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Abstract Internet video and peer-to-peer television (P2P-

TV) are attracting more and more users: chances are that

P2P-TV is going to be the next Internet killer application. In

recent years, valuable effort has been devoted to the prob-

lems of chunk-scheduling and overlay management in P2P-

TV systems. However, many interesting P2P-TV proposals

have been evaluated either in rather idealistic environments,

or in the wild Internet. Our work sits in between these two

antipodean approaches: our aim is to compare existing sys-

tems in a controlled way, but taking special care in realistic

conditions for their evaluation at the same time.

We carry on a simulation analysis that considers sev-

eral factors, modeling the L7 overlay (e.g., chunk schedul-

ing, topology management, overlay topology, etc.), the L3

network (e.g., end-to-end latency models, fixed vs dynamic

conditions, etc.), and the interaction of both layers (e.g.,

measurement errors, loss of signaling messages, etc.). To

depict a comprenshive system view, results are expressed in

terms of both user-centric and network-centric metrics.

In a nuthshell, our main finding is that P2P-TV systems

are generally robust against measurement errors (e.g., propa-

gation delay or capacity estimation), but are on the contrary

deeply affected by signaling errors (e.g., loss or outdated

system view), which are often overlooked without justifica-

tion.

Keywords P2P-TV · Simulations · QoE

1 Introduction

Internet users habits are changing, and consequently the shape

of Internet traffic is changing as well. The primate of Peer-
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to-Peer (P2P) file sharing, which for a long time was ac-

counted to as constituting the bulk of Internet traffic, is now

being challenged. In its Visual Networking Index [1], Cisco

estimates that although P2P traffic is growing in volume, it

is however declining as a percentage of overall IP traffic.

Video is indicated as the primary source of this traffic shift:

the amount of video traffic is currently rising faster than any

other type of service, and is estimated that all form of video

(TV, Video on Demand, Internet, and P2P) will account for

over 90% percent of Internet traffic [1] and about 60% of

Mobile traffic [2] in the next few years.

At the same time, P2P is alive and in good shape. Among

most popular applications Spotify, that allows P2P stream-

ing of musical content, generates more traffic than all Swe-

den [3]. Given the above trend in video growth, it is reason-

able to ask, e.g., what would happen in case Spotify started

offering music videoclips, or in case YouTube content was

shared on a P2P platform, or when Pheon [4] the new P2P-

TV projet led by BitTorrent, will be released. Besides, we

point out that Adobe flash player –the de facto standard for

front-end and encoding of Internet video on the Web– re-

cently started offering P2P capabilities through the Real Time

Media Flow Protocol (RTMFP) [5] and that also W3C, the

standard body for the Web, is considering embedding P2P

technology in future HTML standards.

Thus, exactly as users habits are changing, i.e., users

want to enjoy video content without having to download it

first, the P2P technology is evolving to cope with user re-

quirement: for these reasons, applications offering TV and

video over P2P technology are often indicated as the next In-

ternet killer application. At the same time, while a number

of successful and popular P2P-TV applications exists nev-

ertheless the evolution of P2P streaming technology is not

over yet. In the last years, a number of different proposals

have targeted mesh-based P2P streaming [6–21]. With few

exceptions [22,23] such proposals have typically been stud-
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ied in isolation, possibly focusing on very specific aspects

of the system (notably, chunk scheduling policies), in possi-

bly highly ideal settings (e.g., overlay-only studies, homoge-

neous settings, synchronous timelines, perfect neighborhood

knowledge, etc.). As such, a thorough comparison of the dif-

ferent proposals under a common and realistic framework is

missing so far. A first aim of this work is thus not to pro-

pose any new system, but rather to compare existing ones.

A second aim is instead to understand how the performance

of these system declines under more realistic scenarios.

Building on our previous work [24], we implement some

of these algorithms [17–20] in a custom event driven sim-

ulator, and evaluate their performance considering impor-

tant (but often overlooked) factors, which we model with

increasing levels of realism. A first issue is that “network

aware” P2P-TV systems typically makes chunk scheduling

and topology management decision based on some mea-

sured properties of other peers in the swarm: yet, as gath-

ering precise and reliable measurements is notoriously dif-

ficult in the Internet, it is important to understand the im-

plication of measurement errors in the system performance.

A second issue is that scheduling algorithms are generally

evaluated assuming a perfect, though unrealistic, knowledge

of the system state (e.g., neighbors buffer maps): as such,

it is important to evaluate the impact of state inconsistency

(e.g., due to lost or outdated control information) as well.

Our main findings can be summarized as follows. On the

positive side, we find that system performance are rather ro-

bust to measurement errors, as performance degrades grace-

fully even for very large capacity and latency measurement

errors. Conversely, we find that state inconsistencies signif-

icantly degrade the achievable performance even for very

low signaling error rates: as such, signaling should not be

neglected in future studies aiming at a realistic assessment

of the quality provided by P2P-TV services.

2 Related work

P2P-TV is a relatively long studied subject, which has been

the focus of many interesting work that we overview in this

section. P2P-TV studies started from seminal work on sin-

gle [6–9] and multiple [10–12] trees architectures, where

video GOPs (possibly encoded using multiple descriptors)

are pushed from the source down the trees. To overcome the

inherent limitation of tree architectures, inspired by BitTor-

rent, the design of latest generation P2P-TV has moved to-

ward chunk-based diffusions architectures featuring partly

meshed architectures [13–21], which we focus on in this

work.

In mesh-based architectures, video chunks are either pulled

or pushed on the overlay and are thus no longer received in

a particular order. In a pull system, receiver peers initiate

the exchange, asking some peers for the content they need:

in this case, an additional round-trip delay is required for

the handshake phase, as otherwise a receiver may be ask-

ing for unexisting content (i.e., causing a chunk miss). In

push systems instead, the sender peer decides whom to send

content to: in this case, peers need to mutually exchange

content availability, as otherwise a sender may be transmit-

ting content already available at destination (i.e., causing

a chunk collision). Interestingly, under homogeneous net-

work settings and assuming perfect knowledge of the sys-

tem state, a given class of push-based scheduling algorithms

(namely the latest useful chunk policy) has been proven [17]

to achieve rate-optimality (and delay-optimality up to an ad-

ditive constant term).

In [17] the peer selection strategy is however the sim-

plest one (namely, a random policy), and may result in sub-

optimal choices in the multi-domain heterogeneous Inter-

net environment. Hence, building over [17], many sched-

ulers have then been proposed that also incorporate “aware-

ness” to the network properties (such as bandwidth [19], la-

tency [18], and their ratio [20]). At the same time, [17–21]

have been studied in isolation, possibly adopting a highly

idealized view of the system and of the network models.

Though simplistic, this viewpoint is nevertheless necessary

to gather solid theoretic foundations for specific algorithms

design choices. In this work, we focus on such class of sched-

ulers, which we analyze in a common framework under more

realistic conditions. With this respect, closest work to our

is [22] that, by means of simulation, however limitedly com-

pare two systems (namely SplitStream [10] andPRIME [15]).

We point out that full blown systems [13–16] have also

been evaluated by means of middle scale deployments of

real prototypes. With the exception of [23] (that compares

Chainsaw [25] and SplitStream [10] and is the closest work

in spirit to ours), and of [26] (that analyzes PPlive, SopCast,

and TVAnts), real system have however been studied in iso-

lation. Moreover, what makes the comparison difficult is that

experimental conditions are hardly reproducible. Also, al-

though performance results are in this case realistic, as sys-

tems are very tightly designed, it is often not possible to

isolate and understand the impact of different factors in the

overall system performance.

While a great deal of literature focus on the study of indi-

vidual P2P-TV applications, only few work tackle the com-

parison of such system: namely, an analytical approach is

followed in [17], while [22] and [23] respectively follow a

simulative and experimental methodology. As in [17,22,23],

this work compares the performance of a several network

aware systems, that we represent by different peer selec-

tion and chunk scheduling policies. Our aim is to perform

a sensitivity analysis of the impact of different settings on

the performance of medium to large scale system. With this

goal in mind, we resort to a simulation-based approach, that

offers both (i) complete control over the investigation envi-
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ronment (with a greater level of details with respect to what

analytical techniques allow) and (ii) the ability to investigate

larger swarm sizes (with respect to those achievable with an

experimental methodology). In the following, we report re-

sults for swarms comprising more than 50,000 peers, a scale

that is hardly achievable in real-world experiments. Notice

indeed that, as pointed out in [27], PlanetLab experiments

are usually limited to few lightly loaded and reliable nodes

(direclty quoting [27], authors limit “ the overlay size to

160 peers running on machines that report at least 5% idle

CPU time”). Conversely, if recent experimental work [28]

achieved swarms of 10,000 peers on dedicated experimen-

tal facilities such as Grid’5000 (running 100 peers per ma-

chine), the testbed environment however looses the realism

of the Internet (and may bring other elements out of experi-

mental control, as pointed out by the same authors in [29]).

Otherwise stated, this work aims at performing a thor-

ough and realistic, but controlled and reproducible compar-

ison of relevant systems proposed in the literature [17–20].

In order to provide a fair comparison, we consider several

algorithms that perform well in ideal settings, and imple-

ment them in a common simulation framework. We then

challenge these algorithms by plugging different models,

representative of a realistic Internet environment, so to as-

sess their performance into the wild. This paper builds on

our previous work [24], extending it by (i) studying the im-

pact of different underlay network models, (ii) showing the

benefits of a continuous topology management task, (iii) in-

troducing errors in the latency and capacity measurement

processes and (iv) thoroughly justifying our scenario setting

with dedicated experiments.

3 Framework Description

This section overviews the framework we devised to com-

pare P2P-TV systems, which is available as open-source soft-

ware at [30]. The custom chunk-level event-based simulator

takes into account several components, which are visually

presented in Fig. 1. From an high-level point of view, the

framework consists of two layers: namely, the underlaying

physical L3 network and the logical L7 overlay, which are

coupled by different models of their possible interactions.

From the L3 point of view, at the edge of the architecture

we have end hosts, which are physically interconnected to

the L3 network by access links, that acts as bottleneck, and

that are modeled as a capacity–delay pair. Hosts are attached

to edge routers, which constitute the entry point of P2P-TV

traffic in the network, which we model with increasing lev-

els of details. From the L7 viewpoint, hosts run P2P-TV

applications, which we express in terms of the algorithms

(e.g., chunk scheduling, peer selection, topology manage-

ment) they implement, and of the overlay graph resulting

by those algorithms. Finally, we model L7/L3 interaction by

Table 1 Breakdown of hosts into classes

Class Ratio BWD BWU tTX

I 10% ∞ 5.0 Mbps 20 ms

II 40% ∞ 1.0 Mbps 100 ms

III 40% ∞ 0.5 Mbps 200 ms

IV 10% ∞ 0 Mbps ∞

taking into account that, in the real world, different sources

of error can slip in at any point of the process (e.g., loss

of signaling packets, bias on measurement of L3 properties

performed by L7 overlay peers, etc.).

In the remainder of this section, we further detail each

component, motivating the realism and soundness of our

choices. At the same time, we point out that the framework is

extremely flexible, and can easily accommodate other mod-

els for the different components as well: as such, where rel-

evant, we list other interesting models that could be investi-

gated by further research but that are out of the scope of this

work.

3.1 L3 Components

With L3 components we indicate objects in the physical

world, such as (i) hosts and (ii) routers, that are intercon-

nected by a (iii) network.

3.1.1 Host

Hosts are machines running P2P applications instances, and

are characterized by a physical interface to the L3 network.

Hosts are divided in different classes according to their up-

load bandwidth BWU , while we consider the download band-

width BWD to be infinite. This is a reasonable assumption

in case of asymmetric access, provided that we further as-

sume that the bottleneck is placed at the edge of the net-

work (which represents the common case today and is gen-

erally assumed by other research on P2P-TV [19, 20] and

P2P-filesharing [31]).

In our simulations we consider up to NH ≤ 512000

hosts divided into four classes, where the average BWU (i)

for the i-th class is allocated as described in Tab. 1, con-

sistently with [19, 31] (we further motivate this choice in

the Appendix). The first column of Tab. 1 reports the class

breakdown: the bulk of peer population is constituted by

mid-speed peers, with a non marginal presence of very-high

and very-low speed peers. In class i, the uplink capacity of

each peer p is set to ν · BWU (i) where ν is a random vari-

able uniformly distributed in [0.9, 1.1] (i.e., the actual uplink

of each peer deviates at most 10% from the average for that

class). For reference purpose, last column reports the trans-

mission time tTX of a 12.5 KBytes chunk (corresponding to

about 10 full-payload packets, considering application layer

header), where we consider that all the uplink bandwidth is
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Fig. 1 Sketch of the evaluation framework: overview of L3 and L7 components under study, including L3/L7 interaction

devoted to the chunk transmission. Since we are interested in

P2P-TV steady state performance, and since host population

is generally stationary during the show (contrarily to what

happens, e.g., in P2P filesharing systems), we neglect churn

in this study (a longer discussion motivating this choice is

deferred to Appendix A.1).

3.1.2 Router

Each host is single-homed, i.e., attached to a single access

router, which models the first IP router in the aggregation

network (e.g., the BRAS for ADSL access). In our simula-

tions, we consider a number of routers equal to NR = 100

and we use a simple host-to-router mapping policy: each

host is bound randomly to a router, so that in averageNH/NR =

20 hosts are attached per router.

As depicted in Fig. 1, routers are placed at the edge of

the network and act as access points forming a logical full

mesh at L3. Each router keeps statistics about packets pass-

ing through its interfaces and discriminates traffic between

remote (i.e., the traffic that it injects further down toward the

core) and local (i.e., the traffic that is reflected toward other

access links insisting on the same router).

Notice that, in this way, routers directly yield a very sim-

ple measure of traffic locality as P% = local/(local +

remote), which is independent from the actual network topol-

ogy, from the Autonomous System AS level topology, from

the router-to-AS mapping policy, etc. We point out that the

absolute value of this measure is heavily affected by several

factors (e.g., AS topology, host-to-router mapping), which

disqualify this index to be used for realistic assessment of

locality awareness. At the same time, this rough indication

however allows to relatively compare the locality awareness

of P2P-TV systems, which is our main aim more that to eval-

uate the amount of inter-AS traffic (for which we refer the

reader to [18, 32]).

3.1.3 Network

The L3 network models the interconnection of routers: in

this work, we consider different models of network, with

additional complexity and levels of details.

If we consider the access link to be the bottleneck, likely

no queuing happens within the network core: as such, the

network simply models the delay of the end-to-end path.

In this case, the network topology is well represented by a

static end-to-end latency matrix, where the latency essen-

tially represents the propagation delay along links of the

end-to-end path. We consider different models of static net-

works, from an ideal overlay model (where the end-to-end

delay is given solely by the chunk transmission duration

over the uplink bottleneck) to more realistic models such

as Meridian [33] (where end-to-end delays are derived from

real measurement performed among a large number of In-

ternet hosts).

We also consider the case where congestion may still

happen in the network by employing dynamic end-to-end

latency matrices, where the latency between any two peers

may thus differ from chunk to chunk, due to variation in

the queuing delay and to background traffic. We point out

that the case where the amount of P2P-TV traffic is (i) mi-

nority or (ii) prevalent shall be considered separately. In the

former case, which is typical today and that we consider in

this work, congestion is due to the background traffic: we

model this effect by simply varying the latency between two

consecutive chunks at random. In the latter case network

links should be modeled as well, so that Traffic Engineering

mechanisms (e.g., load balancing, periodic optimization of

routing weights IGP-WO, etc.) could be applied to handle

the edge-to-edge traffic matrix induced by P2P-TV traffic.

As for the time being the case (i) is the most common, we

consider the case in which P2P-TV traffic is prevalent to be

out of scope1.

1 Still, we point out that we are currently investigating the case (ii),

using however an orthogonal technique: real P2P applications deployed

over a network emulator featuring Traffic Engineering capabilities [34]
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3.2 L7 Components

With L7 components, we indicate higher level components,

such as (i) peers, which are instances of L7 P2P-TV applica-

tions running on L3 hosts. In more detail, we model peers by

defining the algorithms they implement: specifically, each

peer has to (ii) manage the overlay topology and (iii) sched-

ule the transmission of chunks on the overlay links.

3.2.1 Peer

Each peer establishes and maintains several logical connec-

tions to other peers in the overlay: we denote with N(p) the

set of peers in the neighborhood of p. As in mesh-push sys-

tems chunks are not received in playout order, peers need to

have a buffer-map B that describes the chunks received and

stored into the peer memory. Given a peer p, we indicate

with B(p) its buffer-map, and denote by c ∈ B(p) the fact

that peer p has received chunk c. The size of the buffer map

B(p) determines P2P-TV performance as in the following

tradeoff: large buffer maps reduce the chunk loss probabil-

ity, but increase the time lag with respect to the source chunk

generation time; conversely, small buffer maps reduce the

playout delay with respect to the source at the price of an

increased chunk loss probability (as chunks that arrive later

than the playout delay are no longer useful and thus can be

considered as lost).

In order to gather performance of the system in steady

state, in this paper we do not consider churn (i.e., peers

arrival or departure). While this choice may seem strange

at first sight, especially given our attention to the realism

of the scenario, we nevertheless show its soundness in Ap-

pendix A.1. Shortly, results from a measurement campaign

in real ISP network show that, while churn in filesharing ap-

plications is dominated by user habits, the churn in livestream-

ing applications is dominated by the content palimpsest: in

other words, users connect to watch specific content at a spe-

cific time, and stay connected during the whole program.

3.2.2 Overlay Topology

Logical links established by peers form an overlay topology.

To enhance their performance, peers may perform Topology

Management (TM): i.e., they rearrange their overlay neigh-

borhood in order to exploit population heterogeneity, so to

globally optimize the topology based on local decisions.

In this work, we focus on topology management by con-

sidering it as either (i) a black box tool that induces a par-

ticular type of overlay graph or (ii) a specific algorithm that

continuously adjusts the topology. In more details, for (i) we

consider different Erdos-RenyiG(n,M) andG(n, p) topolo-

gies that are created at t = 0 and are never changed later

on, and that thus define a fixed logical neighborhood for all

peers at time t = 0. For (ii) we additionally consider a topol-

ogy management process that continuously run and adapts

the initial topologies, based on the measured peer proper-

ties (e.g., latency for geolocalization or capacity for perfor-

mance). Indeed, since higher capacity peers can serve more

neighbors, placing them near the source allows spreading

new chunks faster and to a greater number of nodes. This

should turn out in a per-chunk diffusion trees (i.e., the in-

stantaneous trees followed by each chunk, which differ from

chunk to chunk) with higher fan-out and reduced depth.

We point out this to be a reasonable approach: indeed,

considering a G(n,M) or G(n, p) topology at time t = 0,

roughly models a system in which peers joining the system

receive a small number of bootstrap peers (e.g., by means of

a BitTorrent-like tracker) that constitute their initial neigh-

borhood, which may be then continuously adjusted by the

TM (e.g., by means of a BitTorrent-like peer exchange PEX

function2). Similarly to BitTorrent, TM process is continu-

ously run with a timescale on the order of a few seconds, so

that the TM process happens a few tens of times per sim-

ulation run. We point out that according to [26], applica-

tions in the Internet may exhibit behavior closer to case (i)

such as TVAnts and Joost, or to (ii) such as PPLive and Sop-

Cast, which makes both cases relevant. We also point out

that despite other graphs could be considered for (i), such

as Barabasi-Albert [35] scale-free and Watts-Strogatz [36]

small-world, this would not however add further realism to

our simulation campaign – as we will see, the topology dy-

namics are far more important than the initial conditions at

time t = 0.

3.2.3 Chunk Scheduler

The ultimate goal of any P2P-TV system is to give each peer

a continuous stream of data: as such, peers must avoid hav-

ing gaps in the buffer-map positions that are closer to the

playout deadline. The video exchange process is handled by

a chunk scheduler, which acts whenever a peer can use the

host upload bandwidth. In push systems, any peer p runs a

scheduler that has to choose: (i) a chunk from its buffer map

B(p) and (ii) a destination peer among its neighbors N(p).

Scheduling algorithms can be divided in two classes de-

pending on the order in which the chunk/peer selection is

made: in this work, we focus on algorithms that first chooses

the chunk to send and then the destination peer. We consider

the chunk scheduling algorithms proposed in [17–20] which

we summarize in Tab. 2. Loosely following [17], we denote

each algorithm as c/p where c and p stand for chunk and peer

selection algorithm respectively.

The simplest scheduler is the work-conserving ru/r, that

selects a random chunk c ∈ B(p) which is sent to a random

useful peer p′ ∈ N(p), i.e., a peer that misses that chunk c /∈

2 http://www.rasterbar.com/products/libtorrent/extension protocol.html
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Table 2 Chunk scheduler policies

Scheduler Description

ru/r [17] Random useful chunk / Random peer

lu/r [17] Latest useful chunk / Random peer

lu/la [18] Latest useful chunk / Latency-aware peer

lu/ba [19] Latest useful chunk / Bandwidth-aware peer

lu/pa [20] Latest useful chunk / Power-aware peer

B(p′). We then consider a series of schedulers that select

the latest chunk in their buffer-map, which then they send

to a useful peer selected according to either a lu/r random

strategy [17] or a network-aware criterion lu/{la, ba, pa}.

As far as network-aware strategies are concerned, we con-

sider a latency-aware lu/la strategy adapting [18] from file

sharing to P2P-TV applications, a bandwidth-aware lu/ba
strategy [19], and a power-aware lu/pa strategy [20] (i.e.,

where power is the ratio of bandwidth to latency B/L). Se-

lection is performed by measuring the property of each peer,

that are then ranked according to the property value (e.g.,

low latency, high bandwidth or power) and selected proba-

bilistically (i.e., not in strict order), with a probability that

decreases with increasing ranking.

Intuitively, lu/r aims at keeping the playout delay from

the source as low as possible by diffusing the most recent

chunk at their disposal, i.e., the latest in their buffermap

B(p). We consider the simple ru/r for reference purposes,

and lu/r as it is proven to be optimal in ideal homoge-

neous settings [17]. Network-aware lu/{la, ba, pa} sched-

ulers [18–20] are instead expected to enhance performance

beyond lu/r, especially in case of heterogeneous realistic

scenarios: in more details, lu/la aims at locally confining

the traffic by proximity peer selection, lu/ba aims at reduc-

ing the chunk diffusion time by preferring peers with higher

upload capacities and lu/pa aims at combining both bene-

fits.

3.3 L3/L7 Interaction

Finally, the efficiency of scheduling decisions is possibly

perturbed by errors affecting (i) the precision of network

property measurements or (ii) the fate of control informa-

tion exchanged by peers, that have largely been neglected in

the reference work we consider [17–20]

On the one hand, (i) network-aware schedulers base their

chunk-scheduling decision on properties concerning neigh-

bors and possibly the underlying network conditions (e.g.

path RTT, available bandwidth, peer upload capacity BWU ,

etc.). Such properties can either be retrieved through an “or-

acle” entity (such as an IETF ALTO [37] compliant server

in an ISPs), or directly measured by peers themselves. Di-

rect measurement can be rather imprecise for several reasons

(e.g. cross traffic, OS scheduling, NICs interrupt coalescing,

unexpected interaction between simultaneous measurement

probes, etc.), which can in turn lead to unfaithful neighbor-

hood representation and wrong scheduling decisions. In or-

der to assess the impact of measurement errors without be-

ing bound to specific measurement techniques, we resort to

a high-level model where the measurement process is con-

trolled by a single parameter α describing the magnitudo of

the error.

On the other hand, (ii) control information can be not

timely disseminated, or event lost, at L3. Indeed, in case

of gossiping algorithms using UDP, such information would

not be retransmitted, distorting thus the vision that each peer

has of the system state. Inconsistency can also be due to

slow dissemination of control information (e.g., a system

may wish to limit the amount of signaling traffic injected

at L3 by reducing the refresh rate of control information

exchange). Considering mesh-push P2P-TV systems, both

types of errors translate into out-of-date knowledge concern-

ing neighbors’ buffer maps: in this case, a peer may decide

to schedule the transmission of a chunk even if the desti-

nation has already received that chunk, resulting in an un-

necessary chunk transmission (i.e., a chunk collision). In or-

der to assess the impact of signaling without being bound

to specific algorithms (nor to their settings), we resort to a

high-level abstraction, and model errors due to packet loss or

out-of-date system knowledge as error on the buffer-maps.

4 Simulation Results: Impact of L7 and L3

In this section, we study the impact of L7 and L3 factors

on the system performance: we first analyze the impact of

chunk scheduler and topology manager, and then evaluate

the impact of L3 topologies on the system performance.

Simulations have been performed according to the fol-

lowing general settings. For each parameter under investi-

gation, simulations are averaged over 6 repetitions: specifi-

cally, we consider 3 different instances of 2 different overlay

graphs3, i.e., one G(n,M) and one G(n, p). Unless other-

wise stated, we use the Meridian dataset [33,38] as a default

realistic model of L3 network latencies with M = 35ms.

By default we consider overlays consisting of NH =

2000 peers, of which we simulate a lifetime of 150 seconds,

during which 1500 chunks of video stream are disseminated

in the overlay. We consider a single source node that streams

video at an average rate of 1 Mbps, and consider 100 kbit

fixed-size chunks (i.e., 10 new chunks are generated in each

second). Statistics are collected starting from 500th chunk

in order to avoid the initial transient. We consider that buffer

maps store 50 chunks, which correspond to a playout delay

of 5 seconds.

3 For lack of space, we do not breakdown results according to the

overlay topology at time t = 0, but we can assert that its impact to be

modest.
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Fig. 2 Cumulative distribution function of chunk delay: (a) Performance of different schedulers (ru/r and lu/{r, la, ba, pa}) on a Meridian

network. (b) Effects of topology management for best (lu/pa) and worst (ru/r) schedulers, with (TM) and without topology management features.

Labels along the curves in (a) and (b) express the traffic proximity percentage P%.

4.1 L7 Overlay

4.1.1 Schedulers

Curves in Fig. 2(a) show the cumulative distribution func-

tion (CDF) of chunk delays perceived by each peer (i.e., the

temporal interval elapsed from the generation of the chunk

at the source and the arrival to a given peer). Each curve

represents a different scheduler, and we indicate lost chunks

(i.e., chunks that arrived later than the playout deadline) as

chunk with negative delay (i.e., falling into the gray shaded

zone): this is especially visible for the simplest scheduler

ru/r, where the fraction of lost chunks exceeds 10%. The

picture further reports the traffic-localityP% percentage along

each curve. Recall that P% represents the fraction of chunks

that do not traverse the core network (i.e., the destination

host is attached to the same router of the sender host), and is

thus a rough indication of network friendliness.

With the exception of ru/r, other schedulers limit the

fraction of lost chunk (which is very close to 0%), but in-

stead differ by chunk delay and locality P% measures. Con-

sidering lu/r and lu/la, both strategies select the latest chunk

and send it to peers which do not own it: lu/r selects a des-

tination peer at random, while lu/la proportionally prefers

closer neighbors. Clearly, locality improves when latency-

aware lu/la peer selection is performed with respect to lu/r.

At the same time, notice that lu/r and lu/la are very close

in terms of delay, despite lu/la preference for low latency

neighbors. This can be explained with the fact that the prop-

agation delay has a less prominent impact with respect to

transmission delay, especially considering that chunks pos-

sibly travel multiple hops on low-capacity access links.

Consider indeed that the average propagation delay be-

tween any two peers is M = 35ms, whereas from Tab. 1 we

have that the average chunk upload time ranges from 20 ms

for class-I peers to 200 ms for class-III peers. This entails

that, at each hop, the transmission time likely plays the most

important role in determining the chunk delay performance:

thus, merely choosing a peer which is closer in terms of the

propagation delay does not allow to improve the overall sys-

tem chunk delay performance.

Finally, the lu/ba and lu/pa schedulers achieve the best

delay performance. Consider that both lu/ba and lu/pa as-

sign scores according to the destination upload bandwidth,

with the power-aware lu/pa scheme taking into account the

propagation latency as well. Results confirm that upload-

ing chunks to high-capacity peers, which can in turn diffuse

them fast, is beneficial to the whole system [19]. Moreover,

we further gather confirmation of the fact that explicitly tak-

ing into account node latency improves localityP% but does

not further ameliorate delay performance.

Overall, preference toward high-bandwidth peers is nec-

essary to reduce the delay incurred by chunks; instead, pref-

erence toward low-latency peers is not helpful in reducing

the chunk delay, but may ameliorate the network friendli-

ness confining the traffic at the access.

4.1.2 Topology management (TM)

We now investigate the impact of topology management (TM)

on the system performance. To gather performance bounds

for a large class of schedulers, we consider lu/pa as upper-

bound (since it exhibits the best results in terms of both de-

lays and locality) and the simple ru/r as lower-bound (no-

tice that in case peers do not have any accurate signaling,

bandwidth and latency information, lu/pa would degener-

ate into ru/r).

In their overlay maintenance process, peers have the chance

to tune their neighborhood, both in terms of its size (i.e.,

change their out-degree) and composition (i.e., preferring
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Fig. 3 Impact of swarm size on P2P-TV performance, measured in

terms of the chunk loss rate (Loss%) and 95th delay percentile π95.

The picture limitedly reports performance of a network aware lu/pa
scheduler, over a Meridian L3 network, with and without topology

management TM.

high-bandwidth peer as in BitTorrent tit-for-tat, or trying

new peer as in BitTorrent unchocking). For the sake of sim-

plicity, we consider topology management as a feature that

can be turned on or off, and select thus a single algorithm:

specifically, we use the approach described in [39], which

we refer the reader to, for a detailed description. Briefly, ac-

cording to [39] peers continuously vary their neighbor size,

selecting peers according to a “desirability” function that

depends on the neighbor upload bandwidth: as we previ-

ously observed in the case of chunk scheduling, bandwidth-

awareness is extremely beneficial (specifically, more benefi-

cial than latency or power-awareness) to the overall system

performance, hence our selection. Notice that the TM al-

gorithm is run in the background by each peer, so that the

overlay topology is continuously rearranged. Specifically,

we select TM parameters that were shown to yield to good

performance in [39], so that the topology is updated every

5 seconds – which is about twice faster than the BitTorrent

unchoking policy, and of the same order of magnitude of the

P2P-TV playout deadline. Since each simulation lasts for

150 seconds, TM has the chance to rearrange the topology

30 times per run.

In Fig. 2(b), improvements induced by the topology man-

ager are clearly noticeable for both schedulers. Taking into

account ru/r, for instance, we notice a significant amelio-

ration in terms of both losses and delays. According to [39],

high-bandwidth peers have an higher fan-out, and tend to

select high-bandwidth nodes in their neighborhood: in this

way, chunks generated by the source will be first sent to

nodes that are capable of spreading them faster, thus re-

ducing the overall delay and, by consequence, loss rates. In

other words, performance enhancements are due to the fact

that high-capacity nodes “move” up toward the source in the

instantaneous chunk diffusion tree. In Fig. 2(b), the same

scheduler ru/r can lower the mean delay by 0.75 seconds

with an improvement of 25% and reduce losses to 0.25% by

performing topology management.

Yet, improvements can be achieved in case of lu/pa as

well: e.g., the 99th percentile of the delay reduces by 50%

reaching 1.1 second. Moreover, notice that several beneficial

effects combine altogether: indeed, despite being based on

bandwidth-awareness only, TM topology management pro-

cess consistently increases the fraction of the traffic confined

in the access network as well (P% = 10.7%). Indeed, con-

sider that the improved neighborhood is composed mostly

by high-bandwidth nodes: the power-aware scheduler is then

able to select among closer nodes, that are also higher capac-

ity than in the previous case. Overall, this yields higher odds

to choose high-capacity nodes that are also connected to the

same router, and as high-capacity peers can offer a larger

amount of data in the same time window, traffic locality in-

creases as well.

Summarizing, active topology management is beneficial,

as it increases the chances to find higher capacity peers, thus

lowering the chunk delay and hence reducing losses.

4.1.3 Swarm size

Finally, we perform a simulation campaign to assess the im-

pact of the swarm size on the achievable performance. We

limitedly consider the lu/pa scheduler, that yields to the best

results in terms of playout delay and traffic proximity.

Fig. 3 shows system performance as a function of the

swarm size, in logscale, varying from 100 to 51,200 peers.

Specifically, the picture reports the 95-th percentile of the

delay distribution π95 (left y-axis) and the loss rate (right

x-axis), for both topology management TM settings (i.e.,

on/off).

It can be seen that both delay and losses increase sub-

linearly with the swarm size – notice indeed that the linear

delay and loss slopes are achieved for a logarithmic x-scale.

Notice also that topology management is highly effective in

limiting the chunk delay and losses even for large swarms.

Notice further that NH = 2000 is roughly at the center-

fold of the explored swarm size, where roughly average per-

formance is achieved. Thus, in the remainder of the paper we

consider the more manageable swarm size of NH = 2000

hosts: in turn, this allows us to run an important number of

simulations, so to perform a thorough sensitivity analysis of

several system parameters. Notice that, since this swarm size

corresponds to average delay and loss, it should also be easy

to interpolate the gathered results for other settings, such as

less (more) popular TV channels, that simply map to smaller

(bigger) swarm sizes.

4.2 L3 Network

We now assess the impact of the following models for the

underlaying L3 network, each of which assigns latencies be-

tween access routers in a specific way:
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ferent models of L3 networks, for best (lu/pa) and worst (ru/r) sched-

uler.

– Ideal: This represents an L3 network without latencies,

or in other words, propagation delay is 0, so that in prac-

tice only the logical L7 overlay topology is taken into

account.

– Meridian: Latencies provided by the Meridian project

[33, 38], where realistic latencies are gathered by means

of end-to-end Internet measurements (the mean latency

of the Meridian dataset equals to M = 35ms as most of

peers in the data-set are from US).

– Constant: Latencies are constant and equal among all

end-to-end paths, and the latency value is equal to the

mean value M of Meridian latencies.

– Dynamic: Latencies between any two pairs of routers

are distributed according to a Negative Exponential dis-

tribution, whose mean is fitted using the mean value M
of Meridian latencies; to simulate the effect of cross traf-

fic, yielding to different levels of congestion on a chunk

duration timescale, new values of latency are extracted

for each new chunk propagation.

The network models we consider range from a simplistic

Ideal model to the realistic Meridian one, where one would

expect network-aware algorithms to stand from the lot. The

Constant network model is a simple, still unrealistic model,

that is however fitted on real data: notice that we expect

latency-aware algorithms to be ineffective in this case. Fi-

nally, we include the Dynamic network model as a worst

case for latency-aware algorithms such as lu/pa, since the

decisions are taken on the basis of measurements that how-

ever continuously change (so that each chunk between any

two peers will always experience different latencies).

In Fig. 4, we show the CDF of delays for both ru/r

and lu/pa schedulers using different topologies, when the

topology management feature is enabled (since similar con-

siderations hold, we avoid reporting the case where topology

management is disabled). From Fig. 4 we notice that the per-

formance of each scheduler remains clearly separated, and

further that the L3 network model only minimally affects the

chunk delay performance (i.e., given any scheduler, curves

are tightly clustered across all models).

In case of ru/r scheduling, ideal L3 network exhibits re-

markably lower delays than the other network models, which

all have a very similar impact on the delay performance. In

case of lu/pa scheduling, we instead remark that perfor-

mance figures are very tight irrespectively of the network

model, which surprisingly holds even for the dynamic net-

work scenario. Again, this is due to the predominant impact

of transmission delay over propagation delay, entailing that

even a rather simple network model (e.g., non-null delay fit-

ted over real measurement), yields consistent performance

estimates.

Notice that this might change in case the transmission

and propagation delay are comparable, which can happen

when e.g., the uplink bandwidth increases, or the chunk size

shrinks. Still, as small chunk implies higher overhead (i.e.,

due to increased signaling rate, buffer map size, etc.) we can

expect the relationship between transmission and propaga-

tion delay to hold for a while. Notice also that, although

lu/pa performance are not affected by the network model

given the current peer population breakdown, in future sce-

narios where most of nodes have high-capacity, we instead

forecast an increased importance of latency-awareness over

bandwidth-awareness. In this case, we may also expect the

dynamic network case to constitute a stiffer scenario (see

Appendix for further discussion).

Summarizing, the impact of L3 network models is al-

most negligible: in case access network is the bottleneck, the

chunk transmission time largely dominates the end-to-end

delay (at least for reasonable chunk sizes and the current

access rates).

5 Simulation Results: L3/L7 Interaction

In this section, we investigate the impact of L7/L3 interac-

tion on the system performance: first we study latency and

capacity estimation errors, afterwards we analyze the effect

of signaling errors.

5.1 Measurements Errors

P2P-TV systems need to implement measurement techniques

in order to successfully implement both topology manage-

ment policies and network-aware scheduling algorithms such

as lu/{la, ba, pa}. In a real deployment, both latency-related

(e.g., one-way delay or RTT-latency) and capacity-related

(e.g., bottleneck capacity, available bandwidth) measurements

will be affected by some degree of errors, that are either in-

trinsic to the measurement techniques, or depend on tem-
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Fig. 5 L3/L7 Interaction: Impact of latency measurement error. (a) re-

ports chunk delay mean µ and 95-th percentile π95, (b) reports Loss%
and locality P%. Both topology management TM settings are used.

porary network conditions: our aim is thus to evaluate the

robustness of P2P-TV systems to such errors.

5.1.1 Latency measurement errors

Consider latency first, which is generally simple to estimate,

and focus on the minimum RTT estimation, which is espe-

cially simple since it does not need clock-synchronizaton. In

case RTT measurements can passively exploit the continu-

ous transmission of data/acknowledgment pairs, this yields

to many samples and thus to robust estimates. However, there

are cases where RTT measurements are needed prior that

any data transmission happened: in this case, active mea-

surement are needed which yields to fewer samples and thus

to possibly bias the RTT estimation. Specifically, we con-

sider that RTT can only be over-estimated (e.g., since the

acknowledgment packet may be delayed due to cross-traffic,

self-induced congestion at the access, sustained CPU load

in the host machine running the P2P application, etc.), so

that a nearby peer can be mistaken as a faraway one. For-

mally, denote by ∆(p, p′) the actual round trip time latency

between p and p′, and consider that peer p will measure a

∆̃(p, p′) = (1 + α)∆(p, p′), where α represent the error in-

tensity and is modeled by a random variable, that follows a

negative exponential distribution with mean Mα.

System performance as a function of increasing error in-

tensity α are reported in Fig. 5. Specifically, x-axis reports

the percentage of overestimation error between the measured

and the actual latency value, varying from α = 0 to α = 2

(measured ∆̃ is, on average, the double of the actual ∆).
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Fig. 6 L3/L7 Interaction: Impact of capacity measurement error. (a) re-

ports chunk delay mean µ and 95-th percentile π95, (b) reports Loss%
and locality P%. Both topology management TM settings are used.

Pictures report both user-centric (i.e., mean µ and 95th per-

centile π95 of the delay, Loss %) and network-centric met-

rics (i.e., percentage of local traffic P%).

Overall, it can be seen that precision of latency estima-

tion has a small impact on P2P-TV performance, limitedly

affecting the overlay ability to localize the traffic. While this

may be surprising at first, recall that due to ADSL-like ca-

pacities, the relative duration of chunk transmission time

is larger than the propagation delay. Therefore, since de-

lay toward the (erroneously) selected peer still complies to

the Meridian latency matrix, this mismatched peer selection

cannot translate into higher playout delays (as chunk trans-

mission duration prevails), nor losses (as the playout buffer

equals 5 seconds, and is thus about two orders of magnitude

longer than the average delay of the Meridian matrix).

Conversely, latency measurement errors yield to select

peers with mismatched delay: as the scheduler knowledge of

its neighborhood becomes erroneous, proximity-aware choices

are no longer correct, and the traffic locality index signifi-

cantly decays. Hence, latency measurement errors can only

impact the P% metric, while the delay (µ, π95) and loss

statistics are practically unaffected. Notice also that a qual-

itatively similar behavior holds both in absence or presence

of topology management (though in the latter case the abso-

lute amount of locality P% loss is more important).

5.1.2 Capacity measurement errors

Let us now consider capacity measurement. In this case,

we expect measurement errors to have a possibly larger im-
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pact on the system performance, since the transmission de-

lay component (which depends on the uplink capacity) plays

a major role in determining the chunk delay. At the same

time, capacity measurement are notoriously difficult, as sev-

eral techniques typically yield rather different measurement

[40]. Also, unlike the previous case, capacity can be either

under-estimated or over-estimated (depending on the con-

sidered technique, due to cross traffic, etc.). In the case of

P2P, this gets further complicated as concurrent measure-

ments have mutual influence [41], which further adds to the

error. Finally, in case of P2P-TV, the uplink capacity mea-

sure of the receiver peer is generally needed, which is not

straightforward since the measuring peer cannot rely on the

chunk transmission process. For the above reasons, we can

expect capacity measurement errors to be larger in magni-

tude with respect to latency errors. Formally, we denote by

C(p′, p) the actual bottleneck capacity in the path from p′ to

p; we consider that peer p will erroneously estimate C(p′, p)
as C̃ ∼ N(C(p′, p), αC): in other words, peers capacity es-

timate is a normally distributed variable, with mean equal to

the actual bottleneck capacity C(p′, p) and a variance equal

to αC.

In Fig. 6 we explore errors ranging in α ∈ [0, 5]: despite

we consider such a large range, we observe that performance

is rather robust: indeed, only a marginal increase of latency

(and of losses, in case topology management is disabled) can

be observed. This can be explained with the fact that, pro-

vided that measurement errors still allow to clearly separate

the peers in classes 4, performance of bandwidth-aware al-

gorithms remains consistent. Given the challenges in capac-

ity and bandwidth measurement, this intrinsic robustness is

a very advantageous feature, as a rough binary discrimina-

tion capability in high-capacity vs low-capacity peers may

be enough for network-aware algorithms.

Overall, capacity estimation precision has a small im-

pact on P2P-TV performance: indeed, provided that peer

classes are sufficiently separated, it is always possible to dif-

ferentiate among classes even in presence of measurement

errors.

5.2 Signaling errors

We now investigate the effect of signaling errors on the sys-

tem performance. Recall that, in order to send chunks that

are useful for the receivers, each peer must have a precise

knowledge of its neighbor buffer-maps. This can be accom-

plished by periodically exchanging buffer-map status in con-

trol packets, or by piggybacking buffer maps in data packets.

4 Measurements are correct with a very coarse granularity, from

Tab. 1 we have that
BW

i

U

BW
i+1

U

> 2, ∀i which means that we may cor-

rectly separate peers into classes even when the measurement precision

is rather poor.

In order for this knowledge to be as up-to-date as possible,

any peer p should inform all of its neighbors as soon as it

receives a new chunk c. Still, even in this “perfect signal-

ing system”, due to the unavoidable latency of the signaling

process (both propagation and transmission delay), it is still

possible that p schedules the transmission of a chunk c to a

peer p′ that has just received it (but not sent its buffer map

B(p′) out yet), thus generating a collision. Furthermore, loss

of signaling messages can happen in the L3 network, further

degrading the quality of peers knowledge. Clearly, frequent

buffer-map exchange has a high cost in terms of overhead:

as several new chunks are generated at each second, the sig-

naling process would thus need to be continuous in order

for peers to have an up-to-date view of their neighborhood.

However, lowering the signaling rate to reduce the messag-

ing overhead also increases the chance for collisions to oc-

cur.

5.2.1 Impact on L7

Up to now, we have evaluated network-aware P2P-TV sys-

tems performance by assuming that peers have a perfect in-

stantaneous knowledge of the buffer maps of their neighbors

– a rather unrealistic assumption. We therefore model the

impact of low signaling rates (or signaling messages losses

at L3) as a quality degradation of system state knowledge

in the distributed P2P system. In more detail, we model im-

precision of system state knowledge as “usefulness” errors:

in other words, with a given probability Perr a peer p can

take a scheduling decision of chunk c toward p′ which he

believes to be useful (i.e., c /∈ B(p′)) despite it is not (i.e.,

c ∈ B(p′)), which generates a collision.

Conversely, we do not consider the opposite kind of er-

rors (i.e., p believes c ∈ B(p′) despite actually c /∈ B(p′)),

as this would indeed model a somewhat unlikely case of mis-

configured peers sending erroneous updates (i.e., advertising

chunk c ∈ B(p′) to be available while it is not).

Fig. 7 shows the mean µ and 95th percentile π95 de-

lay, along with chunk loss statistics. Notice that while the

mean delay is roughly unaffected by signaling error prob-

ability Perr, a counter-intuitive phenomenon characterizes

the π95 measure. Indeed, the 95th delay percentile increases

until Perr = 1/400, and afterward starts decreasing: this be-

havior is strongly correlated to the chunk loss rate, which

starts rising roughly at Perr = 1/400. What happens is that

for increasing Perr, peers indeed receive chunks with higher

delay, which in turns raises the probability that chunks arrive

beyond the playout delay (i.e., delay larger than 5s), and are

thus marked as lost: as lost chunks are not accounted in the

delay curve, the peak is thus an artifact due to the playout

deadline.

Traffic locality exhibits a non-straightforward behavior

as well: indeed, it can be seen from Fig. 8 (left y-axis) that
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Fig. 7 Delay and chunk losses as a function of signaling errors. reports

chunk delay mean µ and 95-th percentile π95, (b) reports Loss% and

locality P%. Both topology management TM settings are used.

locality increases as buffer-map errors increase as well, which

is especially visible in case of topology management. This

can be explained by considering that the lu/pa scheduler

preferentially selects nearby high-capacity peers. When the

error probability is low, these peers will be fed first, but then,

as peers rarely fail in estimating the usefulness of their de-

cisions, other lower-capacity higher-latency peers get suc-

cessfully served during the remaining upload slots. Con-

versely, when error probability is high, the scheduler will

keep on sending chunks to close high-capacity neighbors,

despite they likely already have received that chunk from

other peers (notice that we forbid peers sending the same

chunk to the same peer multiple times).

We acknowledge that it is hard to relatively compare the

magnitude of the error intensity across the different met-

rics. Nevertheless, it can be safely pointed out that while

system performance remains practically unaffected over the

whole range of measurement errors, even small signaling er-

ror rates have a much more visible impact.

Overall, system performance are extremely sensitive to

errors due to stale signaling: effects are noticeable on the

tail of the delay distribution for error rates as low as Perr =

1/1000 and loss probability become excessive for error rates
as low as Perr = 1/100.

5.2.2 Impact on Quality of Experience (QoE)

We then dig the user Quality of Experience (QoE) by evalu-

ating an objective video quality metric, namely the Peak Sig-

nal to Noise Ratio (PSNR). We consider the standard Soccer

Table 3 PSNR values for the Source, a class-III and a class-IV peer

Class PSNR
Delay

µ(π)
Lost

chunks
Loss pattern

Source 39.4 – –

II 16.1
1.18s

(4.3s)

45

(2.2%)

IV 12.1
1.28s

(3.7s)

487

(24.3%)
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Fig. 8 PSNR evaluation as a function of signaling errors. Bars rep-

resent the standard deviation of PSNR values gathered over the 10-

sample population. PSNR of the original video sequence at the source

is 35.6 dB.

sequence (H624 format, CIF resolution, 300 frames @30Hz,

looped for the whole simulation duration), and record for

each peer the list of lost chunks. We then make use of Evalvid

[42] to evaluate video quality, by feeding the tool with the

video sequences where we take into account the chunk loss

pattern for each peer. To give the reader an intuition of PSNR

value, and how it roughly corresponds to other system per-

formance, we report in Tab. 3 a few examples. Each row

refers to either the video source, a peer of class-II, or a peer

of class-IV, and reports different performance metrics such

as delay (mean and 95th percentile) and loss statistics,.with

a graphical representation of the loss pattern, where each

vertical bar corresponds to a loss. As PSNR evaluation is

very time consuming and due to the size of our system, we

resort to stratified sampling: specifically, we rank peers ac-

cording to the amount of losses and select a 10-peers sam-

ple (corresponding to different loss amounts) out of the total

NH = 2000 peer population. Right y-axis of Fig. 8 reports

the PSNR averaged over the 10-peers sample (bars report

the standard deviation over the sample), which due to strat-

ification is however representative of the whole population.

It can be seen that PSNR drops as soon as a losses occur

in the system: notice further that, since a PSNR<24 dB is

generally considered as an indicator of extremely bad video

quality, this suggest that buffer-map errors should be kept

below Perr < 1/100.

Overall, as in our evaluation buffer maps hold 50 chunks

and a new chunk is generated every 100ms, this suggests
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Table 4 Per-class performance breakdown

Ideal Harsh

Perr = 0% Perr = 5% D

µ π95 L% µ π95 L% µ π95 L%

I 0.4 0.6 10
−3 0.8 1.3 0.2 1.9 2.1 92.2

II 0.6 1.0 10
−2 0.8 1.1 4.4 1.2 1.1 263.9

III 0.7 1.1 10
−2 0.8 1.2 8.5 1.1 1.2 1421.3

IV 0.9 1.3 0.2 1.1 1.4 33.9 1.2 1.1 198.6

F 2.2 2.2 68.2 1.3 1.1 146.9

that the signaling rate should be about as high as the chunk

generation rate.

5.2.3 Impact on Peer Class

For the sake of completeness, we analyze how system per-

formance vary across the different classes, comparing ideal

(Perr=0%) and harsh (Perr=5%) settings, so to gather per-

formance bounds. To quantify the impact of Perr, we define

the intra-class degradation factor as:

D(X) = X(Perr = 5%|c)/X(Perr = 0%|c) (1)

where X is any metric considered in the table and c the con-

sidered class: intuitively,D(X) is a compact indicator of the

performance loss from ideal to realistic settings.

To quantify the fairness of the results among classes, we

define a inter-class fairness factor as:

F(X) = max
c

X(c|Perr)/min
c

X(c|Perr) (2)

intuitively,F=1 corresponds to comparable performance across

classes, while the larger the value of F>1, the larger the un-

fairness.

Results are reported in Tab. 4. Notice that, already on

ideal settings, class-IV peers experience a delay twice than

that of class-I peers, and about 68 times more losses (loss

L% unfairness exceeds a factor of 146 in harsh settings).

Concerning the degradation due to signaling error, we see

that class-I experiences a larger delay degradation than other

classes but a limited loss increase: in other words, average

delay increases but not enough to exceed the playout dead-

line (and to cause losses). The opposite happens instead for

class-II and III, whose delay . The extent of class-IV degra-

dation is instead smaller, however the absolute amount of

losses exceed 33%, which likely makes video quality un-

bearable.

We conclude that, even in absence of signaling errors,

performance breakdown is unfair with respect to peer be-

longing to different classes. Under harsh signaling errors,

delay become more fair among classes, with however ex-

tremely large loss rates for peers belonging to the poorer

classes.

6 Conclusions

In this work, we compare different state-of-art “network-

aware” P2P-TV systems, i.e., systems whose main algorithms

(such as chunk selection and topology management) are based

on informed decisions concerning the status of the network.

We define a flexible framework, able to accommodate fur-

ther aspects beyond to the one we focus on in this work,

and perform a thorough simulation campaign: our purpose

is to understand what are the main factors that affect P2P-

TV performance, and to what extent performance degrades

under realistic settings.

Our main findings can be summarized as follows. First,

we find the impact of the L3 underlay network model to be

modest, with a small performance gap between simple (e.g.,

constant and fixed delay) and realistic models (e.g., merid-

ian latency or dynamic latencies). This owes to the fact that

the propagation delay has a smaller impact with respect to

transmission delay, especially considering the relative low-

capacity of current scenario. At the same time, we can ex-

pect that as the access capacity increases, the impact of prop-

agation latency may need to be reconsidered.

Second, we find that system performance is rather ro-

bust to errors in the measurement of peer properties. More

precisely, provided that peers capacity is clearly separated,

the ability to roughly discriminate high-capacity from low-

capacity peer is sufficient to guarantee a good level of per-

formance. Similarly, errors in the latency estimation only

affect the traffic locality, but system performance are oth-

erwise unaltered.

Finally, we find the impact of signaling errors to be, by

far, the most important factor able to significantly degrade

the quality of P2P-TV services and is able to severely impact

overlay performance already from very low intensities. We

acknowledge that it is hard to relatively compare the mag-

nitude of the error intensity for heterogeneous metrics such

as latency, bandwidth and signaling. Nevertheless, it can be

safely pointed out that while system performance remains

practically unaffected over the whole range of measurement

errors, even small signaling error rates can have a dramatic

impact.

This suggests that, in order to gather reliable estimate

of the achievable P2P-TV system performance, special at-

tention must be payed to the signaling logic – which holds

irrespectively of the adopted analytical, simulative or experi-

mental methodology. As future work, we aim at studying the

interplay between chunk size and buffer maps update rate

and exploring the trade-off between the overhead caused by

high signaling rate and the outdated knowledge of neighbor-

hood buffer-maps due to low signaling rate.
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A Appendix

This section describes our careful selection of some crucial parameter

of our simulations campaign, such as (i) the population size and stabil-

ity, (ii) the sharing ratio and (iii) the upload bandwidth. We stress that

our choice was to gather simulation scenarios that are as representive

as possible of the Internet and real-life: hence, we used own measure-

ment, or other relevant measurement performed by colleagues in the

scientific community, to derive a realistic set of simulation parameters.

A.1 Population size and stability in real P2P-TV systems

To justify our assumption of absence of churn in the population, we

show in Fig. 9 the stability of a real user base population in the opera-

tional network of a major European ISP that we continuously monitor

in the context of the NAPAWINE project [43]. For the same project,
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Fig. 9 Temporal evolution of the number of peers, received and sent

traffic volume during a typical P2P-TV event (SopCast application), at

a PoP of a major European ISP that we continuously monitor.

we have developed state of art P2P-TV classifiers, that are either based

on the stochastic analysis of the packet payload (KISS [44]) or on the

behavioral analysis of the connection pattern (Abacus [45]). The classi-

fiers are comparably accurate [46,47] and an open source implementa-

tion is available at [48]. We run the classifiers on several probes in dif-

ferent major European ISP, so that we are able to recognize the traffic

of popular applications such as PPlive [49], SopCast [50], TVAnts [51],

as they are used by real user in operational networks.

While in general the usage of P2P-TV application is episodic, as

it is driven by a specific program –rather typically, a sport event– dur-

ing the event the population remains extremely stable. We support this

statement with the help of Fig. 9, which reports the temporal evolution

of the number of peers, depicted with a star point on the right y-axis,

during a typical sport event streamed by the popular SopCast [50] ap-

plication gathered during a Championship match in April 2009. Each

point in the picture reports a measurement related to 5 seconds, and

we sub-sample the observation points for the sake of readability. The

picture also reports, on the left x-axis, the received (plus sign) and sent

(cross sign) bitrate in Mbps. As it can be seen from the picture, peers

arrive in a flash-crowd pattern starting from 20h30 (thus prior that the

match begins), while during the whole 1h30-long soccer match the peer

population keeps extremely stable to about 100 peers (i.e., the value

that we actually simulated). Then, immediately after the end of the

match, peers rapidly depart and the system empties. Also, noticeable

from the picture, the traffic contributed by the peer behind the residen-

tial point of presence (PoP) is lower than the received traffic, which is

due to the asymmetry typical of ADSL lines.

This pattern is very common in our measurements and justify our

environment choice of absence of churn. First, by focusing on steady-

state performance of different algorithms, we gather results that are

not only more relevant (as they pertain to the whole duration of the

show, rather that to a startup phase), but are also statistically more sig-

nificant with respect to performance gathered during a transient phase

(i.e., during arrival or departure). Second, it is likely that the algorithm

exhibiting the best performance in steady-state, will also be the best

candidate in the transient phase. Third, these results are also more rel-

evant from the end-user perspective, as users are clearly interested in

the QoS during the match, while they are likely less interested in the

system performance prior that the match begins: indeed, notice how

arrival time roughly uniformly distributes in the 30 minutes preceding

the match, which is more likely tied to user “warm-up” of the channel

(i.e., joining the P2P-TV system in advance to be sure seeing the first

kick of the match) and personal habits rather than reflecting actual in-

teractive usage of the channel. Finally, we point out that churn could
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Fig. 10 Delay distribution of ru/r and lu/pa schedulers for different

values of the sharing ratio k

not instead be disregarded in case the performance metrics of interest

pertained to the transient phase (e.g., the duration of the warmup phase

needed to reach a steady state) or to resilience aspects of the system

(e.g., , measuring the system response in case everybody changed the

channel during the break of the football match), which are however out

of the scope of this paper.

A.2 Sharing ratio

Sharing ratio k is a fundamental and critical parameter in every P2P

system since it describes its capacity to disseminate data to all nodes:

k is defined as

k =
BWU

λvideo

=

∑

i∈NH

BWUi

NH · λvideo

(3)

or the ratio between the total uplink capacity (i.e. the sum of up-

link capacity of all nodes) and total inbound traffic; intuitively a value

of k > 1 means that nodes uplink capacity is sufficient for the system

to be self-sustainable as long as algorithms are good enough to exploit

capacity. On the contrary, in a scenario where k is < 1, total up-link

capacity is not high enough to guarantee that every peer receives the en-

tire stream. Notice that, as the value of k provided by common ADSL

peers in actual system is between 0.2 and 0.3 [16], the correct work-

ing of the system is guaranteed by the presence of “amplifier” nodes

providing the missing capacity.

Notice that scheduling algorithm may not be able to succesfully

exploit the available system capacity even for k > 1. Considering for

simplicity the case of a single-class homogeneous population, top plot

Fig. 10 show for instance the CDF of the chunk delay for the naı̈ve

ru/r scheduler, where it can be seen that for k = 1, almost half of

chunks are lost and even when the capacity is twice k = 2 the needed

sustainable rate, the system still experiences a non negligible amount

of 1.4% losses.

In case more sophisticated schedulers are used, such as the power-

aware lu/pa in the bottom plot of Fig. 10, we notice that the system is

almost lossless for a sharing ratio of k = 1.5. Hence, in our simulation

we designed the class population to match the factor k = 1.5, so that

the system is self-sustainable, which allows to isolate the impact of

other factors (e.g., L3 network, L7 schedulers, L3/L7 interactions) on

an otherwise lossless system.

In addition, an interesting aspect emerges from this analysis: com-

paring the k = 1.5 homogeneous single-class system of Fig. 10 to the

k = 1.5 heterogeneous multi-class system shown early in Fig. 2(a),

we see that peer heterogeneity plays a non marginal role in improving

global efficiency [52]. Intuitively, having peers with different capacity

is beneficial because high capacity peers, which can handle a greater

number of active connections, will occupy the high portion of the is-

tantaneous chunk distribution tree, close to the source, possibly as a

result of topology management. On the other hand, peers with poor

connectivity can occupy far positions in each chunk distribution tree,

since they can serve a lower number of neighbors (or even none).

A.3 Mean upload bandwidth

In Appendix A.2 we fixed a value for parameter k, binding video rate

to mean upload bandwidth: hence, we need to investigate sound val-

ues for the peer upload capacity. To the best of our knowledge, there

are no studies or tools, as for instance the Meridian project for laten-

cies, which estimate end-host bandwidth distribution. Moreover, even

if there were any, the gathered data would likely be strongly dependent

on countries or service provider. For these reasons we perform a sur-

vey, to gather rough boundaries for the uplink capacity, as well as a

sensitivity analysis, to gather reliable simulation results between these

boundaries.

Again, for the sake of simplicity, we consider an homogeneous

peer population, where each peer belongs to a single class with upload

bandwidth BWU . We perform a sensitivity analysis by carrying on

several simulations varying the relative magnitudo of the propagation

and trasmission time, by varying BWU . Notice moreover that laten-

cies, chunk-size and buffer-map size are kept constant. In more detail,

we denote by γ the ratio between the propagation delay and the chunk

upload time:

γ =
M

tTX

= M
BWU

C
(4)

where M is the average Meridian end-to-end latency, tTX is the

chunk transmission time and C the average chunk size. Intuitively γ in-

dicates which component of the delay has the largest influences on the

total chunk transfer time. For instance, when γ < 1 the transmission

delay is greater than the propagation delay, so that the total chunk de-

lay reduces in case of bandwidth-awareness; conversely, when γ > 1,

propagation delay is the largest component of total chunk transmission

time, which would thus reduce in case of latency-awareness.

To gather valid boundaries for γ we surveyed the average uplink

capacity of different European countries [53], to gather upper (CZ) and

lower (IT) bounds of BWU (and, hence, of γ). Fig. 11 depicts several

performance metrics (i.e., chunk losses, mean and 95th percentile of

the total chunk delay) as a function of γvarying in the range resulting

from the survey. As γ grows, we notice a smooth decrease of the de-

lay curves, which is an expected consequence of the transmission time

reduction due to higher upload bandwidth. Clearly, this decrease is not

an artifact occasioned by greater losses (as gathered early in section 5.2

but a real gain), which is confirmed by the consistently low loss rate in

the same interval.

The vertical thick line in between IT and CZ references represent

the working point that we selected for our simulation, which can be

thought to represents an average European country. Two considerations

hold: first, notice that, as loss rate remains steady over the whole inter-

val, we can expect the results shown earlier in this paper, to hold for a

number of different European countries. Second, we gather that, as γ
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Fig. 11 Sensitivity analysis of delay and losses as a function of the

propagation-delay over transmission-delay ratio γ. Top x-axis repre-

sent the average per-country bandwidth reported in [53], with land-

marks for the lower (Italy, IT) and upper (Czech republich, FR) bounds;

with a thick line, we report the BWU value we selected in this paper.

varies in the selected range, the delay can vary by almost one order of

magnitude: hence, our simulation results should be considered as rep-

resentative of an average country, and we can expect delay results to

(roughly linearly) vary depending on the actual value of BWU in the

country of interest.


