Fighting the bufferbloat: on the coexistence
of AQM and low priority congestion control

Y.Gong?, D.Rossi?®, C.Testa®!, S.Valenti®?, M.D.T#ht

@Télécom ParisTech, 23 Avenue d’Italie, 75013 Paris, France

Abstract

Nowadays, due to excessive queuing, delays on the Internet can grow longer than the round trip time between the Moon
and the Earth — for which the “bufferbloat” term was recently coined. Some point to active queue management (AQM)
as the solution. Others propose end-to-end low-priority congestion control techniques (LPCC). Under both approaches,
promising advances have been made in recent times: notable examples are CoDel for AQM, and LEDBAT for LPCC.
In this paper, we warn of a potentially fateful interaction when AQM and LPCC techniques are combined: namely,
AQM resets the relative level of priority between best-effort and low-priority congestion control protocols. We validate
the generality of our findings by an extended set of experiments with packet-level ns2 simulation, considering 5 AQM
techniques and 3 LPCC protocols, and carry on a thorough sensitivity analysis varying several parameters of the net-
working scenario. We complete the simulation via an experimental campaign conducted on both controlled testbeds
and on the Internet, confirming the reprioritization issue to hold in the real world at least under all combination of
AQM policies and LPCC protocols available in the Linux kernel. To promote cross-comparison, we make our scripts and

dataset available to the research community.

Keywords:

Bufferbloat, AQM, Scavenger protocol, Simulation, Experiments

1. Introduction

Internet delays, especially in the uplink direction, “are
now as common as they are maddening” [1]. The root
cause for these delays can be identified with excess buffer-
ing also known as “bufferbloat” inside a network. Al-
though this is nothing new [2], the situation has deteri-
orated in recent years due to mainly two facts: (i) TCP’s
loss-based design forces the bottleneck buffer to fill before
the sender reduces its rate and (ii) the availability, due to
Moore’s law, of relatively large memories in front of low-
capacity ADSL and cable modems translate into multiple
seconds worth of queuing delay [3].

Some point to local active queue management (AQM)
techniques (i.e., affect the scheduling and discard pack-
ets in the buffer differently from a traditional FIFO dis-
cipline) as the ultimate solution to reduce queuing delay.
Others prefer another direction: the engineering of end-
to-end flow and congestion control (CC) alternatives to
best-effort TCP, and specifically aiming at lower than best-
effort priority. Irrespectively of pro-AQM [4] or pro-CC [5]
positions, in this work we instead focus on the coexistence

Email addresses: yixi.gong@enst.fr (Y.Gong),
dario.rossi@enst.fr (D.Rossi), claudio.testa@orange.com
(C.Testa), silvio.valenti@gmail.com (S.Valenti),
dave.taht@gmail.com (M.D.Té&ht)

ICurrent affiliation: Orange.
2Current affiliation: Google Inc.

Preprint submitted to Computer Networks

of best-effort TCP CC and Low Priority CC (LPCC) tran-
siting a bottleneck link governed by AQM. In the rest of
this section we explain the reasons supporting the rele-
vance and timeliness of this goal.

Active queue management is not a new research field,
with numerous techniques proposed over the years such as
RED [6], SFQ [7], DRR [8], CHOKe [9], SQF [10] and,
very recently, CoDel [11]. Yet, despite numerous AQM
proposals, they have so far encountered limited adoption.
The difficulties in tuning RED [12] are well known, and
the computational cost of Fair Queuing was, back in the
90s, considered to be prohibitive (see [1] for an historical
perspective). The situation has however started to change,
with operators worldwide implementing AQM policies in
the upstream of the ADSL modem (e.g., in France, Free
implements SFQ since 2005 [13], and Orange starts to de-
ploy SQF [10]) to improve the quality of user experience.

Congestion and flow control may have different goals,
such as controlling the streaming rate over TCP connec-
tions as done by YouTube or Netflix, or aggressively pro-
tecting user QoE as done by Skype over UDP, or to provide
low-priority bulk transfers service toward the Cloud (e.g.,
Picasa background upload or Microsoft Background In-
telligent Transfer Service BITS, etc.). Similarly, research
in the CC domain has produced many proposals for low-
priority (or background) transfers, such as NICE [14], TCP-
LP [15] or, more recently, LEDBAT [16]. In terms of adop-
tion, while TCP-LP and NICE have been around in the

December 13, 2013

Linux kernel for about a decade, they have seldom been
used®. However, ignited by the ease of application-layer
deployment, scavenging CC services are now becoming
popular: examples of this trend are represented by Picasa’s
background upload option and the adoption of a LPCC by
BitTorrent. Indeed, BitTorrent recently abandoned TCP
in favor of LEDBAT, a “low extra delay background trans-
port” protocol implemented at the application-layer over
a UDP framing®. According to Brahm Cohen, and as con-
firmed by our measurement [18], LEDBAT is now “the
bulk of all BitTorrent traffic, [..] most consumer ISPs
have seen the majority of their upload traffic switch to a
UDP-based protocol” [19]. Concerning the penetration of
BitTorrent traffic, while downlink traffic is nowadays dom-
inated by video streaming, BitTorrent remains the top-1
contributor in the uplink direction. As pointed out by a
recent report [20] from the Canadian broadband manage-
ment company Sandvine, BitTorrent is the top-1 applica-
tion on uplink traffic, and can be credited for over one
third of all upload traffic in North America, Latin Amer-
ica and Asia Pacific. Additionally, BitTorrent represent
not less than 10% of the aggregated uplink and downlink
traffic, and is still the top-1 application in terms of aggre-
gated traffic volume in the Asia Pacific region. Finally, as
median Internet traffic increases, so does the overall Bit-
Torrent traffic.

From the above observation, we gather an increasing
adoption trend of both AQM techniques and LPCC pro-
tocols, which already coexist in the current Internet. Yet,
studies have so far focused on AQM or LPCC, and only sel-
dom jointly considered these two aspects. As such, inter-
actions between AQM and LPCC is, at this stage, poorly
understood. In this paper, we show a potentially fate-
ful interplay between AQM and LPCC: namely, AQM re-
sets the relative level of priority between best-effort and
low-priority congestion control protocols. Intuitively, this
arises from the fact that one of the typical design goals
of AQM is to enforce fairness among flows, to penalize
the most aggressive heavy-hitter flows and to protect the
newly starting and short-lived ones. This is in sharp con-
trast with LPCC design goal, which instead aims at utiliz-
ing the excess capacity, without however interfering with
standard TCP transfers, fact that AQM inhibits by penal-
izing TCP more than LPCC. As this interplay resets the
relative level of priority among CCs, we refer to this issue
simply as “reprioritization” in the following.

The remainder of this paper is organized as follows.
First, Sec. 2 overviews closest related work. Then, by
means of ns2 packet-level simulation, Sec. 3 illustrates
the problem, showing that the phenomenon is fairly gen-

31In recent kernels, NICE is no longer available as a kernel module,
whereas LP it available but not among the TCP flavors allowed by
default via net.ipv4.tcp_allowed_congestion_control

4The protocol is usually referred to either as LEDBAT (in the
IETF community [16]) or as uTP (in the BitTorrent BEP [17] com-
munity). To avoid ambiguity, in this paper we employ its IETF
name.

eral and holds under any combination of AQM techniques
and LPCC protocols. To simplify and promote cross-
comparison, we make the set of our ns2 scripts available to
the scientific community at [21]. Additionally, a thorough
sensitivity analysis in Sec. 4, considering network param-
eter variation such as buffer size, link capacity, flow duty
cycle and RTT delay, confirms that the reprioritization
holds under any tested network scenario as well. Further-
more, via testbed and Internet experiments, Sec. 5 testifies
the phenomenon to hold in the real world as well, though
we limit the validation to a representative subset of the
larger design space explored by the simulation. The set
of scripts we used in the experimental approach is again
available at [21]. Finally, a discussion of the root causes
and feasible solution is covered in Sec. 6, while Sec. 7 sum-
marizes our findings.

2. Related work

It would be extremely cumbersome to retrace over 20
years of Internet research in these few pages (we refer the
reader to [1], where without providing a complete picture,
it does however present a historical viewpoint). We ex-
tend this viewpoint by reporting in Fig. 1 a timeline of
the AQM and LPCC algorithms used in this paper. The
timeline clearly shows a temporal separation of the two re-
search topics, which in our opinion helps understand why
the AQM vs. LPCC interaction assessed in this paper was
not previously exposed. It is also out of the scope of this
paper to provide an overview of AQM and CC research,
for which we point the reader to the sources appeared in
this timeline.

LPCC: NICE LP LEDBAT

AQM:SFQ RED DRR CHOKe [14] [15] (16] CoDel

[ref] [7] [6] (8] 9] (11]
| | | |

year 1990 1993 1995 2000 20'02 20'03 2010 20'12

Figure 1: Timeline of AQM and LPCC algorithms.

2.1. Separated AQM vs. LPCC studies

Studies on scheduling and active queue management
were very popular during the 90s (e.g., SFQ [7], RED [6],
DRR [8]), still active at the beginning of the early 2000s
(e.g., CHOKe [9]) and declined since then. Yet, we cur-
rently see a resurgence of the topic, in terms of novel
proposals (e.g., CoDel [11], AFpFT [22]) and further re-
search [23, 24, 25], as also testified by the very recent pro-
posal to create a dedicated IETF AQM WG [26].

Studies on low-priority congestion control protocols started

in early 2000s, with several contributions such as NICE [14],

P [15], 4CP [27, 28] and LEDBAT [16]. While it is out
of the scope of this paper to provide a full overview of the
above protocols, we refer the reader to [29] for a more thor-
ough survey, and to [30] for a simulation-based comparison

of NICE, LP and LEDBAT, showing that LEDBAT has
the lowest level of priority among all LPCC protocols.

In terms of AQM vs. LPCC trend, it is worth to high-
light an interesting similarity between the most recent ap-
proaches of either class (i.e., CoDel and LEDBAT), as both
explicitly control queuing delay: they both employ a target
delay parameter upon which dropping decisions or conges-
tion window modifications are based respectively.

2.2. Joint AQM and LPCC studies

Our main focus concerns fairness of the capacity share
among heterogeneous control protocols (TCP and LPCC)
on a bottleneck governed by AQM. Concerning this aspect,
closest work to ours is represented by [25, 31, 32].

Yet, we point out that generally researchers are trying
to ensure fairness between different heterogeneous TCP
versions, as done via simulation in [25], which only consid-
ers high-priority TCP variants where fairness is desirable,
whereas in our settings unfairness would be desirable, as it
would imply that low-priority property of LPCC is main-
tained.

While not the authors’ main focus, the interplay of
AQM and LEDBAT is exposed via an experimental ap-
proach in [31]: in one of the tests, authors experiment
with a home gateway that implement some (non-specified)
AQM policy other than DropTail. When LEDBAT and
TCP are both marked in the same “background class” the
“TCP upstream traffic achieves a higher throughput than
the LEDBAT flows but significantly lower than” that un-
der DropTail [31]. This fact is also recognized by the LED-
BAT RFC, which states that under AQM it is possible that
“LEDBAT reverts to standard TCP behavior, rather than
yield to other TCP flows” [16].

Finally, in [32], we analyse the AQM vs. LPCC reprior-
itization issue via a fluid model, describing system dynam-
ics of heterogeneous congestion control protocols (namely,
TCP and LEDBAT) competing on a bottleneck link gov-
erned by AQM (namely, RED). Thus, [32] limitedly con-
siders a single pair of LPCC and AQM instances — unlike
in this work.

Hence, the interplay of AQM and LPCC has been anec-
doctically covered, though a broad and deep study is miss-
ing so far. This is precisely our main goal: building on our
previous work [33], this work presents the first systematic
study of the interaction between LPCC and TCP flows un-
der the presence of AQM. The present work extends [33]
by carrying an extensive sensitivity analysis, and by em-
ploying a mixed simulative and experimental methodology
to further extend the validity and generality of our results.
To facilitate cross-comparison and independent validation
of our results, we make our scripts and datasets available
to the research community at [21].

3. Reprioritization

The aim of our ns2 simulation campaign is to test
the validity of the reprioritization phenomenon under the

largest possible set of scenarios. Instead of thoroughly
listing in this paper all details and low level configura-
tions of the ns2 environment, we directly make our scripts
available® at [21]. We include a number of representa-
tive AQM techniques among the previously listed ones:

namely, SFQ [7], RED [6], DRR [8], CHOKe [9] and CoDel [11].

Similarly, we consider a number of representative LPCC
techniques such as NICE [14], TCP-LP [15] and LED-
BAT [16]. As for standard best-effort TCP, we consider
the IETF NewReno variant®. Notice that some of these
modules are not directly available in ns2 (version 2.33),
therefore we patch it to support CHOKe [9], CoDel [11],
LEDBAT and NICE (the last two LPCCs use our own
open source implementations [36]).

A couple of points are worth stressing. Although we
are aware of the fallacies of RED (as are the authors of
CoDel [11]), we believe that it needs to be considered as a
reference benchmark (to which indeed CoDel is compared
in [11]). Additionally, note that RED is one of the few
AQM policies available on common recent Linux kernels
shipped with standard distributions, we believe it would
not make sense to exclude it from this study even due to its
known performance issues [37, 12]. Similarly, we are aware
of the latecomer unfairness issues of LEDBAT [38, 39], but
its widespread use makes it necessary to be considered in
the mix.

Throughout this paper, we express system performance
mainly in terms of the link utilization 7, the share of the
link exploited by the TCP aggregate TC'P%, and the aver-
age queue length E[Q]. For convenience, we can either ex-
press E[Q] in number of packets (possibly normalized over
the buffer size F[Q]/Qmax to gauge the bufferbloat inten-
sity), or as the actual packet sojourn time in the queue (a
more direct measure of the user quality of experience).

In what follows, we aim at conveying the most relevant
message we gather from simulation in a straightforward
way. We therefore incrementally extend the breadth of
our results by initially considering an illustrated example
of the reprioritization phenomenon. We then extend our
horizon by observing the impact of AQM policies, and fi-
nally the joint impact of AQM and LPCC.

3.1. A motivating example

As previously outlined, while the underlying ideas and
knobs that AQM and LPCC can exploit are similar (e.g.,
controlling delay under LEDBAT and CoDel), their inter-
play can have negative consequence: we find that AQM can
induce a reprioritization of CC. In other words, current

5Due to known difficulties in reproducing research results [34],
particularly with RED [35], we invite the reader to use these scripts
instead of trying to closely mirror our scenarios.

SWe point out that, in recent times both Linux and Windows
have drifted from IETF recommendation, selecting Cubic and Com-
pound as default TCP flavors respectively. Yet, as both Cubic and
Compound are designed to be more aggressive than NewReno, we
henceforth expect reprioritization to hold for these flavors as well.

DropTail RED
TCP%=98.7% E[Q]=379.4 n=0.99 TCP%=59.1% E[Q]=3.74 n=0.96

TCP5 Ledbat 1-5 /

TCP4

m4

TCP1

S g =
N =)} oo

Cumulative Utilization

o
)

0

0 10 20 30 40 50 60 0O
Time [s]

LEDBAT s s

10 20 30 40 50 60

TCP LI Tz 3T a1 5]

Figure 2: Illustrated example of problems arising from the interac-
tion of AQM and CC techniques (ns2 simulation for AQM=RED,
CC=TCP+LEDBAT).

scavenging protocols can successfully realize a lower-than-
best-effort priority only if the bottleneck buffer operates
according a DropTail discipline.

Fig. 2 illustrates the phenomenon: we stress that, while
the picture depicts simulation results gathered in a very
specific case, the remainder of this paper will show the
phenomenon to hold under a large range of AQM+LPCC
scenarios (using both real-world experiments and ns2 sim-
ulations). The picture shows a breakdown of the link uti-
lization when 5 TCP NewReno (each of which is repre-
sented with a different shade of light-gray) and 5 LEDBAT
(dark-gray) backlogged flows sharing the same bottleneck.
Capacity is set to 10 Mbps and the buffer has room for
500 packets (600 ms worth of delay); for the sake of sim-
plicity, delays are homogeneous across flows. The left plot
reports the case of a DropTail queuing discipline, while
the right one reports the case of RED. The plots are anno-
tated with further statistics concerning the average queue
size in packets E[Q)], the capacity share exploited by the
aggregate TCP%, and the average link utilization 7.

In the DropTail case, the LEDBAT protocol operates in
a lower-than-best-effort mode: we see that this delay-based
scavenging protocol successfully exploits the spare capac-
ity left unused by NewReno (as shown in [38]). The TCP
aggregate uses the bulk of the capacity (TCP%=99%),
with a fair share among TCP flows (due to homogeneous
delay). However, the queuing delay approaches half a sec-
ond because nearly 400 full-size TCP packets are queued
on average. Clearly, bufferbloat would be even worse for
lower (e.g., ADSL-like) capacities, or larger buffer sizes
(common defaults for home gateways are well in excess of
1000 packets).

In the RED case, while it is successful in limiting the
queue size (less than 4 packets on average), this comes at
the cost of (i) a slight 3% reduction of the link utilization,
(ii) a complete reset of the relative level of priority be-
tween flows. In the case depicted in the figure, the share is

DropTail

g 5]g Bufferbloat reduction 14x | Aé(o)o
ﬂ\E 6 w.r,lDropTailQmu:40022x i 160
55 4 120
S A7 0
S

=

2

3

5

£ 604w B] 1s0
Iy L 469 -44% _45% |

g L0 - 1| -s2% 160
a5 |] 140
& 40t < 120
F

0
RED Choke CoDel DRR SFQ Qmax=10 Qmax=400

Figure 3: Impact of AQM policies on the bufferbloat intensity
E[Q]/Qmaz (top) link utilization n (middle) and TCP% breakdown
(bottom).

now fair among all LEDBAT and NewReno flows, so that
LEDBAT operates in a best-effort mode, and is thus as
aggressive as TCP. While an AQM fizes the bufferbloat, it
destroyes the relative priority among CC protocols.

While the interaction between LEDBAT and AQM is
pointed out in [31] and mentioned by the draft [16], we
believe both the extent and depth of the problem to be un-
derestimated. As for the extent, Sec. 4 summarizes results
of over 3,000 simulations, showing that the phenomenon
just illustrated is a fairly general problem, arising from
the interaction of AQM and any LPCC protocol. As for
the depth, Sec. 5 not only confirms the phenomenon to
hold in the real world via Internet experiments on multi-
ple AQM and LPCC techniques, but also shows that the
relative level of priority seldom reverses under AQM.

8.2. Impact of AQM policy

For simplicity, in this section, we consider an equal
number N = 5 of best-effort TCP NewReno and low-
priority flows sharing a link having capacity C' = 4 Mbps
and a buffer size Q4 = 400packets (corresponding to a
maximum bufferbloat of 1.2 seconds). All flows are back-
logged, start at time ¢ = 0, and have a homogeneous delay
RTT = 50ms. Simulations last for 60s, and 10 runs are
repeated for each parameter settings. A larger number of
settings is reported in Sec. 4.

For the time being, we fix the LPCC to LEDBAT, and
examine the impact of different AQM techniques. Fig. 3
reports the bufferbloat intensity E[Q]/Qmas (top), link
utilization 7 (middle) and TCP% breakdown (bottom)
for varying AQM policies, and for DropTail as a com-
parison (right). As expected, at the price of a slight de-
crease in the link utilization, AQM reduces the intensity of
the bufferbloat: compared to a persistently full DropTail
buffer, queue size and delay is from 14 to 77 times smaller,
using SFQ and RED respectively. This implies that, under
AQM the queuing delay is always less than 85ms (SFQ,

14% oo = = =DropTail
12% oo . —=—RED
10% e > CHOKe
8% e —A—DRR
j/ """""""""""""""""""" —e—SFQ
2;) _______________________________ —>—CoDel
b o]
Drop.LPCC Drop.TCP

Figure 4: Impact of AQM policies on the drop rate.

worst case’), and generally much lower. However, we see
that the capacity share of the TCP aggregate can drasti-
cally reduce 35%-46% (under CoDel and CHOKe respec-
tively). Notice that this result alone extends the validity of
the phenomenon observed under unknown® AQM policies
in [31]. Importantly, we point out that simply reducing
the DropTail buffer size is not a solution to the problem
either: mnotice that (i) as shown in Fig. 3, shorter Drop-
Tail buffer behaves like AQM, as bufferbloat is reduced at
the expense of reprioritization and (ii) in case of varying
link bandwidth such as WiFi (where rates can vary from
few to several tens of Mbps), there is no fixed buffer size
that would not translate into bufferbloat. Intrinsically,
when the queue length is short, either due to AQM or tiny
buffers, LPCC cannot reliably infer congestion signals from
delay measurement.

Finally, Fig. 4 shows a Kiviat chart of the impact of
AQM policies on drop rate of different flow types, consid-
ering average drop rate (top axis), TCP drop rate (bottom
right axis) and LPCC drops (bottom left axis). Compared
to DropTail, all AQMs increase drop rate of all flows (due
to early drop decisions) but not enough to influence the
link utilization. Interestingly, DropTail penalizes TCP as
much as LPCC, whereas AQMs generally penalizes TCP
more than LPCC — the root cause of reprioritization. Drop
rates for TCP are worst in the case of CHOKe, which is
designed to leverage power of two choices to especially pe-
nalize heavy-hitter flows. In case of SFQ scheduling, notice
that LPCC almost experiences no losses.

Summarizing, reprioritization of LEDBAT holds under
any AQM. Additionally, the use of tiny buffers is not help-
ful in terms of reinstating priorities between LPCC and
best-effort TCP.

"It has to be noted that, strictly speaking, SFQ is a scheduling
discipline and not an AQM mechanism: as such, longer delay is
expected since no “early” drops occur.

8 Authors just mention that “different prioritized traffic classes”
are implemented in the “modern home gateways” used in their ex-
periments.

. . >
Bufferbloat intensity TCP% &
lpo T LEDBAT 3 S
""""" NICE-.... a.

''''''''' =

= DropTail TCP-LP o
&lost 08 |2
g -
= 2
@l 06F 0.6 |Z
: g

[=9

m

0.4+ 04 |m

=

S

0.2 oDel, Choke, DRR, RED, SFQ }X| 0.2 | 2
{NICE, TCP-LP, LEDBAT } s

2 =9

Figure 5: Joint impact of AQM and LPCC on the queuing delay and
TCP breakdown.

8.8. Impact of AQM policy and LPCC protocol

We now explore the full product of LPCC flavors and
AQM techniques. Under DropTail, it is known [30] that
LEDBAT achieves the lowest priority against best-effort
TCP, followed by NICE and TCP-LP. We illustrate re-
sults as a parallel coordinate plot in Fig. 5. Having no-
ticed that link utilization is subject to small variations,
we consider the two main metrics of interest: namely the
queuing delay and the TCP share. For convenience, we
normalize the bufferbloat over the queue size and report
its normalized intensity E[Q]/Qmaxz € [0,1] on the left
y-axis, and report the normalized TCP share of the link
capacity 7‘6‘13‘;07;;00 € [0,1] on the right y-axis. In the
parallel coordinate plot, each (LPCC, AQM) pair is repre-
sented as a line, joining the delay and TCP share figures.
For reference purposes, we put a light-gray strip represent-
ing the ideal case where the queue is short but priorities
are unaltered.

We see that the three (LPCC,DropTail) combinations
appear as horizontal lines on the top of the figure: this
happens since, under DropTail, bufferbloat has maximal
intensity while TCP monopolizes the bottleneck. We see
that this holds for any LPCC protocol, with a slight sepa-
ration of the curves reflecting the order of priority observed
in [30] (from top to bottom, the least to the most aggres-
sive LPCC with respect to TCP).

Excluding DropTail, we also see that all (LPCC,AQM)
combinations are very close, as AQM implies low bufferbloat
but jeopardizes CC priorities. Specifically, as under AQM
all TCP and LPCC flows have roughly the same priority,
the lines fall in the best-effort (BE) priority range, below
the ideal strip, with best-effort TCP getting slightly more
than half of the link share.

Summarizing, reprioritization holds under any consid-
ered LPCC and AQM. The choice of a specific (LPCC,AQM)
combination has only very limited impact on the system
performance — and, in any case, is not helpful in reinstat-
ing priorities between LPCC and best-effort TCP.

Table 1: Sensitivity analysis parameters
Variable parameters

| Parameter | Default | Range | Sec. |
Qmax (pkt) 400 100, 200, 300, 400 4.1
C (Mbps) 4 0.25,0.5,1,2,4,6,8,10 4.1
Workload (%) 100 10 - 100 (interval 10) | 4.2
RTT (ms) 6 2,4,6, 8,10 4.3
Fixed parameters

| Parameter | Value
AQM DropTail, RED, CHOKe, DRR,

SFQ, CoDel

LPCC LEDBAT

No.TCP flows 5
No.LPCC flows | 5
Duration (s) 60
No.Runs 10

4. Sensitivity analysis

To further extend the breadth of our findings, we con-
duct over 3,000 simulations to investigate the impact of
other network parameters such as buffer size @44, link
capacity C, heterogeneous RTT delay, and flow duty cy-
cle. We first discuss each of the above factors separately,
and finally compactly report their impact. We anticipate
that under all explored circumstances® the early outlined
phenomenon remains valid.

The parameters used in our analysis are listed in Tab. 1
(as parameters listed in the table are by no means exhaus-
tive, we invite the reader to use the provided scripts [21]
shall they reproduce these experiments). We let 10 flows
(5 TCP + 5 LEDBAT) competing at the bottleneck at the
same time for 60s, results are obtained from the average
of 10 runs for each simulation. We will explain the var-
ied parameters investigated in detail in its corresponding
sub-section.

4.1. Buffer size and capacity

We explore over 30 combinations of link capacity vary-
ing in the 250Kbps to 10Mbps range, and buffer size be-
tween 100 and 400 packets (detailed values can be found
in Tab. 1).

First, when fixing the value of buffer size, we observe a
decrease of packet drop rate as the link capacity increases,
while the link utilization is mostly unaffected by capacity
variations. This is expected since TCP ramps up to exploit
the full capacity both in case of DropTail or AQM.

If we instead fix the capacity, then the impact of the
buffer size is limited in case of AQM. This is again ex-
pected, since AQM is configured to keep the buffer short

9We avoid reporting some of which (such as scenarios with a larger
number of flows, or dynamic flow arrivals patterns, etc.) in full
details, to privilege clarity over completeness.

E[Q] (pkt) TCP%
25.00 100.00%
2000 | s m i 8000%
15.00 — 60.00%
10.00 | L 40.00%
500 7 % : 20.00%
0.00 A % BE EE RE 0.00%
025 05 1 2 4 6 8 10
Capacity (Mbps)
E[Q] ®mRED 0.03 ==SFQ 0 mmCoDel 0.58
TCP% -=-RED 0007 -e-SFQ 0 —eCoDel 0.005

Figure 6: Sensitivity analysis: average buffer occupancy and TCP%
share for varying capacity (x-axis) and buffer sizes (standard devia-
tion across buffer size is reported in the legend).

irrespectively of its size: in other words, the average queue
size is F[Q] ~ Qmax under DropTail for any Qnqz, whereas
E[Q] < Qmaz under any AQM technique irrespectively of
Qmaz-

We elaborate more on capacity variations in Fig. 6,
which reports the average queue size F[Q)] (in packets, left
y-axis) and TCP% breakdown (right y-axis) as a func-
tion of the link capacity (x-axis) for some AQM mecha-
nisms (namely we limitedly report RED, SFQ and CoDel
to avoid cluttering the picture). The picture reports the
average of the metrics over all buffer sizes, and the legend
is further annotated with the largest standard deviation
across buffer size (i.e., for any given capacity, we evalu-
ate the standard deviation of the metrics of interest across
different buffer sizes, and report the largest across all ca-
pacities). As the standard deviation is very low, this con-
firms reprioritization results to hold across the explored
scenarios.

As expected, capacity does not have impact on aver-
age queue size E[Q)] except for CoDel, which controls the
packet-sojourn time: as a result, larger capacities trans-
late into a larger number of packets to be allowed in the
buffer under the same target delay configuration (hence, a
larger standard deviation). The TCP% breakdown is also
unaffected under any capacity and buffer size combination
tested, confirming TCP% manages to maintain its priority
level over LPCC only under DropTail.

4.2. Flow duty cycle

We next observe that networks are rarely used by back-
logged flows: hence, we include duty cycle model simulat-
ing different workloads to make our simulation more real-
istic. We engineer the scenario to simulate different work-
loads,by controlling the individual flow duty cycle (from
10% to 100% with a 10% step). For each flow, we turn
it ON and OFF alternatively during the entire simulation
duration. During each ON period, the flow continuously
transmits data, and during an OFF period, the flow re-
mains idle and resets its window parameters. At the end

1.0 - —x

0.9

0.8
5 0.7
g 0.6 -=-RED —
g 0.5 CHOKe
xz 04 -+ DRR
=03 -o-SFQ

0.2

o1 -%CoDel

’ =*DropTail

0.0 :

80 90 100

Individual flow duty cycle (%)

Figure 7: Sensitivity analysis: Impact of flow duty cycle on the link
utilization.

of each OFF period (including the initial state), we ran-
domly generate the duration of next ON period, which
follows an exponential distribution with average A. Also,
the same procedure is employed at the end of each ON
period, generating the duration of next OFF period with
average duration p. Thus, the individual flow duty cycle
is defined as A/ (A + p).

By design, the duty cycle model affects link utilization,
so that we can individuate two regimes. Regimes are il-
lustrated as two colored regions in Fig. 7, which reports
the average link utilization as a function of the individ-
ual flow duty cycle. When individual duty cycle is low,
the aggregated load remains, on average, well below the
link capacity. Also, as flows are often idle, they will op-
erate in isolation, only seldom interact. Still, due to TCP
bursty nature, the buffer can occasionally be filled with
burst of packets belonging to the same congestion win-
dow, possibly triggering AQM reactions. In the underload
regime, we therefore expect each flow to get a fair share of
the link. As individual flow duty cycle increases, and the
aggregated load approaches the link capacity, packets of
different flows now mix in the buffer, and we expect AQM
decisions to penalize the more aggressive flows — which as
we previously observed will induce reprioritization. Also
in the overload regime, we therefore expect each flow to
get a fair share of the link.

As shown in Fig. 8, the expected behavior holds. In
both the underload zone (shaded left part of Fig. 7 and
Fig. 8) and overload region (white right part), TCP and
LPCC always fairly share the link. In case only one flow is
active at a time, it will monopolize the bottleneck in both
TCP and LPCC cases. When two (or more) flows are
active at the same time, in case one of these flows is best-
effort TCP, then its AIMD dynamics will let the queue
increase and trigger AQM reaction, to the advantage of
LPCC flows.

Extending results of Fig. 4, we report per-protocol drop
rate under different AQMs and workloads in the scatter
plot of Fig. 9. The diagonal line corresponds to an equiva-
lent drop rate of packets of both TCP and LPCC: as it can

§ R
-=-RED CHOKe
-+ DRR -e-SFQ
-CoDel —=*DropTail

: \ \
10 20 30 40 50 60 70 8 90 100

Individual flow duty cycle (%)

Figure 8: Sensitivity analysis: Impact of flow duty cycle on the TCP
breakdown.

0.15
—-=—RED -
012 CHOKe N
5 ~+ DRR
) -»-SFQ
5 009 seCoDel "
S B
£ 0.06
o
2
2 003
0

0 0.03 0.06 0.09 0.12 0.15
Drop rate [TCP]

Figure 9: Sensitivity analysis: Impact of flow duty cycle on drop
rate.

clearly be seen, under all considered duty cycle conditions
TCP is more heavily penalized with respect to LPCC. Note
that the line of CoDel is very close to the diagonal, which
means its penalization of TCP is the slightest while SFQ
has the heaviest penalization. Additionally, we see that
fairness in the loss rate translates in higher TCP share:
notice indeed that the loss behavior is reflected in Fig. 8,
showing that CoDel and SFQ grant the highest and lowest
TCP% breakdown respectively.

4.3. RTT Delay Heterogeneity

Finally, we acknowledge that rarely flows have homo-
geneous delay in the real life. Yet, as it is known that
TCP exhibits RTT unfairness, it makes sense to carefully
build the scenario so to avoid RTT unfairness biasing our
conclusions. First, we observe that congestion control pro-
tocol in use end-to-end (i.e., TCP vs. LPCC) is not cor-
related with the RTT, as this is an end-host decision: it
follows that TCP and LPCC aggregates have no a pri-
ori reason to have different RTT distributions. Second,
we observe that as the queuing delay is low due to AQM,
the propagation delay is the dominant component of the
RTT, which controls the rate at which acknowledgements
are received, which in turn controls how fast the sending

> 5.00% Fairness Fairness. TCP Fairness.LPCC
< . ° -

: AEEE i

§ 0.00% < mﬁ!%ﬁé’; T R
. % .
g -5.00% EE E E .
= i - i
= -10.00% B i e
3 . % .
g] B
Z-15.00% i i 2
2 i i i
G iiﬂi o)
2,-20.00% i

=) e N

< S\

3} s RED - CHOKe # DRR = SFQ = CoDel

-25.00%

Figure 10: Sensitivity analysis: Impact of heterogeneous RTT delay
on inter/intra-protocol fairness.

rate can change: it follows that the relative difference of
RTT between heterogeneous flows, more than the abso-
lute RTT value, is important to gauge response to RTT
heterogeneity.

As such, indicating by abuse of language with TCP and
LEDBAT the set of flows using that congestion control
protocol, we engineer the scenario so that (i) both the
TCP and the LPCC sets have the same E[RTT], (ii) the
E[RTT] of both sets is the same as in the homogeneous
case, (iii) within one set, there are no flows having the same
RTT delay, (iv) across two sets, there are one TCP and
one LEDBAT flows having exactly the same RTT delay.
Specifically, we assign RTTy = 2kms for the k-th flows
(with k& € [1,5]) in the TCP and LEDBAT sets (so that
E[RTT] = 6ms is the same as the default setting).

Unsurprisingly, we verify that RTT heterogeneity does
not affect our conclusion in terms of reprioritization. While
RTT unfairness affects the performance of individual flows
within an aggregate, we see that each aggregate as an
entirety can fairly compete with each other on the RTT
(i.e., there is a balanced mix of opportunistic flows with
small RTT and penalized flows with large RTT in both
sets). We resort to the classical Jain fairness index Fx =
(N 1)/ (NN, T2), with T; throughput of the i-th
connection, is calculated within homogeneous TCP and
LPCC aggregate (intra-protocol fairness), as well as over
the total set of flows (inter-protocol fairness). We visual-
ize the impact of RT'T heterogeneity in Fig. 10, where we
report the relative error in terms of fairness with respect
to the homogeneous scenario.

Fig. 10 shows that RTT heterogeneity decreases both

inter-protocol and intra-protocol fairness up to 20%. Though

different AQMs have rather noticeable different impact on
fairness decrease, each of them influences TCP and LPCC
aggregate in a similar way.

It is more interesting to observe the intra-protocol fair-
ness, i.e., with respect to a set of flows using homoge-
neous congestion control protocol, which may change sig-
nificantly depending on the AQM policy. We find that

Table 2: Sensitivity analysis

Coefficient of variation (CoV) n E[Q] TCP%
AQM 0.0073 0.6916 0.080
LPCC DropTail 0 0.038 0.072

AQM 0.0047 0.034 0.048
Link capactiy DropTail 0.0003 1.136 0.035

AQM 0.0042 0.604 0.050
Flow duty DropTail 0.259 1.309 0.120
cycle AQM 0.313 1.067 0.057
RTT delay DropTail 0.0003 0.022 0.001
heterogeneity AQM 0.0248 0.052 0.048

intra-protocol fairnesses of TCP (Frcp) and LPCC (Frpcc)
are quite close with respect to each AQM. To rule out the
impact of congestion control protocols heterogeneity, we
measure the average Jain fairness index F = (Frep +
Frpcc)/2 as an indicator of average intra-protocol fair-
ness'?. We have that fairness under CoDel (F = 0.81) is
only slightly better than RED (F = 0.78) and significantly
smaller than SFQ (F = 0.99). Notice that CoDel fairness
range is coherent with [11], which however does not address
a comparison with SFQ and reports significantly smaller
fairness values for RED (under a more heterogeneous sce-
nario).

From the result, we can conclude that the extent up to
which heterogeneous RTT delays can affect inter-protocol
and intra-protocol fairness, is closely related to AQM drop
decision-making mechanism. Due to the fact that AQM
like RED and CHOKe work on the entire buffer status,
it follows that with heterogeneous delay, packets will be
dropped at more varied intervals, resulting in a lower fair-
ness both intra-protocol and inter-protocol. For instance,
CHOKe uses sampling to find heavy hitters, dropping both
packets if the sampled packet and the newly incoming one
both belong to the same flow (whereas RED would only
drops the new packet): hence, this design choice increases
the fairness among flows (with respect to RED) even when
heavy hitters are flows opportunistically exploiting RTT
heterogeneity. However, scheduling decisions of the DRR
and SFQ policies affect individual flow (or stochastic flow
aggregates), thus they can always ensure almost perfect
fairness under these two scenarios.

4.4. Summary

Tab. 2 summarizes the results of the sensitivity analysis
reporting the coefficient of variation CoV (X) = o(X)/E[X]
of the metric X of interest (i.e., link efficiency 7, average
queue size in packets E[Q] and the TCP aggregate TC P%)
due to each of the studied parameters (i.e., link capacity
C, buffer size @, flow duty cycle, RTT delay, etc.). Notice
that metrics of interest all have different units and value

10Notice that %FTCP + %FLPCC differs from evaluating the fair-
ness over the whole aggregate F\y = TCP U LPCC, as in the latter
case we would be measuring the inter-protocol effect as well.

ranges: CoV describes the dispersion in a way that does
not depend neither on the metric unit, nor on its scale.
Hence, this choice allows a relative comparison across met-
rics, and makes CoV especially suitable in our context.

For parameters other than AQM, we include the result
calculated both under DropTail and AQM: i.e., to exclude
the impact due to AQM (shown in the first row of the
table) we compute the CoV(X) considering each AQM
policy in isolation, then report the average E[CoV (X)].
The result shows that most values of the C'oV are small,
which confirms that results are only minimally affected
by any of the tested parameters, and especially for the
TCP%, confirming the generality of the reprioritization
phenomenon illustrated in Fig. 5.

We highlight (in bold) CoV value larger than 0.5 in
Tab. 2, which are of straightforward interpretation. It can
be seen indeed that AQM policy can have noticeable im-
pact on average queue size E[Q] (recall Fig. 3) due to both
their inner working mechanism (e.g. RED limits the queue
explicitly while SFQ schedules the flows but allow a pro-
portional increase of packets in the queue with increasing
flows) as well as the variation of their default parameters
(untested in this sensitivity analysis due to known diffi-
culty in tuning AQM [12], and so not accounted for in
CoV). Obviously, buffer size influences heavily the aver-
age queue size under DropTail (CoV=1.136), whereas flow
duty-cycle translates into a wider range of queue sizes un-
der both DropTail (CoV=1.309) and AQM (CoV=1.067),
as queues are possibly empty unlike in backlogged work-
load.

Summarizing, reprioritization holds under most net-
working scenarios. While the specific scenario settings
may have an impact on fairness and queue size statis-
tics, they have nevertheless only very limited impact on
the reprioritization phenomenon.

5. Experimental results

The goal of our experimental campaign is to confirm
the occurrence of the reprioritization phenomenon in the
real world. Configuration details and scripts used for these
experiments are available at [21]. Since our aim is not to
propose any new AQM or LPCC, nor to replicate the full
set of simulations shown early in Sec. 3, we select the only
ones that are already available in recent Linux 3.2 kernel:
namely, RED [6] and SFQ [7] for AQM and TCP-LP [15]
for the LPCC protocol family. As previously pointed out,
LEDBAT cannot be excluded from the mix since it is,
by far, the most successful LPCC: as such, we employ the
1ibUTP [40] application-level implementation of BitTorrent
that we already analysed in [41].

Incidentally, while our choice is forced by the availabil-
ity of AQM and LPCC implementation in Linux, in reason
of results of the previous sections we expect the perfor-
mance of other AQM+LPCC combinations to fall into the
boundaries defined by {RED,SFQ} x{TCP-LP,LEDBAT}.
On the one hand, this is due to the fact that RED vs. SFQ

RED 0. SMbps HTB

DropTail, 0.5Mbps HTB

Cumulative Utilization

0 10 20 30 40 50 600 10 20 30 40 50 60

Time [sec]

LEDBAT mimpmemsemssmss TCP CL [z T[4 5]

Figure 11: Testbed experiments: Utilization breakdown among TCP
and LEDBAT, for different AQM techniques (DropTail, RED, SFQ),
capacities (500 Kbps, 10Mbps) and emulation technique (HTB,
PHY).

yield to small vs. large queuing delays respectively; on the
other hand, it is known that TCP-LP and LEDBAT have
the most and the least aggressive behaviour in the LPCC
family [30].

For any AQM and LPCC combination, we explore some
experimental settings, including varying bottleneck capac-
ity C, configuration of AQM parameters, number of flows
N in the bottleneck, in both an emulated testbed and in
a real Internet deployment.

5.1. Testbed experiments

In the testbed experiments, we directly connect two
PCs through a crossover Ethernet cable. Capacity lim-
itations are either emulated through a Hierarchical To-
ken Bucket (HTB) of the standard Linux traffic control tc
suite (as in Fig. 2), or natively by forcing C = 10 Mbps
PHY Ethernet through ethtool (which is a more reliable
option than HTB). In both cases, we turn off most fea-
tures that could possibly interfere with the experiments
(e.g., jumbo frames, TCP segmentation offload, interrupt
coalescing). To emulate a WAN setup, we inflate RTT
delay by a constant amount equal to 30 ms using netem.
We configure the tc queuing discipline to either DropTail
(i.e., the default pfifo_fast), RED (with state of the art
configuration) or SFQ.

We generate backlogged traffic during 60 seconds ex-
periments, using iperf for all TCP flavors (both best-
effort and low-priority) and simple client/server applica-
tions provided by 1ibUTP!! for the application-layer LED-
BAT implementation. For best-effort TCP, we report re-
sults using NewReno, the protocol of choice at the IETF,

HibUTP is the uTorrent Transport Protocol (uTP) library im-
plementation of LEDBAT, released under the MIT license at [40].
Version d4685a3 (May 2012) was used in all experiments, though
we point out that libUTP has been very stable since, with only 4
commits, all of which were not related to congestion control issues.

and leave the study of Compound (default TCP flavor in
Windows) and Cubic (default in Linux) for future work!2.

As for queuing delay measurement, we point out that
dark buffers may lay at multiple points in the kernel stack
(e.g., TCP buffers, device driver), and that buffering may
occur outside the host (e.g., in the ADSL modem in Inter-
net experiments). Hence, we opt for a simple methodology
that mimics the way in which NICE measures the queu-
ing delay: specifically, we monitor the RTT through a low
frequency ICMP ping command and estimate queuing de-
lay samples as ; = RTT; — min;<; RT'T;. Notice that,
as the reverse direction is carrying only ACK data and is
thus not congested, we are safe in assuming that the RTT
variation is due to queuing at the sender side.

A further example of the temporal evolution of the uti-
lization breakdown of TCP vs. LEDBAT flows is depicted
in Fig. 11 for different AQM techniques (DropTail, RED,
SFQ), capacities (500 Kbps, 10 Mbps) and emulation tech-
nique (HTB, PHY). The phenomenon early shown in Fig. 2
is thus confirmed for different AQMs and testbed settings:
shortly, AQMs induce reprioritization of heterogeneous CC
flows. We also see that, while when the capacity is abun-
dant the breakdown is smooth, the opposite happens when
capacity is scarce (which additionally leads to unfairness
at short timescales).

We conduct a more systematic experimental testbed
campaign that is summarized in Tab. 3, reporting the
TCP breakdown and average queuing delay for an emu-
lated HTB capacity of C' = 500 Kbps. The total number
of flows varies in N € {2,10}, with flows equally split
in the best-effort TCP and LPCC families. Experiments
report the average over 3 independent runs. As we may
now expect, DropTail leads to bufferbloat of multiple sec-
onds'®, which is instead solved by both RED and SFQ.
The picture may change completely under RED, depend-
ing on the LPCC flavor and the number of flows: indeed,
while for N = 10 the reprioritization happens for both
LEDBAT (TCP%=49.3) and TCP-LP (57%), in the case
that V = 2 flows compete for the same access, the LED-
BAT+NewReno combination, through RED, possibly re-
sults in TCP NewReno starvation (1.7%) while the oppo-
site happens under TCP-LP+NewReno (97.5%).

With respect to reprioritization, which is a general is-
sue holding for a large number of LPCC vs. AQM combi-
nations (as we show in this paper) and AQM settings (as
we show in [32]), we believe the starvation phenomenon
to be of more limited interest (as it happens for a single

12While Windows, and thus Compound, constitutes the largest
portion of hosts, it would be difficult to replicate the same method-
ology. Preliminary tests with Cubic suggest the phenomenon to hold;
at the same time, we incur in problems with Cubic vs. TCP-LP since
the latter appears to be more aggressive than Cubic under DropTail—
so we prefer to examine the issue at a later time.

13In our settings, this is due to our emulated capacity limita-
tions, coupled to the default Network Interface Card (NIC) queue
length, which for Ethernet NICs is set to 1000 packets in Linux
(txqueuelen!).

10

Table 3: Testbed: LEDBAT vs. TCP-LP

5+5 flows 141 flows

TCP% E[Q] ms | TCP% E[Q] ms

FIFO 94.9 6437.3 99.5 5304.3

LEDBAT RED 49.3 11.3 1.7 9.5
SFQ 76.1 106.4 57.7 15.1

FIFO 50.8 7870.6 65.8 7471.9

TCP-LP RED 57.0 21.0 97.5 2.7
SFQ 49.8 144.2 50.0 25.2

AQM, and furthermore non-systematic, thus tied to spe-
cific configurations). Yet, the phenomenon is still worth
elucidating further, as these differences reflect the LPCC
dynamics of LEDBAT and TCP-LP. The latter is AIMD-
controlled, and its low priority stems from a slower recov-
ery after losses that the AIMD dynamics force. The former
is delay-based and PID-controlled: by limiting the queue
size, it will seldom be penalized under RED. Whenever
the queue grows due to best-effort TCP AIMD, LEDBAT
reduces its own window, and so the chances that a packet
will get dropped are very low. Whenever TCP experienced
a timeout and abruptly shrank its window, LEDBAT in-
stead grows its window again, but in reason of its low
target delay, it will limit the amount of queuing and again
prevent its packets from being dropped.

Under SFQ, TCP starvation phenomena are avoided.
All flows get hashed in different buckets at enqueue time,
and since hash buckets are queried in a round robin fash-
ion, this guarantees that each flow is able to send data
in turn — including the best-effort TCP that was heavily
penalized under RED, though reprioritization still occurs.
However, the queuing delay under SFQ (which has a de-
fault buffer size of 127 packets) grows up to about 100-
150 ms, thus approaching the limit of what is considered
to be harmful for interactive communication[42].

5.2. Internet experiments

We then perform additional experiments on the wild
Internet. Since we have already shown the reprioritization
to hold for different combinations of LPCC and AQM, our
aim here is to disproof that these are artifacts that only
arise in testbeds due to, e.g., the extremely controlled set-
tings or, conversely, due to unexpected interactions inside
the emulation layer.

In order to replicate a setup as close as possible to the
typical user scenario, the sender is connected with 802.11g
WiFi to an ADSL box. The receiver is connected to an-
other ADSL box of another ISP through the Ethernet in-
terface. The minimum RTT delay between the two hosts is
approximately 50 ms, and the capacity between the hosts
only slightly exceeds 500 Kbps (so that it can be compared
with the testbed).

We carry on experiments only for the LEDBAT LPCC,

using two configurations'? of RED with results summa-
rized in Tab. 4. It can be seen that TCP starvation per-
sists under RED when the number of flows is small: we
stress that we observe TCP starvation only under the
RED+LEDBAT combination, since as previously explained
RED tries to penalize flows proportionally to the queue
they create, while LEDBAT is designed to precisely avoid
queuing.

This unexpected phenomenon is worth pointing out,
as it may add other reasons not to deploy RED other
than those listed in [37]. At the same time, it is also
worth highlighting that the phenomenon appears to be
non-systematic and possibly arises from specific configu-
ration and network environment (that are possibly hard
to reproduce [34, 35]). Additionally, starvation is not ob-
served under scheduling disciplines as SFQ, which may
play a more important role than RED in the near future
(see discussion Sec. 6). It follows that the practical rel-
evance of this starvation phenomenon is expected to be
significantly smaller with respect to the repriorization phe-
nomenon.

Finally, we experiment with RED*, a configuration in-
spired by the fluid model in [32], which reinstates the rel-
ative CC priorities, but at the cost of an already sizeable
bufferbloat (in the order of several hundreds milliseconds,
which makes it thus an impractical solution). The main
difference between RED* vs. RED configurations is that
RED* sets a larger ming, (16500B) compared to that in
RED (1500B). As the queuing delay equivalent to ming,
exceeds the default LEDBAT queueing delay target value
(respectively, 264ms vs 100ms), this partly allows relative
prioritization of end-to-end TCP vs. LEDBAT protocols.
Intuitively, in this case our configuration starts dropping
packets after the LEDBAT queuing delay target, so that
TCP has the chance to grow its congestion window at the
expense of LEDBAT (that by its LPCC nature will backoff
in presence of best-effort TCP) before one of its packets
get dropped by AQM; however, TCP recovery is in this
case fast enough, and the additional buffer space beyond
the LEDBAT target is large enough, to let TCP prevails
over LEDBAT.

6. Discussion

This work points out possible negative issues arising
from the interaction of AQM and CC techniques. Specif-
ically, under AQM it is likely that LPCC techniques will
become as aggressive as best-effort TCP (and can mislead
at least one flavor of TCP to starvation under RED). We
now discuss the implication of these findings.

14Both RED and RED* parameters are set based on recommended
settings proposed in [6]. RED* is a configuration inspired by [12, 32]
and crafted ad hoc by a standard trial and error procedure. We
stress once more that configuration details and scripts used for these
experiments are available at [21].

11

Table 4: LEDBAT: Testbed vs. Internet Experiments

5+5 flows 141 flows

TCP% E[Q] ms | TCP% E[Q] ms

FIFO 94.9 6437.8 99.5 5304.3

Testbed RED 49.3 11.3 1.7 9.5
RED* 71.9 763.9 98.2 333.8

FIFO 97.0 6551.7 98.9 916.0

Internet RED 2.6 45.0 5.1 29.1
RED* 63.8 745.2 86.7 305.4

As it seems that AQM and LPCC will have to coexist,
there is a need to find possible ways out of the negative
interplay we have shown in this paper. A general solution
is hard to find, as testified by the current standpoint af-
ter over 20 years of research. Yet, a patch to the problem
may be within reach, but may be hidden by radical po-
sitions in favor of either AQM or LPCC. While some see
low priority protocols as useful in the transient period un-
til AQM will be deployed [31], others are not convinced by
AQM and propose “the end to end approach as the solu-
tion to bufferbloat and just forget about changing router
behavior.” [5]. Arguing that a practical solution requires
a compromise between both extremes, we agree with more
moderate viewpoints that “AQM is just one piece to the
solution of bufferbloat” [11].

Consider indeed that an ideal solution (recall Fig. 5)
should guarantee low access delay irrespectively of the mix
of CC protocols and maintain the relative level of priority
among flows in the mix as well. Since even a single AIMD
flow may bufferbloat the bottleneck, the solution needs
scheduling and AQM. At the same time, to avoid the CC
reprioritization phenomenon, we argue that classification
capabilities will be needed in AQM to account for flows’
explicitly advertised level of priority. Notice that while in
the more general case classification has failed to be adopted
(IP TOS field, DiffServ, etc.), and the ability to claim
higher priority could be easily gamed, in a hybrid AQM
vs. LPCC world it makes sense for flows to claim a lower
priority.

Other avenues in AQM and LPCC remain to be ex-
plored. First, AQMs evaluated in this paper either im-
plement drop (RED/CoDel/CHOKe) or scheduling (SFQ)
strategies. At the same time, hybrid AQM techniques that
jointly exploit fair queuing with early drop are appearing —
as the £q_codel technique that will make its way in future
Linux kernels, starting from 3.5 [43]. Though further test-
ing will be needed on these new AQMs, we argue that the
reprioritization problem will remain: intrinsically, AQM
and scheduling aim at fairness, whereas LPCC aims at the
contrasting objective of unfairness with respect to TCP.

Another sensible question is whether it would be pos-
sible to differentiate priorities at a finer grain within the
LPCC class: for instance, it is known that different targets
in LEDBAT yield to starvation in case of backlogged flows

under a DropTail discipline [30]; at the same time, is not
clear what the behavior would be under AQM.

7. Conclusion

In this paper, we study the interaction between Ac-
tive Queue Management (AQM) and Low-priority Con-
gestion Control (LPCC). We consider a fairly large num-
ber of AQM techniques (i.e., RED, CHOKe, SFQ, DRR
and CoDel) and LPCC protocols (i.e., LEDBAT, NICE,
and TCP-LP), studying system performance (mainly ex-
pressed in terms of TCP% breakdown, average queue size
E[Q], and link utilization n) with both simulative and ex-
perimental methodologies.

Summarizing our main findings, we observe that AQM
resets the relative level of priority between best-effort TCP
and LPCC. That is to say, the TCP share of the bottleneck
capacity drops dramatically, becoming close to the LPCC
share. Additionally, while reprioritization generally equal-
izes the priority of LPCC and TCP, we also find that some
AQM settings may actually lead best-effort TCP to star-
vation — as these are however non-systematic, we believe
the starvation issue to be of less practical relevance than
reprioritization.

Reprioritization is a fairly general phenomenon, as it
holds for any combination of AQM technique, LPCC pro-
tocol and network scenario. This is testified by our thor-
ough sensitivity analysis, where we confirmed the phe-
nomenon for varying network parameters such as buffer
size Qmaz, link capacity C, heterogeneous RTT delay, flows
number and flow duty cycle for over 3,000 simulations.

Reprioritization is a real world phenomenon, easily repli-
cable on testbeds and the real Internet, which cannot be
easily solved via AQM tuning. Hence, we advocate that
explicit collaboration is needed from LPCC (e.g., openly
advertise low priority) to assist AQM in taking decisions
that maintain the desired level of priority.

Acknowledgement

This work was carried out at LINCS http://www.lincs.

fr. The research leading to these results has received fund-
ing from the European Union under the FP7 Grant Agree-
ment n. 318627 (Integrated Project ”mPlane”).

References

[1] J. Gettys, K. Nichols, Bufferbloat: Dark buffers in the In-
ternet, Communications of the ACM 55 (1) (2012) 57-65.
doi:10.1145/2063176.2063196.

[2] S. Cheshire, It’s the Latency, Stupid!, http://rescomp.
stanford.edu/~cheshire/rants/Latency.html (1996).

[3] C. Kreibich, N. Weaver, B. Nechaev, V. Paxson, Netalyzr:
INluminating the Edge Network, in: ACM SIGCOMM In-
ternet Measurement Conference (IMC), 2010, pp. 246-259.
doi:10.1145/1879141.1879173.

[4] J. Gettys, jg’s Ramblings, http://gettys.wordpress.com.

[5] B. Cohen, TCP Sucks, http://bramcohen.com/2012/05/07/
tcp-sucks (2012).

12

[10]

21]

[22]

[23]

[24]

[25]

26

[27]

[28]

S. Floyd, V. Jacobson, Random Early Detection Gateways for
Congestion Avoidance, IEEE/ACM Transactions on Network-
ing 1 (1993) 397-413. doi:10.1109/90.251892.

P. E. Mckenney, Stochastic Fairness Queueing, in: IEEE INFO-
COM, 1990, pp. 733-740. do0i:10.1109/INFCOM.1990.91316.
M. Shreedhar, G. Varghese, Efficient Fair Queueing
Using Deficit Round Robin, ACM SIGCOMM Com-
puter Communication Review (CCR) 25 (1995) 231-242.
doi:10.1145/217382.217453.

R. Pan, B. Prabhakar, K. Psounis, CHOKE, A Stateless Ac-
tive Queue Management Scheme for Approximating Fair Band-
width Allocation, in: IEEE INFOCOM, 2000, pp. 942-951.
doi:10.1109/INFCOM.2000.832269.

G. Carofiglio, L. Muscariello, On the Impact of TCP and Per-
flow Scheduling on Internet Performance, in: IEEE INFOCOM,
2010, pp. 1-9. doi:10.1109/INFCOM.2010.5461973.

K. Nichols, V. Jacobson, Controlling Queue Delay, Communi-
cations of the ACM (2012) 42-50do0i:10.1145/2209249.2209264.
M. Christiansen, K. Jeffay, D. Ott, F. D. Smith, Tuning RED
for Web Traffic, ACM SIGCOMM Computer Communication
Review (CCR) 30 (2000) 139-150. doi:10.1145/347059.347418.
ADUF - Historique firmware, http://88.191.250.12/
viewtopic.php?t=164746&view=previous, 2008-01-20 (2008).
A. Venkataramani, R. Kokku, M. Dahlin, TCP Nice: A Mecha-
nism for Background Transfers, ACM SIGOPS Operating Sys-
tems Review (2002) 329-343doi:10.1145/1060289.1060320.

A. Kuzmanovic, E. W. Knightly, TCP-LP: A Dis-
tributed Algorithm for Low Priority Data Transfer,
in:. IEEE INFOCOM, Vol. 3, 2003, pp. 1691-1701.
doi:10.1109/INFCOM.2003.1209192.

M. Kuehlewind, G. Hazel, S. Shalunov, J. Iyengar, Low Extra
Delay Background Transport (LEDBAT), Internet Engineering
Task Force (IETF), RFC6817 (2012).

A. Norberg, BitTorrent Enhancement Proposals on uTorrent
transport protocol, BEP29 (2009).

G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, S. Valenti,
Rethinking Low Extra Delay Background Transport Pro-
tocols, Elsevier Computer Networks 57 (2013) 1838-1852.
doi:10.1016/j.comnet.2013.02.020.

B. Cohen, How has BitTorrent as a protocol evolved over time,
http://www.quora.com/BitTorrent-protocol-company/How-
has-BitTorrent-as-a-protocol-evolved-over-time (2011).
Sandvine, Global Internet Phenomena Report (1H 2013),
https://wuw.sandvine.com/downloads/general/global-
internet-phenomena/2013/sandvine-global-internet-
phenomena-report-1h-2013.pdf (2013).
http://www.infres.enst.fr/~drossi/index.php?n=Dataset.
LEDBATAQM.

A. Eshete, Y. Jiang, Approximate Fairness through Limited
Flow List, in: International Teletraffic Congress (ITC), 2011,
pp. 198-205.

J. hwan Kim, H. Yoon, I. Yeom, Active Queue Management
for Flow Fairness and Stable Queue Length, IEEE Transac-
tions on Parallel and Distributed Systems 22 (4) (2011) 571—
579. doi:10.1109/TPDS.2010.104.

D. M. Divakaran, A Spike-detecting AQM to Deal with
Elephants, Computer Networks 56 (13) (2012) 3087-3098.
doi:10.1016/j.comnet.2012.04.025.

A. Eshete, Y. Jiang, L. Landmark, Fairness among High
Speed and Traditional TCP under Different Queue Management
Mechanisms, in: Proceedings of the ACM SIGCOMM Asian
Internet Engineeering Conference (AINTEC), 2012, pp. 39-46.
doi:10.1145/2402599.2402605.

W. Eddy, [agm] floating a draft charter, http://www.ietf.org/
mail-archive/web/agm/current/msg00127.html (2013).

S. Liu, M. Vojnovic, D. Gunawardena, Competitive and con-
siderate congestion control for bulk data transfers, in: IEEE
International Workshop on Quality of Service (IWQoS), 2007,
pp. 1-9. doi:10.1109/TWQOS.2007.376542.

P. B. Key, L. Massoulié, B. Wang, Emulating Low-priority
Transport at the Application Layer: a Background Transfer Ser-

[29]

[30]

31]

32]

[33]

vice, in: ACM SIGMETRICS/Performance, 2004, pp. 118-129.
doi:10.1145/1005686.1005703.

D. Ros, M. Welzl, Less-than-Best-Effort Service: A Survey of
End-to-End Approaches, Communications Surveys & Tutorials
15 (2) (2013) 898-908. doi:10.1109/SURV.2012.060912.00176.
G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, A Hands-on
Assessment of Transport Protocols with Lower than Best Effort
Priority, in: IEEE Conference on Local Computer Networks
(LCN), 2010, pp. 8-15. doi:10.1109/LCN.2010.5735831.

J. Schneider, J. Wagner, R. Winter, H.-J. J. Kolbe, Out of My
Way-Evaluating Low Extra Delay Background Transport in an
ADSL Access Network, in: International Teletraffic Congress
(ITC), 2010, pp. 1-8. doi:10.1109/ITC.2010.5608714.

Y. Gong, D. Rossi, E. Leonardi, Modeling the Interdependency
of Low-priority Congestion Control and Active Queue Manage-
ment, in: International Teletraffic Congress (ITC), 2013, pp.
1-9. doi:10.1109/ITC.2013.6662942.

Y. Gong, D. Rossi, C. Testa, S. Valenti, D. Taht, Fighting
the Bufferbloat: on the Coexistence of AQM and Low Priority
Congestion Control, in: IEEE INFOCOM Workshop on Traf-
fic Measurement and Analysis (TMA), 2013, pp. 3291-3296.
doi:10.1109/INFCOM.2013.6567153.

N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McK-
eown, Reproducible Network Experiments Using Container-
based Emulation, in: ACM CoNEXT, 2012, pp. 253-264.
doi:10.1145/2413176.2413206.

J. Costa-Roberts, C. Case, Seeing RED, http:
//reproducingnetworkresearch.wordpress.com/2012/06/
05/seeing-red (2012).

http://www.enst.fr/~drossi/ledbat.

M. May, J. Bolot, C. Diot, B. Lyles, Reasons Not to De-
ploy RED, in: International Workshop on Quality of Service
(IWQoS), 1999, pp. 260—262. doi:10.1109/TWQO0S.1999.766502.
D. Rossi, C. Testa, S. Valenti, L. Muscariello, LEDBAT: the
New BitTorrent Congestion Control Protocol, in: International
Conference on Computer Communications and Networks (IC-
CCN), 2010, pp. 1-6. doi:10.1109/ICCCN.2010.5560080.

G. Carofiglio, L. Muscariello, D. Rossi, S. Valenti, The Quest
for LEDBAT Fairness, in: IEEE GLOBECOM, 2010, pp. 1-6.
doi:10.1109/GLOCOM.2010.5683559.

The uTorrent Transport Protocol library, http://github.com/
bittorrent/libutp (2010).

D. Rossi, C. Testa, S. Valenti, Yes, We LEDBAT: Playing
with the New BitTorrent Congestion Control Algorithm, in:
Passive and Active Measurements (PAM), 2010, pp. 31-40.
doi:10.1007/978-3-642-12334-4_4.

I-T. S. G. 12, One-way transmission time, International
Telecommunication Union, ITU G.114 (2003).

The Codel Archives, https://lists.bufferbloat.net/
pipermail/codel.

Vitae

a: A

Yixi Gong received a B.Sc. in In-
formation Security from Fudan Univer-
sity (Shanghai, China) in 2009 and an
Engineering Degree in information sys-

in 2012. He is currently pursuing a
Ph.D. at the Computer Science and Net-
working (INFRES) department of Tele-

supervision of Prof. Dario Rossi. His research focuses on
Internet traffic measurement.

com ParisTech (Paris, France) under the

Dario Rossi is a Professor at the Com-

puter Science and Networking (INFRES)
department of Telecom ParisTech (Paris,
France). He received his M.Sc. and

Ph.D. degrees from Politecnico di Torino
in 2001 and 2005 respectively, and his

HDR degree from Universite Pierre et

Marie Curie (UPMC) in 2010. Dur-

ing 2003-2004, he held a visiting researcher position in

the Computer Science division at University of California,

Berkeley. He has coauthored over 100 papers in leading

conferences and journals, holds 6 patents and he partici-

pated in the program committees of over 40 conferences

including ACM CoNEXT and IEEE INFOCOM. His re-

search interests include Internet traffic measurement, in-

formation centric networks, green networking, peer-2-peer

and traffic engineering.

Claudio Testa received a M.Sc. de-
gree in Computer and Communication
Networks Engineering from the Politec-
nico di Torino (Torino, Italy), with a
Master Thesis in the network traffic anal-
ysis field. He received a Ph.D. degree
at the Computer Science and Network-
ing (INFRES) department of Telecom
ParisTech (Paris, France) under the supervision of Prof.
Dario Rossi in November 2012. His research focused in the
field of low-priority congestion control algorithms, peer-to-
peer services and content distribution applications. Since
July 2013, he is working in the Content Distribution Net-
work team at Orange.

Silvio Valenti received a M.Sc. de-

gree in Computer Science Engineering

at Politecnico di Torino (Italy), in Febru-
ary 2008 and received a Ph.D. at IN-

FRES department of TELECOM Paris-

Tech (Paris, France) in 2012. His re-

search interests are relative to peer-2-

peer networking, Internet traffic classification and high-

speed packet processing. Since November 2012, he is work-

ing in the Gmail team at Google.

tem from Telecom ParisTech (Paris, France)

Dave Taht works at Bufferbloat.net.
Singer, pianist, guitarist, writer, exper-
imenter, theorist, hacker, maker, faker
- in no particular order, on any given
day. - Cheerleader. Gimme an I!

