
Delay-based congestion control: flow vs. BitTorrent swarm perspectives

Claudio Testa, Dario Rossi1

aTelecom ParisTech, 46 Rue Barrault, 75013 Paris, France

Abstract

BitTorrent, one of the most widespread file-sharing P2P applications, recently introduced LEDBAT, a novel con-
gestion control protocol aiming at (i) limiting the additional delay due to queuing, to reduce interference with the rest
of user traffic (e.g., Web, VoIP and gaming) sharing the same access bottleneck, and (ii) efficiently using the available
link capacity, to provide users with good BitTorrent performance at the same time.

In this work, we adopt two complementary perspectives: namely, a flow viewpoint to assess the Quality of Service
(QoS) as in classic congestion control studies, and a BitTorrent swarm viewpoint to assess peer-to-peer users Quality
of Experience (QoE). We additionally point out that congestion control literature is rich of protocols, such as VEGAS,
LP, and NICE sharing similarities with LEDBAT, that is therefore mandatory to consider in the analysis. Hence,
adopting the above viewpoints we both (i) contrast LEDBAT tothe other protocols and (ii) provide deep understanding
of the novel protocol and its implication on QoS and QoE.

Our simulation based investigation yields several insights. At flow-level, we gather LEDBAT to be lowest priority
among all protocols, which follows from its design that strives to explicitly bound the queuing delay at the bottleneck
link to a maximumtarget value. At the same time, we see that this very same protocol parameter can be exploited
by adversaries, that can set ahigher targetto gain an unfair advantage over competitors. Interestingly, swarm-level
performance exhibit an opposite trade-off, withsmaller targetsbeing more advantageous for QoE of BitTorrent users.
This can be explained with the fact that larger delay targetsslow down BitTorrent signaling task, with possibly negative
effect on the swarming protocol efficiency. Additionally, we see that for the above reason, in heterogeneous swarms,
any delay-based protocol (i.e., not only LEDBAT but also VEGAS or NICE) can yield a competitive QoE advantage
over loss-based TCP.

Overall this tension between swarm and flow-levels suggeststhat, at least in current ADSL/cable access bottleneck
scenarios, a safe LEDBAT operational point may be used in practice. At the same time, our results also point out that
benefits similar to LEDBAT can also be gathered with other delay-based protocols such as VEGAS or NICE.

Keywords: BitTorrent; Congestion control;
Lower-than best effort congestion control;
LEDBAT; TCP-LP; VEGAS; NICE;

1. Introduction

Pioneered by Jain [22] in late 80s, delay-based Con-
gestion Control (CC) has been out for a long time, with
notable proposals over the years such as VEGAS [8] in
late 90s, NICE [42] and LP [25] in early 2000 and more
recently LEDBAT [35] in 2010.

The idea of this branch of protocols is to use the vari-
ation in the end-to-end delay transmission asearlycon-
gestion signal: in other words, a growing delay beyond

1Corresponding authordario.rossi@enst.fr

a baseline is interpreted as queuing delay building up at
the bottleneck link, and the amount of data to be sent
at every time frame is updated accordingly. This design
choice is orthogonal to the one adopted by loss-based
protocols, such as in classic TCP NewReno [18] which
instead uses packet loss as alate congestion signal to
tune the data transmission.

Since loss-based protocols forcibly fill the buffer,
this can translate into rather large delays, especially at
the access link where buffer sizes are relatively large
compared to the narrow capacity of ADSL and cable
modems. As recent work pointed out, is not uncommon
that queuing delays exceed the Earth-to-Moon propaga-
tion delay [23, 13], for which the “bufferbloat” term was
recently coined [12].

Clearly, such huge delays can harm the Quality of Ex-

Preprint submitted to Computer Networks December 13, 2013

perience (QoE) of interactive communication – includ-
ing Voice over IP (VoIP), gaming and Web browsing.
Additionally, since the bottleneck is placed at the user
access link, this means that the user is self-inflicting this
QoE degradation, as his own traffic is competing for
the bottleneck resources. In other words, QoE degra-
dation results from sustained uploads carried on TCP,
whose loss-based Additive Increase Multiplicative De-
crease (AIMD) protocol forces the buffer to fill prior to
halve the congestion window due to losses.

It follows that bufferbloat can be induced by any
application transferring large data volumes over TCP,
such as any upload to the Cloud (e.g., Picasa, Drop-
Box, Flickr, etc.), or peer-to-peer file-sharing (e.g., Bit-
Torrent, eDonkey, etc.). To avoid harming contempo-
rary interactive communication of the same user, appli-
cation developers have thus the choice to exploit alter-
natives to the standard loss-based TCP behavior. This
is precisely the choice of BitTorrent, that recently re-
placed loss-based TCP with delay-based LEDBAT for
data transfer.

This evolution motivates our first viewpoint. As the
new protocol is used in BitTorrent swarms, it is impor-
tant to assess its impact on the quality of BitTorrent
users experience – mainly, their completion time [26].
Interestingly though, the protocol has been normalized
at the IETF under the Low Extra Delay Background
Transport (LEDBAT) in late 2012 [36]. This motivates
the second viewpoint: as the protocol is normalized at
the IETF, its scope is wider than the BitTorrent ecosys-
tem, and its impact on other applications has to be as-
sessed as well.

In this work, we investigate LEDBAT by means of
ns2 simulations, and compare it to other delay-based
protocols such as LP, VEGAS and NICE, from both
flow vs. swarm perspective. Moreover, in case of LED-
BAT we carry out a sensitivity analysis over its main
parameter, namely the queuing delay target, to assess
the impact of heterogeneous settings. This is an impor-
tant study, since the parameter can be easily modified by
legitimate end-users or legacy implementations (com-
plying to the RFC specification) or by malicious users
and developers (violating RFC specification) to possi-
bly gain an unfair advantage. At flow-level, we study
the Quality of Service (QoS) of backlogged flows, ex-
pressed as the usual network-centric metrics of conges-
tion control studies, such as link efficiency, throughput,
packet loss, etc. At swarm-level, we instead study the
Quality of Experience (QoE) of BitTorrent users, ex-
pressed as the torrent completion time, that collectively
depends on the performance of multiple flows, in a fur-
thermore non-trivial way as we shall see.

Summarizing our most interesting findings, we have
that heterogeneous LEDBAT target settings yield to sig-
nificant unfairness, which is especially true for back-
logged connections, where flows with slightlyhigher
delay targetcan starve competing flows. Interestingly
though, competitive advantage for selfish users in the
swarm case are obtained forlower delay target– which
suggests that safe LEDBAT operational points may be
used in practical cases. At the same time, our results
also point out that benefits similar to LEDBAT can also
be obtained with other delay-based protocols such as
VEGAS or NICE.

The remainder of this work is organized as follows.
Related work are discussed in Sec. 2, while a detailed
overview about the congestion control protocols we
consider in this study is reported in Sec. 3. Flow vs.
swarm perspectives are then adopted in Sec. 4 vs. Sec. 5
respectively. For both perspectives, we investigate the
novel LEDBAT protocol (e.g., carrying out a detailed
sensitivity analysis of the queuing delay target param-
eter, and especially of heterogeneous target settings)
and contrast performance with that achievable under LP,
VEGAS or NICE. Finally, our findings are summarized
and discussed in Sec. 6.

2. Related work

While our most important findings arise in the oppo-
site implications of LEDBAT target settings in the flow
vs. swarm perspectives, we point out that, so far, all
related effort has focused on either viewpoint in iso-
lation. Hence, we separately treat the above perspec-
tives in this section. In more details, at flow-level, we
overview delay-based congestion control protocols and
focus on recent work targeting LEDBAT. At swarm-
level, we overview studies of BitTorrent performance,
and focus on work targeting the impact of packet-level
dynamics on content distribution performance.

2.1. Flow viewpoint

Congestion control is a long studied subject: as it
would be out-of-scope to provide a full review of the ex-
isting literature here, we concentrate on the subset that
is most relevant for our work. We present four differ-
ent categories of congestion control protocols in Fig. 1.
Those protocols can be classified based on thedesign
strategy (loss-based vs. delay-based) and theirag-
gressiveness(high-priority vs. low priority) in cap-
turing the available bandwidth. IETF endorses TCP
NewReno [18], a high-priority loss-based congestion

2

Figure 1: Congestion control design space: aggressivenessvs design
strategy.

control algorithm. Recent evolutions of loss-based pro-
tocols include Cubic [33] and Compound TCP [37]. Cu-
bic has become the default TCP flavor in Linux (since
kernel version 2.6.18) and Compound TCP in Windows
operating system (since Vista). As far as the delay-
based and low-priority solutions are concerned, that are
most interesting to our work, we will focus on LP [25],
VEGAS [8], NICE [42] and LEDBAT [36], that we de-
tail in Sec. 3.

Since its proposal, LEDBAT triggered the interest of
the scientific community, that started dwelling on sev-
eral aspects via either experiments [15, 31, 34, 20, 13],
simulation [32, 9, 20] or analysis [10, 19]. Delay re-
lated issues are addressed in [15, 13]: in [15], BitTor-
rent developers detail an algorithm to correct the clock
drift, while we exploit LEDBAT to gauge bufferbloat
delay of remote hosts in [13]. An experimental analy-
sis of LEDBAT performance is carried out in [31, 34].
In [31], we use a black-box approach to study initial
closed-source versions of the protocol in its early stage
of adoption. Authors in [34] instead study their own
LEDBAT implementation in a local testbed, employ-
ing different real ADSL modems, exposing a negative
interaction with Active Queue Management (AQM) in
some modem. We further investigate the interaction
between delay-based protocols and AQM via experi-
ments/simulation [20] and fluid modeling [19]: as AQM
reinstate fairness among protocols, it practically equal-
izes priorities and nullifies the differences in protocol
design (recall Fig. 1). A simulative approach is instead
adopted in [32, 11, 10, 9, 24]. In [32] we unveil alate-
comer issuethat affect the LEDBAT protocol, where
newly arriving connections can starve already existing
ones. We design and simulate [11] and analyze via

fluid modeling [10] solutions to the latecomer unfair-
ness, while authors in [24] compare alternative window
decrease schemes.

In our previous work [9], that is closest related to
this for what concerns the flow viewpoint, we directly
compare LEDBAT to LP and NICE, to (i) relatively
weight their low-priority level and (ii) provide a thor-
ough sensitivity analysis of LEDBAT parameters (i.e.,
gain and target) in both an inter-protocol (i.e., against
TCP) and intra-protocol (against LEDBAT itself) sce-
narios. Building over [9], Sec. 4 focuses on the most
relevant LEDBAT parameter (namely, the target), and
report the most interesting results additionally includ-
ing the VEGAS protocol (not considered in [9]). Simu-
lation performed in this work are however entirely new,
so as to comply with the default LEDBAT settings, that
were updated during the RFC standardization process
and thus differ with respect to [9]. Our implementation
of LEDBAT for ns2 is available at [3].

2.2. Swarm viewpoint
As the most successful peer-to-peer file-sharing ap-

plication, BitTorrent has become over the years a
rather popular research subject, investigated with ana-
lytic [29], measurement [21, 43] simulative [6, 7, 41,
17, 10, 38] or experimental [5, 30, 39] approaches. Yet,
as most studies were carried out before the proposal of
LEDBAT, it follows that to date only few work studies
LEDBAT impact on BitTorrent performance, via either
simulation [38] or experiments [39, 40].

More precisely, among the pre-LEDBAT studies,
[29] presents a fluid model of swarming performance,
while [21, 43, 28] use a measurement approach to shed
light on the Internet footprint of BitTorrent, either an-
alyzing tracker logs [21] or via large-scale crawling of
the entire BitTorrent ecosystem [43]. Simulation is used
to study the impact of tit-for-tat [6], overlay parame-
ters [41] and traffic locality [7] on BitTorrent perfor-
mance.

However, the above work limitedly consider appli-
cation dynamics but otherwise neglects the impact of
packet-level dynamics, such as congestion control. A
packet-level implementation of the BitTorrent protocol
for ns2 is available at [1], that is used in [17] to con-
trast a simplistic flow-level to a more realistic packet-
level viewpoint. Finding of [17] is that transport-layer
congestion control dynamics actually do interact with
application-level dynamics, so that overlay-only simu-
lation results [6, 41, 7] may report optimistic comple-
tion times.

Following [17], we consider transport-layer dynam-
ics and assess the impact of LEDBAT on BitTorrent

3

completion time via simulation [38]. Yet another pos-
sibility it to perform experiments with real BitTorrent
clients [30, 5, 39, 40]. In particular, authors in [30]
address the problem of reproducibility and reliability
testbed-driven results, that are found to be close enough
to results gathered in the real Internet. In a joint
work with authors of [5, 30], we employ an experimen-
tal methodology to study torrent completion time un-
der LEDBAT [39, 40]. Interestingly, experimental re-
sults [39, 40] validates the simulation findings of [38],
and suggest thus simulative approach to be worthwhile,
as it allows to explore a large investigation space, as we
do in this work.

Building over [38], that is closest related to this work
for what concerns the swarm viewpoint, Sec. 5 employs
the ns2 simulator [17] to simulate BitTorrent swarm
under a mixture of congestion control protocols. More
precisely, while [38] limited considered LEDBAT, in
Sec. 5 we extend the current knowledge by (i) consider a
broader range of congestion control protocols, i.e., LP,
NICE and VEGAS, (ii) extend the considered swarm
settings (e.g., seed leave policies) to ensure the gener-
ality of our findings, (iii) perform a sensitivity analysis
of heterogeneous LEDBAT target settings, that leads to
novel important findings about LEDBAT operation.

3. Background

We perform a preliminary set of simulations, that as-
sists the description of important similarities and differ-
ences of the congestion control protocols we use in this
work. Fig. 2 reports the congestion window evolution of
two backlogged flows sharing a bottleneck link obtained
via ns2 simulation. We consider an access bottleneck
of C =10 Mbps, a RTT=50 ms, with a queue size of
B=100 full-size packets (larger than the bandwidth de-
lay product as common in practice [23]). Top plots of
Fig. 2 refer to the heterogeneous protocol case where
one flow employs standard loss-based TCP NewReno,
while the other flow employs a delay-based protocol
among (a) VEGAS, (b) LP, (c) NICE or (d) LEDBAT.
Bottom plots report the bandwidth share in the homo-
geneous flow case, where thus both flows employ (e)
VEGAS, (f) LP, (g) NICE or (h) LEDBAT. Already at
first sight, it is possible to gather that VEGAS, NICE
and LEDBAT have very similar behavior (with a very
smooth congestion window), while LP is more aggres-
sive (and saw-toothed congestion window profile). No-
tice further that while LP, NICE and LEDBAT share
the same low-priority spirit, VEGAS was designed for
higher efficiency but is known to be less aggressive that
TCP NewReno [4].

3.1. TCP-Vegas

TCP-Vegas (or VEGAStout court) exploits the sim-
ple idea that the number of bytes in transit is di-
rectly proportional to the expected throughput. VE-
GAS maintains an estimateRTTmin of the minimum
measured Round Trip Times (RTT), corresponding to
the RTT encountered when the bottleneck queues
is empty. Then, the expected throughput is given
by Expected(t) = W (t)/RTTmin, whereW (t) is
the size of the congestion window at timet. Sim-
ilarly, it calculates the current actual sending rate as
Actual(t) = W (t)/RTT (t), and adjusts thecwnd
according to the difference betweenActual(t) and
Expected(t) throughput:

∆(t) = Expected(t)−Actual(t) (1)

For the cwnd adjustment two thresholds are defined:
α < β. When∆(t) < α, VEGAS increasescwnd
linearly during the nextRTT , while if ∆(t) > β, VE-
GAS decreasescwnd linearly during the nextRTT , and
leavecwnd unchanged otherwise:

cwnd(t+ 1) =











cwnd(t) + 1 if ∆(t) < α,

cwnd(t)− 1 if ∆(t) > β,

cwnd(t) if α < ∆(t) < β.

(2)

As shown in Fig. 2-(a) and (e), VEGAS is less aggres-
sive with respect to TCP NewReno, and efficiently and
fairly shares the bottleneck link in the intra-protocol
case.

3.2. TCP-LP

TCP-LP (or LPtout court) measures the One-Way
Delay (OWD) and employs a simple delay threshold-
based method for early inference of congestion. More
specifically, LP estimates the minimumOWDmin and
maximum OWDmax delays, filtering the instanta-
neous measureOWD(t) by means of an exponentially
weighted moving average ˜OWD(t) with smoothing pa-
rameterα, updated packet-by-packet. The smoothed av-
erage ˜OWD(t) and the condition for early-congestion
detection are:

˜OWD(t) = (1− α) ˜OWD(t− 1) + αOWD(t) (3)

˜OWD(t) > OWDmin + (OWDmax −OWDmin)δ
(4)

where δ ∈ (0, 1) is a custom threshold parameter.
Throughout this paper, we use the default valuesα =
1/8, δ = 0.15 as in [25].

4

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

cw
nd

 [p
kt

]

Time [s]

VEGAS

TCP

(a) TCP NewReno-VEGAS

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Time [s]

LP

TCP

(b) TCP NewReno-LP

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Time [s]

NICE

TCP

(c) TCP NewReno-NICE

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Time [s]

LEDBAT

TCP

(d) TCP NewReno-LEDBAT

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

cw
nd

 [p
kt

]

Time [s]

VEGAS.0
VEGAS.1

(e) VEGAS-VEGAS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Time [s]

LP.0
LP.1

(f) LP-LP

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Time [s]

NICE.0
NICE.1

(g) NICE-NICE

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Time [s]

LEDBAT.0
LEDBAT.1

(h) LEDBAT-LEDBAT

Figure 2: Congestion control protocols at a glance: Inter (top) and Intra (bottom) protocol interaction on a simple bottleneck (C=10 Mbps,
RTT=50 ms, B=100 packets)

In the absence of early-congestion indication, LP be-
haves like standard TCP NewReno, i.e., performing an
additive increase ofcwnd as shown by the saw-tooth
behavior in Fig. 2-(b) and (f). Whenever an early-
congestion is detected, according to the rules outlined
above, LP halvescwnd and enters an inference phase
that last for a preconfigured time. During this period, LP
only observes responses from the network and avoids
increasing the congestion window. If congestion per-
sists at the end of this phase, LP reducescwnd to 1 and
restarts a slow-start phase as evident from Fig. 2-(b). Fi-
nally, in case of losses, LP behaves like TCP NewReno.

3.3. TCP-NICE

TCP-NICE (or NICEtout court) instead maintains
minimumRTTmin and maximumRTTmax estimates
of the round trip delay. Congestion is detected when
more than a given fractionφ of packets during the same
RTT experiences a delay exceeding:

RTT > RTTmin + (RTTmax −RTTmin)δ (5)

whereδ andφ are protocol parameters set toδ = 0.2
andφ = 0.5 as in [42]. Notice that (5) is the same
formula of LP (3), but computed on the RTT variable,
and using the fraction-trick instead of a moving average.

In the absence of congestion, NICE behaves like
VEGAS. Whenever early-congestion is signaled, NICE
simply halves its congestion windows and sending rate,
practically anticipating the multiplicative decrease be-
havior. Finally, when a loss is detected NICE behaves
like TCP NewReno. We point out that NICE allows
cwnd to be a fraction of 1 by sending one packet after
waiting for the appropriate number of RTTs: the use of

fractional values forcwnd guarantees non-intrusiveness
even in the case of many NICE flows sharing the same
bottleneck.

As clearly emerges from the smoothcwnd behav-
ior in Fig. 2-(c) and (g), NICE inherits its conges-
tion control algorithm from VEGAS (rather than from
TCP NewReno as LP), so that the throughput stabilizes
around the effective capacity in the intra-protocol case.

3.4. LEDBAT

Finally, LEDBAT maintains a minimum OWD esti-
mationOWDmin, which is used as base delay to infer
the amount of queuing delay. Each flow has a target
queuing delayτ , i.e., they aim at introducing a small,
fixed, amount of delay in the queue of the bottleneck
buffer. The flow continuously monitors the variations
of the queuing delayOWD(t)−OWDmin to evaluate
the distance∆(t) from its target as in (6):

∆(t) = [τ − (OWD(t)−OWDmin)]/τ (6)

cwnd(t+ 1) = cwnd(t) + γ∆(t)/cwnd(t) (7)

whereγ is a parameter responsible for the steepness of
thecwnd update. In the absence of early-congestion in-
dication, i.e., when the targetτ has not been reached
yet, ∆(t) > 0 in (6) and thuscwnd grows as defined
by (7). As soon as the target is reached,∆(t) = 0,
thuscwnd settles. Values of∆(t) < 0 are perceived as
early-congestion indication (i.e., other traffic is increas-
ing the queuing delayOWD(t) − OWDmin > 0), to
which LEDBAT reacts by reducingcwnd proportion-
ally to the offset from the target. Finally, in case of
losses, it behaves like TCP NewReno.

5

Note that as per (6) the ramp-up is limited to at most
match the TCP NewReno ramp-up in congestion avoid-
ance (i.e., 1 packet per RTT), which happens when the
queue is empty (i.e,OWD(t)−OWDmin = 0). Note
also thatτ > 0 is necessary in order for the capacity
to be fully exploited. At the same time,τ should be
as small as possible to avoid harming interactive com-
munication. Early version of the draft used a mandatory
τ = 25ms value, though this was too small to be used in
practice and the RFC later recommendτ ≤ 100ms. As
we will see in the following, this possibly opens an arm
race between applications/implementations using LED-
BAT, since flows with higherτ (even though complying
to RFC specifications) have a faster ramp-up and can
starve the other flows. Additionally, while system-wide
options (as TCP parameters) need super-user privileges
to be tweaked, the value ofτ is the µTorrent imple-
mentation can be easily overridden by users (by simply
modifying thenet.utp target delay value in the
GUI), extending the arm race to users.

Overall, LEDBAT shares similarities with, and ex-
hibits differences from, the other protocols: (i) as LP,
it relies on OWD estimation to detect congestion, but
unlike LP it does not employ a smoothing average; (ii)
as NICE and VEGAS its congestion window dynamics
are based on the delay, but unlike them, it defines a fixed
target delay. As we can see from Fig. 2, the behavior of
LEDBAT is however closer to NICE and VEGAS than
to LP.

4. Flow perspective

This section has three main aims. We first (i) com-
pare the different protocols from a flow-level perspec-
tive, using different network-centric (e.g., link utiliza-
tion, packet loss) and user-centric (e.g. traffic share,
queuing delay) QoS metrics. We then perform a sensi-
tivity analysis of the LEDBAT target delay parameterτ
on the system performance. Sensitivity is carried out in
both (ii) an inter-protocol case, where a TCP NewReno
flow and a LEDBAT flow share the bottleneck and (iii)
an intra-protocol case, where two LEDBAT flows com-
pete against each other.

The aim of (i) is to precisely quantify similarities
and differences among protocols, that were qualitatively
shown early in Fig. 2. Then, we assess whether (ii)τ
offers the chance to tune the level of aggressiveness in
LEDBAT, and (iii) further aims at verifying whether un-
fairness may arise among legacy LEDBAT implementa-
tions (e.g., different releases of the same code, different
implementations or parameter settings, etc.).

Shared buffer

B=100 pkts max

C=1 Mbps

Sender 1

Receiver

C=100Mbps

Sender N

...

Data transfer

Figure 3: Synoptic of the flow-level simulations.

Performance figures are gathered vians2 simula-
tions. While TCP NewReno, VEGAS and LP protocols
are already implemented, we implement both NICE and
LEDBAT, that we make available at [3]. As reference
network scenario, we use a dumbell topology where the
capacity of the bottleneck is fixed toC = 1Mbps, the
one-way propagation delay equals 25 ms (thus round
trip delay is equal toRTT = 50ms), and the buffer size
is set toBmax = 100 packets2, as depicted in Fig. 3. We
consider backlogged sources3, that use a fixed packet
size equal toS = 1500Bytes. All flows start simultane-
ously, so that we avoid potential latecomer issues [32],
and last for 120 seconds. For the time being, we fix the
LEDBAT target delay toτ =100 ms, i.e., the maximum
value compliant to RFC recommendations.

Performance are expressed in terms of the link uti-
lization (η), i.e., the ratio between the sum of the
throughput of each flowxi over the bottleneck capac-
ity η =

∑

i xi/C. We quantify priority (in the inter-
or intra- protocol cases) with the traffic share of a given
flow f (or set of flows)Pf =

∑

i∈f xi/
∑

j xj . Finally,
we report average buffer sizeE[B] (correlated to the
user delay) and loss probability.

We point out that a more systematic and detailed
comparison in terms of scenarios (e.g., including a set of
more realistic and diverse scenarios, sensitivity of more
LEDBAT parameters, etc.) and metric (e.g., the short-
and long-term Jain fairness index among the flows,
queue size, packet loss probability, etc.) can be found
in [9]. In this section though, we do report the most in-
teresting findings, that we further extend to include the
VEGAS case.

2Given the bottleneck capacity, this buffer size corresponds to a
about 1.2 s worth of queuing delay, or equivalently to the Earth-to-
Moon propagation delay early mentioned. Notice that according to
[23], this scenario correspond to Internet queuing delays that are sig-
nificantly lower than those observed in practice.

3As we consider backlogged sources only, dynamics of LEDBAT
are well described by means of (7) only; in case of non-backlogged
sources, the dynamics changes slightly to avoid cwnd increase indefi-
nitely [35].

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

1
T

C
P

 fl
ow

 s
ha

re

Number of low-priority flows N
(a)

0e+00

2e-03

4e-03

6e-03

8e-03

1e-02

1e-02

 1 2 3 4 5 6 7 8 9 10

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty

Number of low-priority flows N

LEDBAT
LP

NICE
VEGAS

TCP

(b)

Figure 4: Relative assessment of delay-based protocols: (a)TCP share
and (b) packet loss rate as a function of the number of delay-based
flows.

4.1. Relative protocol assessment

We first provide a relative assessment of each delay-
based protocol against TCP NewReno. We consider a
typical scenario whereN ∈ [1, 10] low-priority flows
(e.g., due to P2P or other Cloud services) share the
same bottleneck with a single TCP NewReno connec-
tion, (representative of a generic high-priority service),
for a total ofN + 1 flows. We perform several sets of
simulations separately and, for reference purpose, we
also simulate the case whereN+1 TCP NewReno flows
share the same bottleneck.

The TCP share reported in Fig. 4-(a), states that e.g.,
in theN = 10 LEDBAT case, the single TCP NewReno
consumes about 90% of the link capacity (sinceη ≃ 1),
leaving thus each of theN = 10 LEDBAT flows a
mere 1% of the capacity each. Comparing this result
with NICE (about 3% each) VEGAS (about 4% each)
or LP (about 5% each) under the sameN = 10 set-
tings, we gather that LEDBAT achieves the lowest pri-

ority, closely followed by NICE and VEGAS.
Further differences are stressed by the packet loss

probability reported in Fig. 4-(b), that reflects differ-
ences among delay-based versus loss-based congestion
control principles: indeed, packet loss rate increases
proportionally to the number of connections for TCP
NewReno and LP, but is not affected by the number of
NICE, VEGAS, or LEDBAT flows, since they all try to
avoid losses as much as possible (so that a non-zero loss
rate is due to the single TCP NewReno flow).

4.2. LEDBAT target sensitivity

Since LEDBAT is the most recent, and thus less
known among the congestion control protocols we con-
sider in this work, we need to check correctness of op-
eration according to its low-priority goal (Sec. 4.2.1), as
well as investigate if target heterogeneity leads to unfair
competitive advantages (Sec. 4.2.2).

4.2.1. Inter-protocol: LEDBAT vs TCP
We start our sensitivity analysis by considering two

flows, a standard TCP NewReno and a LEDBAT one,
that start simultaneously and vary the values of the
τ ∈ [24, 1800]ms which corresponds toT ∈ [2, 150]%
of the buffer size. Given the large span of uplink capaci-
ties, and that also the amount of available buffer space in
modems spans over an order of magnitude (e.g., 34KB-
384KB[16]), the same LEDBAT queuing delay target
may correspond to different buffer occupancy ratios:
hence, more than theabsolutevalue (top x-axis) this in-
vestigation should be interpreted according to therela-
tivevalue (bottom x-axis) with respect to the buffer size.

The importance of this analysis is motivated as fol-
lows. As previously underlined, the mandatory value
for target increased fromτ = 25ms (transmission time
of about 1 full size packet at 500 Kbps) toτ ≤ 100ms
during the protocol evolution. The choice ofτ is some-
what arbitrary (e.g., based on unreported experiments)
or motivated by practical constraints (e.g., clock preci-
sion, etc.) so thatτ is often referred to as “magic num-
ber” in LEDBAT WG discussion [2]. It is thus imper-
ative to individuate not only those working modes that
correspond to legitimate and compliant settings, but also
to malicious or erroneous configurations, or similarly, to
changes in the underlying hardware (e.g., modem buffer
size) or hardware configuration (e.g., buffer size limited
in software to alleviate bufferbloat).

Fig. 5-(a) reports the value of link utilizationη and
Fig. 5-(b) the share of the TCP flow as a function of
the targetτ . From Fig. 5-(a) we see that the efficiency
η is practically unaffected by variations of target and

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140

 300 600 900 1200 1500 1800

E
ffi

ci
en

cy
 η

Target T [%]

Target τ [ms]

T1

T2

T3

T4

Unstable

Low-priority

Transient

Loss-based

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140

 300 600 900 1200 1500 1800

T
C

P
 s

ha
re

Target T [%]

Target τ [ms]

(b)

Figure 5: LEDBAT vs TCP NewReno: Inter-protocol sensitivity anal-
ysis: (a) link utilization and (b) TCP share for varying targetτ .

remains always close to the total link capacity. This is a
positive, though expected, finding: even if the target is
misconfigured, either LEDBAT or TCP NewReno can
take advantage of the unused bandwidth, which result
in an overall efficient use of the link capacity.

Considering instead the TCP share reported in Fig. 5-
(b), we can identify four working regions. When the
target is very smallτ ≪ 100ms the LEDBAT proto-
col is not always able to reach the target delay, which
leads to shaky behavior (e.g., as very low target delays
may be exceeded already by having a single packet in
the queue). In a second region (fairly large in terms
of τ settings), LEDBAT completely yields to the TCP
NewReno flows, working in low-priority mode and thus
attaining its goal. In a third region where the LEDBAT
target approaches (but does not exceed) the queue size
T3 ∈ [65, 100]%, LEDBAT aggressively starts to erode
bandwidth to the TCP NewReno flow: this causes losses
in the TCP NewReno flow, which progressively backs
off. As a consequence, the TCP share starts decreasing

until LEDBAT has the monopoly of the buffer, which
happens when it aims at precisely filling the buffer
T = 100% and TCP NewReno starves (TCP% tends
to 0%). As soon as the target exceeds the buffer size,
LEDBAT revert to standard loss-based TCP NewReno
behavior, and both flows compete fairly for the bottle-
neck resources.

Overall, the inter-protocol sensitivity analysis sug-
gests that, although LEDBAT spans a wide range of
low-priority levels (especially in the third region, that
exhibits a sharp transition phase), a precise tuning is
highly impractical (as slight variation ofτ leads to com-
pletely different scenarios, where either LEDBAT or
TCP NewReno exhibits starvation). As such, LEDBAT
seems to have a single low-priority level (second region,
with a fairly large range ofτ values) that is furthermore
the lowest among all the delay-based protocols exam-
ined in the previous section.

4.2.2. Intra-protocol: LEDBAT vs LEDBAT
The sensitivity analysis in the inter-protocol case is

reported in Fig. 6. Top plot of Fig. 6-(a) depicts, as a
function of theτ1/τ2 target ratio, the link utilizationη,
the Pτ2 = x2/(x1 + x2) share of the LEDBAT flow
with the smaller target (asτ1 > τ2 = 100ms), and the
normalized buffer lengthE[B]/Bmax. Is immediate to
see that even slight differences in the target settings may
have strong consequences on the protocol fairness. In-
deed a sharp transition phase on the breakdown happens
as soon asτ1/τ2 > 1, where the share of the second flow
rapidly drops toPτ2 = 0. As a matter of fact, if both
flows start at the same time, they both measure the same
base delay, and the higher-target flow converges faster
to its target and stabilizes: as the amount of queuing is
now larger than the one of the less aggressive flow, the
latter backs off and starves. This holds irrespectively of
whether the higher-target flow operates in delay-based
(white shaded region) or loss-based regime (gray shaded
region): under both regimes, the higher-target flow will
always be advantaged prior than losses occur, and so the
unfairness persists.

An example of the congestion window evolution in
caseτ1/τ2 = 1.2 is represented in Fig. 6-(b), and it can
be seen that wheneverτ1 > τ2 the first flow will starve
the second. While the picture shows an homogeneous
RTT scenario, actually, unfairness due to target hetero-
genity always dominates the unfairness due to RTT het-
erogenity: this is because RTT unfainess just drives the
rate at which changes happen, whereas target hetero-
genity drives the amount of change. It follows that
backlogged flows with larger targets, by design, will
starve flows with smaller target (only, starvation will

8

take more if larger-target flows also have a larger RTT).
At the same time, we point out that starvation is surely
reached whenever flows are backlogged, though unfair-
ness is less dramatic in case of short-lived flows [10]
Notice indeed that in Fig. 6-(b), the second flow share
reaches 0 after about 2 minutes. Thus, we expect late-
comer unfairness (for which, by the way, known solu-
tion exists [11, 10]) to be a second-order detail in the
case of BitTorrent experiments of Sec. 5.

Overall, we see that tuning of the protocol priority
via the target parameter is highly impractical, as even
small difference in that value for two flows produces
an extremely unfair situation. Notice that this situation
may happen also with non-malicious users with hetero-
geneousτ1, τ2 targets settings that are both complying
with the LEDBAT RFC (i.e.,τ1 6= τ2 ≤ 100ms). It
follows that is not possible to enforce multiple, finer-
grained, levels of priority among LEDBAT flows in par-
allel. Yet, an interesting observation is that two priority
levels are possible: flows with the largestτ dominate
the other flows, so that transfers of heterogeneous target
flows happens sequentially (as if flows were scheduled
according to their priority).

5. Swarm perspective

As before, this section has three main aims. We
first compare the different delay-based protocols from a
swarm-level perspective, using torrent completion time
as the main metric, in a (i)homogeneousand (ii)hetero-
geneouspeers population. We then perform (iii) a sen-
sitivity analysis of the LEDBAT target delay parameter
τ on the intra-protocol case, letting peers have hetero-
geneous targetτ settings in all-LEDBAT swarm.

We integrate our open-source implementation of
LEDBAT with the BitTorrent open-source implemen-
tations [17] forns2 . The [17] module runs a fully
fledged BitTorrent protocol, implementing all the rel-
evant aspects of the protocol dynamics (e.g., tit for tat
reciprocation, rarest firts chunk selection, etc.). For rea-
son of space, we assume the reader is familiar with Bit-
Torrent (and otherwise refer the reader to [17, 5] for a
detailed overview of the protocol). We now briefly de-
scribe the swarm-scenario with the help of Fig. 7. As
commonly assumed, we consider the bottleneck to be
represented by peer access link, which is also one of the
main motivations that led to the design of LEDBAT. As
access technology, we consider ADSL-like connections
with C = 1Mbps uplink capacity (homogeneous for
the whole peer population) and 8 Mbps downlink capac-
ity. Access nodes are then interconnected directly to the
Internet, that we model by means of infinite capacity,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

Target ratio τ1/τ2

2 3 4 5 6 7 8 9

delay-based behavior loss-based behavior

η
Pτ2

E[B]/Bmax

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

cw
nd

 [p
kt

]

Time [s]

τ1=120 ms
τ2=100 ms

(b)

Figure 6: LEDBAT vs LEDBAT: Intra-protocol sensitivity analy-
sis. (a) Impact of target heterogeneity on performances of twoLED-
BAT flows and (b) time evolution of the congestion window in case
τ1/τ2 = 1.2. In both figures, 100ms= τ2 ≤ τ1.

null delay links connected through an infinite switching
capacity router, to which all ADSL modems are inter-
connected in a star topology. Unless otherwise stated,
we set the buffer size toB = 200 full-size packets
(that we have increased with respect to the buffer size
in the previous flow-level simulation to better exacer-
bate performance difference), that givenC = 1Mbps
correspond well to the range of bufferbloat delays ob-
served via Netalyzr in real-world modems [23]. Access
links also model one-way propagation delay, which is
chosen uniformly at random in the interval[0, 25]ms so
that the averageRTT delay of the swarm between two
peers in the swarm is aboutRTT = 25ms. Unless oth-
erwise stated, the target delay for the LEDBAT protocol
is fixed atτ = 100ms.

We implement two kind of P2P nodes, that model
different application settings as far as peer prefer-
ence for the congestion protocol used fordata trans-
fer in uplink is concerned. We assume that the lat-

9

ADSL buffer

Uplink capacity

 C=1Mbps

Propagation delay

 D=unif (1,25) ms

Data transfer

LEDBAT

Application Node

Control TCP

Data TCP

TCP

Application Node

Figure 7: Synoptic of the swarm simulation model.

est application versions will by default initiate data
transfers using LEDBAT on their uplink, but that
they can accept incoming TCP data connections (i.e.,
similar to settingbt.transp_disposition=5 in
µTorrent). Older versions initiate TCP transfers, but
accept incoming LEDBAT connections anyway (i.e.,
bt.transp_disposition=10). For the sake of
simplicity, irrespectively of theirdata transfersettings,
applications use TCP for the exchange ofcontrol mes-
sages(that do not send high volume of data). Hence,
a different traffic mixture will possibly compete for
ADSL access link capacity and buffer space.

Notice that, while nodes are free to decide what con-
gestion control flavor to use for their outbound connec-
tions, they have to comply to other peers settings as far
as inbound data connections are concerned. We point
out that this slightly differs from theµTorrent imple-
mentation [39], whose latest releases instead implement
by default a dual-stack solution where (i) both TCP
NewReno and LEDBAT connections are attempted in
parallel (ii) the TCP NewReno connection is dropped
in case the LEDBAT connection is successfully estab-
lished, (iii) application-layer throttling of aggregated
LEDBAT vs TCP bandwidth is in place. In practice,
successful opening of a LEDBAT connection may de-
pend on a number of factor (e.g., NAT traversal, differ-
entbt.transp_disposition configuration of the
remote peer, availability of LEDBAT or legacy clients,
etc.) that we prefer not to model (as their precise
settings would be arbitrary and questionable anyway).
Rather, we argue that this simple model, where peers
have the freedom to choose the uplink protocol of their
choice, is a reasonable connection management policy
possibly available in the multitude of BitTorrent clients
implementing LEDBAT, and need to be assessed as
well. Similarly, we argue that a too detailed simulation
model, e.g., including application-layer throttling of ag-
gregated LEDBAT vs TCP bandwidth, would defeat the
very same purpose of using a simulator. More faith-

ful performance in the case ofµTorrent are gathered via
experiments in [39, 40], that is worth pointing out to be
consistent with results we achieve in simulation.

5.1. Preliminary campaign
We carry out a preliminary campaign to further refine

the P2P simulation scenario, where for simplicity, we
limitedly consider TCP NewReno and LEDBAT proto-
col. Besides, from Sec. 4 we know LEDBAT, NICE and
VEGAS to behave similarly with backlogged flows, so
we can reasonably expect similarities to hold, at least to
some extent, in the BitTorrent case as well. We simu-
late a mild flash-crowd scenario, in which at timet=0
the swarm is constituted by only one seed, and then 100
leechers join with exponentially distributed arrival times
(mean rate 0.1 Hz). During each simulation, we discard
the first 50 completion samples that happen during the
transient period, and consider only the subsequent 50
completion times. Simulations end after the 100th user
has completed its download, so that users beyond the
100th participate to swarming, but their performance are
not accounted for. For each parameter settings, we re-
peat each simulation 10 times, so that statistics represent
500 individual torrent downloads per setting.

As far as the swarm population is concerned, we ei-
ther considerhomogeneous swarms(i.e., all TCP or
all LEDBAT) or heterogeneous swarmswhere the pop-
ulation is equally split, on average, among LEDBAT
and TCP peers (denoted in the following as 50-50).
While in [39] we also explore different TCP vs LED-
BAT ratios, we believe this split ratio to be the most
relevant for our purpose. Indeed recent estimates of
µTorrent permeation (60% in 2008 [43]) suggest that
many legacy/TCP versions are still around. Addition-
ally, a roughly equal share in terms of the traffic vol-
ume is confirmed by our measurement at multiple van-
tage point in Europe [10] and by Brahm Cohen own
words [14]. As a side effect, as the population sets size
are unbiased, the presentation of the results is also sim-
pler.

As far as the peer and seed behavior is concerned,
we consider three different scenarios, namely (i) never
leave, (ii) random stay, and (iii) immediately leave. In
the first one, peersnever leavethe system after becom-
ing seeds, thus altruistically continuing to serve other
leechers in a optimistic swarm configuration. In the sec-
ond, more realistic, scenario newborn seeds stay in the
system for arandom time. Under this conditions, each
time a peer leaves, a new leecher joins the swarm, so
that the swarm size remains constant. Specifically, peers
stay in the system after becoming seeds for an expo-
nentially distributed time, with mean equal to half their

10

 0

 100

 200

 300

 400

 500

 0 25 50 75 100

C
om

pl
et

io
n

tim
e

[s
]

Peer completion rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

Completion time [s]

All TCP
50-50

All LEDBAT
 0

 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200

 0 500 1000 1500 2000

C
C

D
F

Buffer occupancy [pkts]

Queuing delay [ms]

All TCP
50-50

All LEDBAT

(a) New seeds stay indefinitely (never leave)

 0

 100

 200

 300

 400

 500

 0 25 50 75 100

C
om

pl
et

io
n

tim
e

[s
]

Peer completion rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

Completion time [s]

All TCP
50-50

All LEDBAT
 0

 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200

 0 500 1000 1500 2000

C
C

D
F

Buffer occupancy [pkts]

Queuing delay [ms]

All TCP
50-50

All LEDBAT

(b) New seeds leave, on average, after half completion time (random stay)

 0

 100

 200

 300

 400

 500

 0 25 50 75 100

C
om

pl
et

io
n

tim
e

[s
]

Peer completion rank

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

Completion time [s]

All TCP
50-50

All LEDBAT
 0

 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200

 0 500 1000 1500 2000

C
C

D
F

Buffer occupancy [pkts]

Queuing delay [ms]

all TCP
50-50

all LEDBAT

(c) New seeds leave immediately after download completion (immediate leave)

Figure 8: Swarm performance for different seeds holding time (never leave vs random stay vs immediate leave) and populations(homogeneous
LEDBAT vs homogeneous TCP vs heterogeneous 50-50): completion time evolution and CDF, queue occupancy CCDF.

download time. On the one hand, this roughly mod-
els the BitTorrent netiquette to contribute to the system
beyond the tit-for-tat; on the other hand, missing more
detailed information of share ratio from real swarms, we
decide to opt for a simple peer behavioral model, similar
to other tricks that are common in the P2P literature[27].
Finally, a worst-case scenario is considered, in which
selfish peersimmediately leavethe swarm after data
completion, while new leechers join to maintain a con-
stant population in the torrent swarm.

Simulation results of this preliminary campaign are
reported in Fig. 8. Top plots of Fig. 8-(a) refer to sce-
narios where seeds never leave the system, middle plots
of of Fig. 8-(b) to random stay scenario and bottom
ones of Fig. 8-(c) to immediate leave case. Taking a
single run as an example, plots on the left column de-
pict how the completion time evolves during the simula-
tion, ordered by peer completion rank (dark gray back-
ground represents the discarded initial transient period).

If seeds stay forever, completion times shrink down to
a point in which leechers are close to fully exploit their
downlink capacity, which is no longer the case when
seeds stay only for a finite time or leave as soon as they
end the download.

Plots in the middle column of Fig. 8 report the com-
pletion time cumulative distribution (CDF) for the dif-
ferent populations. If peers never leave the system,
no difference arises due to the congestion control algo-
rithm: intuitively, as there is no resource hotspot, peers
are able to download from many seeds at the same time,
hence we do not expect congestion to play a major role
in this case. Conversely, when seeds leave the system
and are replaced by new leechers, resources become
rare, translating into longer completion times.

Notice that our interest is especially on therelative
completion time between peers with different conges-
tion control flavors, more than on the torrentabsolute
completion time. Under this light, while performance

11

of homogeneous swarms are alike, completion time in
random stay and immediate leave scenarios is affected
by the specific congestion control mechanism adopted
by peers in case of heterogeneous swarms.

Reasons why this happens can be better understood
by looking at the queue size complementary cumulative
distribution (CCDF) shown in the right column plots
of Fig. 8 (gathered by sampling all uplink queues at
10 Hz). Notice indeed that uplink queue of LEDBAT
peers is very similar in all scenarios, as LEDBAT tries
not to exceed a target delay: deviation from target are
due to TCP control connection sharing the same queue,
and latecomer advantage [32]. On the contrary, TCP
queues can grow long: in scenario (b), for about 20%
of the cases queues exceed 100 packets, corresponding
to more than a second of queuing delay considering full
size packets (as reported in the top x-axis for reference).
In the 50-50 case, queuing delay aggregates both LED-
BAT and TCP uplink buffers, resulting in an interme-
diate average system queuing time (notice that in the
50-50 scenario, a further deviation from LEDBAT tar-
get is due to bursty uplink ACK traffic of TCP connec-
tions opened by other peers in the swarm). However, in
heterogeneous scenarios, queues of individual peers are
more influenced by their uplink protocols.

Interestingly indeed, inheterogeneous swarms(de-
noted with 50-50 in Fig. 8) the completion time behav-
ior changes significantly according to peer congestion
control preferences: more precisely, we report in Fig. 9-
(a) the completion time CDF of LEDBAT vs TCP peers,
gathering that LEDBAT peers have shorter download
times (which holds for both the random stay and im-
mediate leave scenarios). This is a counter-intuitive re-
sult, as we would not expect completion time to be tied
to the congestion control used to handle chunks upload
with the protocol of choice for the uplink. Intuitively,
the completion time metric relates to thedownlinkper-
formance of a peer, but are otherwise unrelated to the
protocol a peer uses inuplink.

We suspect this unexpected phenomenon to arise due
to (i) the coupling of the data vs control connection,
associated to (ii) the very large size of ADSL buffers:
while large buffers are beneficial to backlogged data
connections, they can conversely harm BitTorrent sig-
naling. Indeed, TCP control connection competes with
either LEDBAT data traffic (that strive to keep a low ex-
tra delay on the access buffer) or TCP data traffic (that
indiscriminately opens up the congestion window un-
til loss occur). To prove this fact, we perform simu-
lation with variable buffer size, whose results are re-
ported in Fig. 9-(b) and confirm our intuition. As ADSL
buffers are large, queuing delay of TCP peers can grow

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F

Completion time [s]

TCP

LEDBAT

(a)

 100

 150

 200

 250

 10 100 200 300 400

C
om

pl
et

io
n

tim
e

[s
]

Buffer size [pkts]

TCP
LEDBAT

(b)

Figure 9: (a) Breakdown of completion time CDF according to the
different peer population in the heterogeneous 50-50 scenario, for dif-
ferent seed holding times. (b) Swarm completion time (mean, 1st and
3rd quartiles) as a function of the buffer sizeB for the 50-50 random-
stay scenario, for different peer population.

up to seconds (Fig. 8): hence, this possibly hampers the
performance of TCP peers, whose control traffic is sig-
nificantly slowed down by competing chunk upload to
other peers and by ACK traffic of downloaded chunks.
Conversely, the shorter queuing delay of LEDBAT peers
lead to more responsive control connections, that op-
portunistically “steal” download slots from TCP peers
(whose request rate is, as we just saw, slowed down due
to self-induced congestion in the access link), as they
are faster in filling the request buffer of other peers. This
phenomenon is instead not observed in case of homoge-
neous TCP swarms, as all peers fairly compete against
each other.

5.2. Relative protocol assessment

We now extend our investigation to other protocols
than LEDBAT. For the sake of brevity, we fix theran-
dom timecase, and consider bothhomogeneous swarms

12

 0

 50

 100

 150

 200

 250

T
C

P

LP

V
E

G
A

S

N
IC

E

LE
D

B
A

T

C
om

pl
et

io
n

tim
e

[s
] TCP

other CC

(a)

 0

 20

 40

 60

 80

 100

 120

T
C

P

LP

V
E

G
A

S

N
IC

E

LE
D

B
A

T

B
uf

fe
r

oc
cu

pa
nc

y
[p

kt
s]

TCP
other CC

(b)

Figure 10: (a) Average and standard deviation of completion time and (b) average Buffer occupancy for different homogeneous swarms.

 0

 50

 100

 150

 200

 250

 300

 350

T
C

P

LP

V
E

G
A

S

N
IC

E

LE
D

B
A

T

C
om

pl
et

io
n

tim
e

[s
] 50% TCP

50% other CC

(a)

 0

 20

 40

 60

 80

 100

 120

T
C

P

LP

V
E

G
A

S

N
IC

E

LE
D

B
A

T

B
uf

fe
r

oc
cu

pa
nc

y
[p

kt
s]

50% TCP
50% other CC

(b)

Figure 11: (a) Average completion time and (b) average Buffer occupancy for heterogeneous swarms (50%TCP-50%other CC).

(with TCP NewReno, VEGAS, LP, NICE and LED-
BAT peers) andheterogeneous swarms(where half of
the peers are TCP NewReno and half either VEGAS,
LP, NICE or LEDBAT). This analysis is motivated by
the fact that delay-based congestion control protocols
are already available in the kernel of modern Operating
Systems, so that is relatively easy for application devel-
opers to use them (i.e., TCP flavors can be specified as
parameters in the socket API). Hence, in case compara-
ble performance could be achieved under multiple pro-
tocols, this would allow to focus the development effort
on other issues.

In case of homogeneous swarm, as expected from the
preliminary simulation campaign, we have that com-
pletion time is roughly the same irrespectively of the
congestion control used as Fig. 10-(a) shows. Also, as
expected per the flow-level analysis in Sec. 4, we can
see from Fig. 10-(b) that the average buffer occupancy
is higher for TCP NewReno and LP than for VEGAS,

NICE or LEDBAT.

In the case we have a mixed population of peers
within the same swarm, Fig. 11-(a) represents com-
pletion time for the TCP half-swarm with a white bar,
and the remaining half with dark shaded bar (for refer-
ence, we still report the all-TCP swarm as well). Results
confirm that TCP NewReno peers always experience
higher completion time with respect to the other peers –
though difference is only minimal in the LP case. This
can again be explained looking at the average buffer oc-
cupation plotted in Fig. 11-(b), that is higher for TCP
NewReno than for VEGAS, NICE or LEDBAT peers.

Overall, we see that effects tied to the packet-level
dynamics induced by the congestion control protocol in
use by peers can have notable effects on the BitTorrent
performance. This is in accordance with [17], that how-
ever limitedly focus on homogeneous TCP NewReno
case.

Our results further show an unexpected advantage of

13

delay-based protocols, that reducing the delay experi-
enced by control messages, can give competitive ad-
vantage with respect to bufferbloated TCP NewReno
peers. This observation is coherent with our experi-
mental findings [39], that further show the completion
time to be linearly correlated with the queue size. Addi-
tionally, simulations reported in this section show these
phenomena to hold for a set of delay-based protocols
(namely, VEGAS, NICE and LEDBAT) whose behavior
significantly deviates from TCP NewReno. Conversely,
delay-based protocols like LP that still have additive-
increase component, suffer similar queuing delays to
TCP NewReno, so that they cannot gain any opportunis-
tic advantage.

5.3. LEDBAT target heterogeneity

As we have previously seen (Sec. 4.2.2), LEDBAT
possibly leads to QoS fairness problems in case of back-
logged connections having heterogeneous targets. As
LEDBAT has been originally been designed by BitTor-
rent, it is equally important to assess whether target het-
erogeneity leads to QoE unfairness4 also in terms of the
BitTorrent completion time. More precisely, we sep-
arately consider the case of mixed TCP and LEDBAT
swarms (Sec. 5.3.1), and of swarms with heterogeneous
LEDBAT settings (Sec. 5.3.2).

5.3.1. Inter-protocol case: TCP vs LEDBAT
As for the LEDBAT sensitivity analysis in the swarm-

case, we argue that is not necessary to perform any sim-
ulation in the inter-protocol case. Implicitly, such a sen-
sitivity was already shown in Fig. 9 where, instead of
letting the target vary, we varied the buffer size.

Still, additional considerations are worth reporting.
The results just shown testify that LEDBAT flows have
a competitive advantage provided their queuing delay is
smaller with respect to TCP NewReno peers – which
is equivalently implied by either smaller target for a
fixed buffer size, or larger buffer for a fixed target (as
in Fig. 9).

Clearly, the queuing delay of LEDBAT peers grows
proportionally to the target, so that the difference be-
tween LEDBAT and TCP NewReno performance re-
duce asτ grows. At the limit,τ exceeds the buffer size
and LEDBAT becomes loss-based as TCP NewReno, so
that completion time is the same under both protocols.

4Quoting the uTorrent post [26] that originally introduced the
LEDBAT (then called uTP):“Same performance is what users have
come to expect from their BitTorrent application unless we can offer
the same performance, then people will switch to a differentBitTorrent
client.”

5.3.2. Intra-protocol case: LEDBAT vs LEDBAT

We now focus on the intra-protocol case, lettingτ
vary. Recall that from Sec. 4, as far as the backlogged
flow viewpoint is concerned, even a slightly higher tar-
get can cause starvation of a compliant flow, which can
be easily exploited by malicious users. We therefore
want to study whether such competitive advantage per-
sists under the swarm perspective.

The scenario we hypothesize in this case is one where
LEDBAT has taken over TCP NewReno for P2P file-
sharing in BitTorrent, so that all legacy clients now use
the open-source LEDBAT API. Changingτ settings is
however very easy for both application developers or
even end-users. Hence, in case violating the mandatory
target values specified by the RFC could provide, as in
flow-level, to a competitive advantage, this would pro-
vide incentives to selfish users (to reduce their down-
load time) or application developers (to gain a compet-
itive advantage over other applications). We recall that,
since the LEDBAT RFC only requiresτ ≤ 100, target
heterogeneity arise also in the case of RFC compliant
implementations, and is thus of special interest.

We consider an heterogeneous target among peers
within the same swarm: in this scenario, half of the pop-
ulation employs the RFC-compliant targetτ2 = 100ms,
while the second half uses a different targetτ1 with
τ1/τ2 ∈ [0.25, 10]. Notice that with respect to our pre-
vious discussion,τ1/τ2 ∈ [0.25, 1] correspond to users
with RFC-compliantτ1 settings, whileτ1/τ2 ∈ [1, 10]
to maliciousτ1 settings. Fig. 12-(a) reports the aver-
age completion time of the two set of peers, in theran-
dom stayscenario. As we can see, for similar targets
τ1/τ2 ∈ [0.75, 1.5] peers achieve almost the same com-
pletion time on average.

Results further confirm that a lower target translates
into a lower completion time: indeed, there is an ad-
vantage of selecting a lower targetτ1 < τ2. When half
of peers in the swarm use a smaller targetτ1 = 25ms
than the maximum recommended valueτ2 = 100ms,
their completion time decreases. As previously noted,
this happen because peers with a lower target setting
are more responsive in the control plane, as they strive
to keep less data into the buffer. Thus, they face a lower
self-induced congestion, as suggested also from the av-
erage buffer occupancyE[B] reported in Fig. 12-(b),
which positively impacts the user QoE of both BitTor-
rent as well as other interactive applications.

On the contrary, there appears to be no incentive in
exceedingτ2 > τ1 the target value recommended by
the LEDBAT RFC: for large target ratios the completion
time increases by as much as 30% (additionally, the av-

14

 0

 50

 100

 150

 200

 250

 300

 0.25 0.5 1 2 4 6 8 10

C
om

pl
et

io
n

tim
e

[s
]

Target ratio τ1 / τ2

τ1
τ2=100ms

(a)

 0

 25

 50

 75

 100

 0.25 0.5 1 2 4 6 8 10
 0

 250

 500

 750

 1000

E
[B

] [
pk

ts
]

D
el

ay
 [m

s]

Target ratio τ1 / τ2

τ1
τ2=100ms

(b)

Figure 12: Target sensitivity, swarm-level, LEDBAT intra-protocol
case. (a) Average completion time and (b) average Buffer occupancy
of peers with heterogeneous target within the same swarm.

erage delay of peers using large target delaysτ1/τ2 > 5
settles to630ms, which is more than the double of peers
employingτ2 = 100ms). This is an especially interest-
ing findings, as settings that lead to opportunistic ad-
vantage in the swarm-case are completely opposite (and
non-harmful) with respect to the previous flow-based
case.

6. Conclusions

This work contrasts performance of a representative
set of delay based congestion control protocols (namely,
LEDBAT, NICE, VEGAS, and LP) from both a flow-
level and a swarm-level perspectives. Our investigation
focuses not only in a broad relative assessment of these
protocols, but also in a detailed analysis of the most
recent one (namely LEDBAT), that was not studied in
such depth beforehand.

In the flow-level perspective, important since LED-
BAT has been standardized at the IETF, we study clas-

Figure 13: Synaptic of LEDBAT performances for varying target set-
tings and workload models.

sic QoS metric (e.g., buffer size, loss, efficiency and
fairness) under a backlogged traffic model. In this sce-
nario, we learn that LEDBAT has the lowest priority and
is followed, in order of increasing priority, by NICE,
VEGAS, and LP. It also follows that LEDBAT is the
least intrusive protocol, leading to queuing delay that
are shorter than NICE, VEGAS, and LP. Finally, LED-
BAT efficiently exploits the bottleneck, so that its design
goals are met.

However, in the intra-protocol case we also find that
selfish users gain competitive advantages usinghigher
targetsτ , which can happen when settings are either
compliant with, or in violation of, the RFC recommen-
dations. Since even slightly higher targets may lead
compliant flows to starvation, it follows that malicious
users may gain an unfair advantage with by only mini-
mally hurting its performance with respect to compliant
users (at the same time, the same considerations apply
to other congestion protocols, such as, e.g., TCP users
with a faster rampup with respect to the RFC recom-
mendations).

Yet, the above findings limitedly hold in the case of
backlogged connections, for which we also analyze a
more realistic swarm-level perspective, important since
LEDBAT has been invented by BitTorrent to relieve
bufferbloat of its users. In this scenario, we faithfully
simulate BitTorrent dynamics at packet level and study
how congestion control dynamics affect the most rele-
vant QoE metric (i.e., the torrent completion time).

In this second case, we learn that LEDBAT conges-
tion control can be beneficial to the torrent completion
time. While surprising at first, this can be explained
with the competitive advantage gained in the timely de-
livery of control plane messages. Interestingly, results
confirm this phenomenon to hold across delay-based
congestion control (e.g., including NICE and VEGAS)

15

as long as they keep the buffer size limited.
Most interestingly, competitive advantages in terms

of completion time can be gathered in the swarm case by
employinglower targetsτ – a dual scenario with respect
to flow-level. Hence, in the case of BitTorrent users,
performance considerations inherently remove incen-
tives to violate the LEDBAT RFC recommendation.

This duality is summarized with the help of Fig. 13.
On the one hand, at flow-level small targets may not be
feasible due to inefficient operation, while selfish users
may resort to higher targets to gain competitive advan-
tage. On the other hand, at swarm-level, selfish BitTor-
rent users gain competitive advantage by setting a lower
target. From the above tradeoff it follows that, at least
for BitTorrent, feasible operational points, that lay in the
dark shared area of Fig. 13, can be found in practice.

Acknowledgement

This work has been carried out at LINCShttp:
//www.lincs.fr , and funded by the FP7 mPlane
project (grant agreement no. 318627).

References

[1] BitTorrent in ns2.https://sites.google.com/site/
koljaeger/bittorrent-simulation-in-ns-2 .

[2] LEDBAT Mailing List Archives. http://www.ietf.org/
mail-archive/web/ledbat .

[3] LEDBAT ns2 code. http://perso.
telecom-paristech.fr/ ˜ drossi/index.php?
n=Software.LEDBAT .

[4] J.S. Ahn, P.B. Danzig, Z. Liu, and L. Yan. Evaluation of TCP
Vegas: emulation and experiment. InACM SIGCOMM Comp.
Comm. Rev., volume 25, pages 185–195. ACM, 1995.

[5] Arnaud Legout and Nikitas Liogkas and Eddie Kohler and Lixia
Zhang. Clustering and sharing incentives in bittorrent systems.
In Proc. of ACM SIGMETRICS’07, San Diego, CA, Jun 2007.

[6] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyz-
ing and Improving a BitTorrent Performance Mechanisms. In
25th IEEE Conference on Computer Communications (INFO-
COM 2006), Barcelona, Spain, Apr 2006.

[7] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates,and
A. Zhang. Improving Traffic Locality in BitTorrent via Biased
Neighbor Selection. Jul 2006.

[8] L.S. Brakmo, S.W. O’Malley, and L.L. Peterson. TCP Vegas:
new techniques for congestion detection and avoidance.ACM
SIGCOMM Comp. Comm. Rev., 24(4):24–35, 1994.

[9] G. Carofiglio, L. Muscariello, D. Rossi, and C. Testa. A hands-
on Assessment of Transport Protocols with Lower than Best
Effort Priority. In 35th IEEE Local Computer Network (LCN
2010), Denver, CO, Oct 2010.

[10] G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, and S.Valenti.
Rethinking the Low Extra Delay Background Transport (LED-
BAT) protocol. In Elsevier Computer Networks (to appear),
2013.

[11] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti.The
quest for LEDBAT fairness. InIEEE Global Communication
(GLOBECOM 2010), Miami, FL, Dec 2010.

[12] Vint Cerf, Van Jacobson, Nick Weaver, and Jim Gettys.
Bufferbloat: what’s wrong with the internet?Communications
of the ACM, 55(2):40–47, 2012.

[13] C. Chirichella and D. Rossi. To the moon and back: are internet
bufferbloat delays really that large. InIEEE INFOCOM Work-
shop on Traffic Measurement and Analysis (TMA 2013), Turin,
Italy, Apr 2013.

[14] B. Cohen. How has BitTorrent as a protocol
evolved over time. http://www.quora.com/
BitTorrent-protocol-company .

[15] B. Cohen and A. Norberg. Correcting for clock drift in uTP and
LEDBAT. In Invited talk at 9th USENIX International Workshop
on Peer-to-Peer Systems (IPTPS 2010), San Jose, CA, Apr 2010.

[16] L. DiCioccio, R. Teixeira, M. Mayl, and C. Kreibich. Probe
and Pray: Using UPnP for Home Network Measurements. In
Passive and Active Measurement (PAM 2012), 2012.

[17] K. Eger, T. Hoßfeld, A. Binzenhofer, and G. Kunzmann. Ef-
ficient simulation of large-scale p2p networks: packet-level vs.
flow-level simulations. InACM UPGRADE-CN, Monterey, CA,
Jun 2007.

[18] S. Floyd and T. Henderson. RFC 2582: The NewReno Mod-
ification to TCP’s Fast Recovery Algorithm. RFC 2582, Apr
1999.

[19] Y. Gong, D. Rossi, and E. Leonardi. Modeling the interdepen-
dency of Low-priority Congestion Control and Active Queue
Management.ArXiv e-prints, Mar 2013.

[20] Y. Gong, D. Rossi, C. Testa, S. Valenti, and D. Taht. Fighting
the Bufferbloat: on the Coexistence of AQM and Low Priority
Congestion Control. InIEEE INFOCOM Workshop on Traffic
Measurement and Analysis (TMA 2013), Turin, Italy, Apr 2013.

[21] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber,
A. Al Hamra, and L. Garces-Erice. Dissecting bittorrent: Five
months in a torrents lifetime. In5th Passive and Active Mea-
surement (PAM 2004), Antibes, France, Apr 2004.

[22] R. Jain. A delay-based approach for congestion avoidance in
interconnected heterogeneous computer networks.ACM SIG-
COMM Comp. Comm. Rev., 19(5):56–71, 1989.

[23] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr:
Illuminating the edge network. InACM Internet Measurement
Conference (IMC 2010), Melbourne, Australia, Nov 2010.

[24] M. Kühlewind and S. Fisches. Evaluation of different decrease
schemes for LEDBAT congestion control.Energy-Aware Com-
munications, pages 112–123, 2011.

[25] A. Kuzmanovic and E.W. Knightly. TCP-LP: low-priority ser-
vice via end-point congestion control.IEEE/ACM Transactions
on Networking (TON), 14(4):752, 2006.

[26] S. Morris. µTorrent release 1.9 alpha 13485.http:
//forum.utorrent.com/viewtopic.php?pid=
379206#p379206 , Dec 2008.

[27] F. Picconi and L. Massoulié. ISP friend or foe? making P2P live
streaming ISP-aware. InIn Proc. of IEEE International Confer-
ence on Distributed Computing Systems (ICDCS’09), Montreal,
Quebec, Canada, 2009. IEEE.

[28] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The BitTorrent
p2p file-sharing system: Measurements and analysis. Ithaca,
NY, Feb 2005.

[29] D. Qiu and R. Srikant. Modeling and performance analysisof
BitTorrent-like peer-to-peer networks.ACM SIGCOMM Comp.
Comm. Rev., 34(4):367–378, 2004.

[30] Rao, A. and Legout, A. and Dabbous, W. Can realistic bittorrent
experiments be performed on clusters? In10th IEEE Interna-
tional Conference on Peer-to-Peer Computing (P2P 2010), Delf,
The Netherlands, Aug 2010.

[31] D. Rossi, C. Testa, and S. Valenti. Yes, we LEDBAT: Playing
with the new BitTorrent congestion control algorithm. In11th

16

Passive and Active Measurement (PAM 2010), Zurich, Switzer-
land, Apr 2010.

[32] D. Rossi, C. Testa, S. Valenti, and L. Muscariello. LEDBAT: the
new BitTorrent congestion control protocol. In19th IEEE In-
ternational Conference on Computer Communications and Net-
works (ICCCN 2010), Zurich, Switzerland, Aug 2010.

[33] I. S. Ha, Rhee and L. Xu. CUBIC: A new TCP-friendly high-
speed TCP variant. InACM SIGOPS Operating System Review,
New York, NY, Jul 2008.

[34] J. Schneider, J. Wagner, R. Winter, and H. Kolbe. Out of my
Way – Evaluating Low Extra Delay Background Transport in
an ADSL Acciess Network. In22nd International Teletraffic
Congress (ITC 2010), Amsterdam, The Netherlands, Sep 2010.

[35] S. Shalunov. Low Extra Delay Background Transport (LED-
BAT). IETF Draft, Mar 2010.

[36] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. RFC
6817: Low Extra Delay Background Transport (LEDBAT). RFC
6817, Dec 2012.

[37] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound
TCP approach for high-speed and long distance networks. In
25th IEEE Conference on Computer Communications (INFO-
COM 2006), Barcelona, Spain, Apr 2006.

[38] C. Testa and D. Rossi. The impact of uTP on BitTorrent comple-
tion time. In11th IEEE Peer to Peer (P2P 2011), Kyoto, Japan,
Sep 2011.

[39] C. Testa, D. Rossi, A. Rao, and A. Legout. Experimental
Assessment of BitTorrent Completion Time in Heterogeneous
TCP/uTP swarms. In4th Traffic Measurement and Analysis
(TMA) Workshop at 13th Passive and Active Measurement (PAM
2012), Wien, Austria, Mar 2012.

[40] C. Testa, D. Rossi, A. Rao, and A. Legout. Data Plane Through-
put vs Control Plane Delay: Experimental Study of BitTorrent
Performance . In13th IEEE Peer to Peer (P2P 2013), Trento,
Italy, Sep 2013.

[41] G. Urvoy-Keller and P. Michiardi. Impact of inner parameters
and overlay structure on the performance of BitTorrent. In25th
IEEE Conference on Computer Communications (INFOCOM
2006), Barcelona, Spain, Apr 2006.

[42] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A
mechanism for background transfers. In8th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
2002), Boston, MA, Dec 2002.

[43] C. Zhang, P. Dhungel, D. Wu, and K. Ross. Unraveling the
bittorrent ecosystem.IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), (99), 2011.

17

