2004, he held a visiting researcher
position in the Computer Science division
at University of California, Berkeley. He

has coauthored 9 patents and over 150 papers in leading con-
ferences and journals, that received 3 best paper awards, an
IETF Applied Network Research Prize (2016) a Google Fac-
ulty Research Award (2015). He participated in the program
committees of over 50 conferences including ACM ICN, ACM
CoNEXT, IEEE INFOCOM of which he was also Distinguished
Member (2015,2016). His current research interests include In-
ternet traffic measurement, Information centric networks and
high speed networking. He is a Senior Member of IEEE and
ACM.

22

