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Abstract—Many researchers have recently dealt with P2P payload [11], [14] is any longer available with IPFIX.
traffic classification, mainly because P2P applications are contin-  For this reason, with [18], [30]-[32] researchers started
uously growing in number as well as in traffic volume. Addition- developing “behavioral” classifiers. This family of cld®si

ally, in response to the shift of the operational community from tion techni hich v tho i d
packet-level to flow-level monitoring witnessed by the widespread cauon techniques, which apply W aggregatesand ex-

use of NetFlow, a number of behavioral classifiers have been Ploit only coarse-grained information available at traorsp
proposed. These techniques, usually having P2P applications aslevel, is very promising; in fact, behavioral classifierse ar

their main target, base the classification on the analysis of the not only particularly effective with P2P traffic (usuallyetin
pattern of traffic generated by a host and proved accurate eve main target), but they are also able of fine-grained traffic

when using only flow-level data. Yet, all these approaches are wer e . . .. )
specific ar?d th)(/e community lacks a broader \F/)igw of the act\lﬁl classification [12], [30], [31], while still remaining corapible

amount of information of behavioral features derived by flow- With the information found in IPFIX records [16], [28].

level data. The preliminary results presented in this paper try to However, research has so far focused on very specific
fill this gap. First of all we define a comprehensive framework by approaches [12], [16], [28], [30], [31], moreover evaluhte
means of which we systematically explore the space of behavioralSpeciﬁC datasets, and the community lacks a broad view of
properties and build a large set of potentially expressive features o ’ . . .

Thanks to our general approach, most features already used by the relative importance, in the_ context of traffic classtfima,
existing classifiers are naturally included into this set. Then, by Of any feature that can be defined over IPFIX flow-level data.
employing tools from information theory and data from packet- Similarly, as considering a single dataset can bias theuaval
level traces captured on real networks, we evaluate the amoumff  tion, a careful analysis should explicitly take into accotire

information conveyed by each feature, ranking them according g |ative stability of the feature expressiveness over ipielt
to their usefulness for application identification. Finally we show .
network scenarios.

the classification performance of such a set of features, using a X ; . ) - . .
supervised machine learning algorithm. This work goes in the direction of filling this gap, assessing

the reliability of P2P traffic classification based on datafr
IPFIX-compliant monitors. First of all, we propose a com-
|. INTRODUCTION prehensive framework for the definition of features derieab

Since their birth in the early Nineties, P2P applicationgy IPFIX-records. Our aim is to provide the community
have always represented a concern for network administratith a reference as complete as possible of all behavioral
and ISPs, due to the large volume of traffic they are ableatures suited for P2P traffic classification, similariywtbat
to generate. Therefore, it is not by chance that the reseal@s been done in [22] with flow-level features. We add also
community invested a lot of effort in designing efficienthe constraint that such features should be fully compliant
and accurate methods to identify this traffic [5], [9], [11]with IPFIX records. By clearly stating the criteria that dei
[12], [14], [16]-[18], [23], [28], [30], [31]. Things haveat our definition, we are able to thoroughly explore the space
changed recently: P2P still powers several killer applicetin  of features and define a long list of potentially expressive
nowadays Internet (e.g., Spotify, Skype, BitTorrent, a2®P characteristics. The resulting framework is general ehdog
TV applications) and their classification remains a relévamclude features of existing classifiers [12], [18], [2431],
issue. [32], enabling their evaluation as well.

Last years, instead, confirmed the trend in flow-level mon- Next, we quantify the amount of information contained in
itoring of operational networks: the growing use of NetFlowhe defined features and exploitable for the classificatibn o
also standardized as IPFIX at the IETF [7], is motivated by2P traffic. Our analysis is close to what has been done by
a larger scalability with respect to packet-level measemm the authors of [10], which focused on the on the stabilityhef t
along with a larger expressiveness compared to the coarsdermation carried by traffic flows at theacket-levelinstead,
grained counters of SNMP. Indeed, IPFIX allows to asso@atehis work aims at assessing the stability of behavioralufiesst
number ofattributesto flows identified by the classical 5-tuple.computed at thélow-level We use several packet-level traces
Attributes include cumulative packets and bytes counfenw, from controlled testbeds and real networks, containintficra
starting and finishing timestamps, IP type of service, TCirom different kinds of P2P application (P2P-TV, VoIP, file-
flags, etc. This information, though valuable, differs heare sharing) so that our dataset is representative of varicerisase
from what has typically been exploited to classifidividual ios. From such traffic data, we first compute the features and
flows For example, neither the size and direction of thihen evaluate their usefulness for the classification eyimdo
first few packets [5], nor their timestamps [9], nor any finemetrics from statisticsHellinger distancg and information
grained measures concerning flows [23], nor least of all @ackheory fnutual informatiol. After ranking the features in



terms of their information content, we briefly presents ithei « At the L3 host-level,E(y) = IP,, by aggregating all

classification performance with a supervise machine lagrni IPFIX recordsPT : IP, : x: [P, : p,
algorithm, namely Support Vector Machines. « Atthe L4 port-level,E(y) = p,, by aggregating all IPFIX
recordsPT : « :p, : [Py : py
Il. A FRAMEWORK FORP2P FEATURESDEFINITION Basicallyendpoint-levekntities correspond to single flows,

Our classification target is a peer, identified as a sockdtd have been used in [28], [30], [32]. The other entities,
(or an aggregate of sockets) running on a host. As this pdagtead, decouple L3 from L4dost-levelaggregation, found
contacts other peers and exchanges information with thef®, instance in [18], [31], may be useful in cases where an
we suppose that an IPFIX monitor at the edge of the netwg#RPlication runs multiple sockets (e.g., aggregating rsgve
produces records for all the traffic related to the host. OGlent TCP connections using ephemeral ports, or severd UD
framework takes this data as input and derives the featoresSPckets with different functions, such as data or signgling
be used for the classification. Port-level aggregation, instead, might help in evaluating how

In order to perform a systematic exploration of the featu@? application uses the port space (e.g., by using several
space, we first introduce a series of criteria, describedhén tdifferentrandom ports, or a single deterministic port)istias
following, to guide the feature definition. We find a good€en shown to be a good discriminator in [18], [27]. Notice
mapping between features used by existing classifiers &H8C that, as recently underlined in [19], the port numibzslit
our framework, which proves the generality of our approacf@y Still be a helpful feature.

While we want to keep our framework as general as possible in
its definition, in the experimental part we actually restdar ¢ Granularity and Direction
attention on a smaller subset of the possible features,hwhic

is listed in Tab. | and detailed at the end of this section. Since IPFIX records provide counters with different granu-

larities, a trivial criterion regards the level of coarsemef the
] statics: features can be computed entity-wisepacket-wise
A. Timescale P and byte-wiseB.
This criterion refers to the temporal duration of the period Another intuitive criterion consists in discriminatifgcom-
cal statistics collection, thus dividing time in subseduéne- ing versus outgoing traffic, or aggregating both directions
slots in which features are computed. Observation timesc&bgether. Notice that the adopted type of transport layer
is subject to the following tradeoff. On the one hand, wprotocol can cause significant difference in the pattermadfic
would like T to be as small as possible, to suppeerly observed in the two directions. For example, an application
classification for tasks like QoS verification, security andusing a connectionless service (i.e. a UDP datagram socket)
lawful interception. On the other hand, we would lifeto can easily multiplex all incoming and outgoing traffic oveet
be as large as possible for lightweight operation, whichldrousame endpoint P, : p,. Conversely an application employing
however limit possible applications of the classificatian ta connection oriented service (i.e., a TCP stream socket)
post-mortem analysi@.g accounting, monitoring). Coherentlyis likely to receive traffic on a single TCP porp,), but
with this requirements, values used in literature rangenfroit surely spreads the outgoing traffic on different epheinera
T =5sin [30] up toT = 5 minutes in [31]. ports, whose allocation is controlled by the OS.
Current IPFIX implementations impose further constraints
on the choice ofl’, as they dump statistics on active flow:
everyT' = 30 minutes, with a configurable minimum @f= 1
minute. To have a finer timescale, however, one could uselhe entities involved in the communication with the target

custom implementations on dedicated high-profile deviod supeer can be further categorized according to different prop
as Endace [2] or AITIA [1] cards. erties. More on detail, we define some rulésto partition

the set of entitiesS = S¢ U S¢. Although in principle the
B. Entities subsets do not need to be disjoint, we believe that requiring
' ScUS¢e = 0 induces more clarity and simplifies the collection
We can define the entities involved in a P2P system gf the statistics. We can envisage a number of different
different network layers, which in their turn correspond t@roperties, related to either tispatial or temporaldomain.
different levels of traffic aggregation. In fact, a peer ca b | et us focus on thepatial category first. P2P applications
identified either at L3 by its IP address, at L4 by its pofffer services built on top of an overlay network which needs
number, or at the endpoint-level by the combination of IP ang be continuously maintained to handle peers churn. Thus,
port. traffic can roughly be divided in either data or signalindfica
This is better explained with the help of a simple examplgve considercontributingor dataentities £, peers sending or
Consider an application running on a hdst,, receiving all receiving a number of bytes larger than a given threshold.
traffic on a single socket on post. of L4-protocol typePT € More formally, indicating with B, the amounts of bytes
{TCP,UDP}. By focusing on different network layers, weexchanged with entityZ(y), we haveS, = {E(y) : B, > j}.
can identify the following different entitie&/ Unfortunately, the choice of a proper threshold is not #fivi
« At the endpoint-level E(y) = IP, : p,, by aggregating as it has been shown that good values might be application
all IPFIX recordsPT : IP, : p, : IP, : p, dependent [27]. In the rest of this work, consistently with][

D. Categories



TABLE |
LIST OF P2PTRAFFIC FEATURES USED IN THE EXPERIMENTSFOR A « Category breakdowrper-category breakdown (e.g., the

SINGLE DIRECTION AND A SINGLE TIMESCALE percentage ohewentitiesE,,..,/E).
« Ratioof different counters for a given entity (e.d3, /P,

Categories . . .

Operation All New Peers Data Peers the mean packets size of a glven ?n@yw
o(-) S Sn Sa « Spatial mean and standard deviati@i a counter over
None L (entities)  En Eq a set of entities (e.g., mean number of packets per peer
Ox) == P (packets) Py, Py EIP

B (bytes) By, By [ D
B‘Ifergnie ﬁtgf;; ﬁtggn)) ﬁtggd)) Despite their simplicity, quite a few of these operationgeha
:ct_x; ~ AE(B) Ai(BZ) Ai(BZ) already been successfully employed for traffic classificati
Breakdown - E./E E./E for example in [17], [18], [24]. We point out that this list is
O(zcat, ) = | - Pn/P Pa/P clearly not exhaustive (e.g., temporal means and othestitat
Zeat/2 . Bn/B Ba/B can naturally be defined). However, we believe that the merit
e PIE ewicm iom urally be defined). However, we believ neri
O(z,y) = B/E By /En B /En of the framework is not weakened by considering, for the time
z/y B/P Bn /P Bn /P being, a small but well-defined list, and leaving the thofoug
g?ﬁ;: gg Egﬂ Egj]] exploration of this criterion as future work. -
E[x] E[B/P] E[B,,/P,] E[By/Py] Let us clearly state here the set of features we are going
Std Std[P] Std[Pn] Std[Py] to analyze in the experimental part. First of all, we decided
O(x) = Std[B] Std[Bn] Std[B4] ; ider two i o 120 o q
Std[x] Std[B/P]  Std[B./Pn] Std[By/Py] o consider two timescale¥ < {5,120} s, outgoing an

incoming traffic separately, and endpoint-level entiti€s.
nally, operations and categories are summarized in Tab. I.

we use a valued = 12 KB, and leave a careful sensitivityFeatureS are organized in columns according to the category
analysis as a future work. they pertain to (i.e. all, new and data entities), and in rows

We now move to theemporalproperties. Consider the setdccording to operation performed to calculate them. Notice
S; of entities observed at theth slot, i.e..t € [iT, (i+1)T)). that we use counters of a!l possmle_ levels (_)f granularlln)_u(g:_
By comparings; with the previous slotS;_;, we can define Packets, bytes), along with all their meaningful combioasi
the set ofnewentities asS,, = S;\S;_1, i.e. the set of peers computing ratios and statistical indexes. Overall thealfin

discovered in the current timeslot. A similar distinctioanc S€t IS composed of 102 features.
be found in many works on P2P traffic analysis [6], [27], or
P2P traffic classification [31].
While in this work we just consider the above two rules, it is
worth mentioning a few other partitions related to the terabo o  pataset
domain. For instance we can define the setkgbersistent
neighbors as the set of peers that have been seen in (at leadf) order to obtain robust results, we resorted to a large
k consecutive rounds_,., = m;’;’gsj_ Symmetrically we dataset of packet-level traces with associated grourtd;tru
could define the set of-recurring peers, i.e., the peers thagéomposed by three distinct parts. For lack of space we omit th
are to be found in the current and in theth previous slot, as details, for which we rather refer the reader to [4], [11B][2
Si—rec = Si N S;_j. Besides, many more complex presenceere, we only briefly summarize its characteristics: it ¢stss
indicator such as those defined in [26] could be evaluated.of 7 applications (see below for further information), fatoéal
of 900K distinct IP addressed20M packets and0G bytes.
Traces have been collected with a mixture of active (from 7
vantage points in Europe) and passive methodologies (from
Finally, a wide range of computation can be performetiree different networks), and are thus a good startingtpoin
on the gathered counters data, ranging from very simple f@r the evaluatioh The ground-truth for the passive traces is
rather complex operations. As examples of the latter, if}, [3@rovided either by a DPI classifier and manual inspection, or
a probability mass function is built starting from the caunf by GT [13].
packets and bytes exchanged by the target peer with the othdret us spend some words on the target applications. In
entities. In [12], instead, the Autocorrelation functiohQT) order to gather consistent results, we tried to include in ou
and the discrete Fourier transform (DFT) is applied to theeti dataset a representative sample of the whole spectrum of P2P
series of entity counts, of data rates exchanged with a givapplications. More on details, the dataset is made up dfdraf
entities, and of start and end time of flows. from four P2P-TV applications (PPLive, TVAnts, SopCast,
Within the scope of this work, however, we limit the analysidoost?), two file-sharing applications (Edonkey, BitTorrent)
to the following few simple operationg(:) : N™ — R, that and aVolP application (Skype).
produce a single scalar value.

Ill. THE FRAMEWORK IN ACTION

E. Operations

o None use the raw count as feature. 1Active testbed and part of passive traces are available upgoest,

. Temporal differencewith respect to the previous Sbt[)espeDcEvely at [3] and [4]. The other passive traces artedus protected

. . N
(e.g., the. rate at which the number of packets rece'Ve{izTraces date back May 2008, when Joost was still exploitirg fé2 video
is changingA,(P) = P, — P,_4) distribution
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Fig. 1. Scatter plots of the breakdown of new entities vethesbreakdown of data entities for four applications and tineescales. Captions report the
values of the statistical metrics for the feature on x and g.axi

B. Methodology px|y-. Intuitively, if all the conditioned distributiong x|y

In this section we describe the procedure followed trgglat_ed _to the same feature are dis.tant. fTOm.the marginal
evaluate the importance of each feature for traffic classific |§tr|but|or1p (& ).’ then they can be easily d|st|ngg|shed. Qven
tion. We started by extracting IPFIX-records from the pack IS co_n3|derat_|0n, the larger the score of th'? m.e“f"" the
traces. Then we aggregated the records related to the melevgore likely it is that the feature is a gogd d|s_cr|_m|nat0r.
endpoints and compute the features. The result is a list Nptice also that (X[Y') can be expressed in a similar way
couples(Y, X), whereY is the application label, anX is asI(X,Y) = By[Dxw(px|y,px)], where Dy, denotes the
the vector of features listed in Tab. I, computed on bo{ﬁullback-Lelbler divergence. . L
incoming and outgoing traffic. Afterwards, similarly to [10 To _cal_culz_ate the above metrics we net_ed an estimation of
we extracted a random subset of all data, in such a W‘A‘g‘ distributionspx andpxy. All along this work, we use
that it finally contains the same number of samples for eaf p|r|qally probability mass f_unctlons: in other .wor.ds we
application—corresponding to about 6 hours worth of trdéfic approxmat'e the'real d!str!butlon of a feature with its his-
each application. Besides facilitating our analysis, figcess _togram, using a linear t_)lnnlng over the s_upport of 'ghe f@tur
removes any bias deriving from unbalanced traffic mixture.'tself‘ This is known to introduce some bias, especiallyhie t

Subsequently, we evaluated the expressiveness of each gsfimation of the mutual information; therefore, to mitiga

ture by means of two statistical metrics. The first metric iL:.ﬁ's effect, we apply the Miller-Meadow correction [21] to

the mutual information(X,Y") [8] between a featureX our results. We dp not apply any correction o the HeIIing'er

and the application label". 7(X,Y) measures the amountd'Sta.n.CG’ V\.’h'qh’ In our expernience [25], behaves well with

of information shared by the two random variabl&s and empirical distributions.

Y, or, in our case, how much the knowledge of featufe

tells about the protocol labeY. This quantity is always C. Example

positive and usually measured in bit. If the two variablés  Before applying the above metrics to the whole set of

andY are completely unrelated, their mutual information ifeatures, we show a preliminary example of their discrimi-

zero. Conversely, a featut® is a perfect discriminator if the nating power. In Fig. 1 we report the scatter plots of two

condition/(X,Y) = H(Y') is met, whered (Y') is the entropy features, namely the breakdown of new entiti&, (£) on

of the protocol label (i.e. the number of bits needed to ptiffe the x-axis, and the breakdown of data entitigs;(F) on

describeY’). In our case of 7 applications represented by ththe y-axis, considering four applications and both timkesca

same number of samples we haklgY’) = log,(N) ~ 2.8. T € 5,120 s. Although for clarity sake we do not represent all
The second metrics, theellinger distanced D(p, ¢), mea- the 7 applications, nevertheless pictures include at least

sures the similarity between the two probability distribns example for each service (P2P-TV, filesharing, VoIP).

p and ¢. It takes values in0, 1]: a score of 0 means that At first glance, the impression is that each application gen-

the two probabilities are identical, while a score of 1 meargsates a distinct pattern, as points cluster in differegibres of

that they are completely different. We already used thigimetthe plane. The larger time scales seems to yield bettertsesul

to asses the impact of sampling on flow-level measuremeanss point clouds appear to be very well differentiated, wétv f

in [25] and to assist traffic classification in [30]. In thisntext regions of intersection between each other. Notably, a 8aho

we actually evaluat&y [H D(px|y,px)], i-e. the expectation behaviors of PPLive is highlighted, with two distinct cleuof

over all classesY of the distance between the marginapoints corresponding exactly to the two typical activitedsa

distributionpx of featureX, and the conditioned distribution P2P application: discovering new peers (i.e. low percentdg



data peers, but high percentage of new peers), and trangferr
data (i.e. high percentage of data peers, but low percemtage
new peers). Notice, instead, that fér = 5s the region of
space near the origin, i.e. low percentage of both new and

data peers, is more or less common to all applications. Feature set Accuracy
A general observation, which is confirmed by the values of gD/E [B 75 PAPFIJ_?\'/e Z)Dz 716
the statistical metrics reported in the figure captions hist t Pa/P EFB d7P al TVAnts | 405 30.95
applications are better separated along the x-axis thamgalo Py/P P SopCast | 94.1  83.9
the y-axis. In fact both metrics present larger scores fer th g/ ;3 » Ea/E Ejggiéy 22'}1 gg-g
breakdown of new peers, than for the breakdown of data peers. E[CB /{5} BitTorrent | 94.7  93.4
It can be argued that considering the information contained | E[Bq/Pc] Skype | 70.6 57.7
in the combinationof the two features would provide further :gn//g Overall | 702 608

TABLE I
(A) TOP FEATURE INDIVIDUATED BY EACH METRIC AND (B)
CLASSIFICATION ACCURACY(%) FORT =5 s

(@)

(b)

insight in this kind of analysis. Yet, in this paper, we prefe
to adopt a simpler approach and evaluate each feature on its

own, leaving the investigation of this issue as a future work . o
was proved particularly accurate for network traffic cléssi

cation [19].

When dealing with such a large number of features, it is

We now extend our analysis to the whole set of featureg.common practice to use feature selection algorithms, lwhic
Fig. 2 reports the scores assumed by the two metrics for egghove useless or possibly misleading features. Yet, i thi
feature, computed with a timescale’bf= 5 s. The top row of \york we decided to use the results from the previous analysis
graphs reports the mutual information, while the bottom rognd implement a rige feature selection, using a simple greedy
shows the mean Hellinger distance. Each row is composed Qyorithm. We first perform the classification using the most
three plots, related to the different granularities of tbarters glevant feature according to one statistical metric. Ttven
(from left to right: entities, packets and bytes); each Plotepeat the classification including the second most retevan
is further divided in three histograms, one for each categofeature, and we proceed incrementally adding new features
of entities (all, new, data). Finally, each possible operat in descending order of score of the metric, until no further
is represented by a bar, with white bars denoting featurggprovement of the classification performance is apprediat
calculated over the incoming direction, while gray barsorep | Tap. II-(a) we list the features identified by our algo-
values for the outgoing direction. Because of space cdntsra rithm for the two statistical metrics, where starred feasur
we omit results forl’ = 120s, as they show a qualitative refers to the outgoing direction. Tab. 1i-(b) shows, indtea
similar behavior. the per-application classification accuracy fbr= 5s. Both

Like in the preliminary example, the two statistical mesdricmetrics select a small number of features, achieving howeve
yield coherent results: they assume high values for the sag@ood accuracy, given also the simplistic approach adopted
features. Most of information seems to be captured by th@erestingly among selected features there is a majofity o
entity-wise and byte-wise features, while packet-wiséuies atios and breakdowns, which means that relative values are
appear less relevant, except for the breakdown operatighore expressive than absolute ones. Greedy feature selecti
which interestingly yields the most valuable features. 8e a gppears to work well withi7 D, which exploits 9 features and
observe that the data category has, on average, bettelsscqi@ieves a better accuracy, wherdaseems to need more
than the new category, revealing itself a good discriminatophisticated selection algorithms. Among the applicatio
despite its being threshold based. PPLive is the most difficult to recognize, while extremelypdo

Nevertheless, the most important conclusion that can Bgrformance is shown for Joost, Edonkey and BitTorrent.
drawn is that no feature is a significant discriminator on its
own. Notice, in fact, that only a few features exceed theescor IV. CONCLUSIONS ANDFUTURE WORK
of one bit for the mutual information, or the score 0.5 for . . .

. . . . In this paper we presented two main results. First we
the Hellinger distance. This was somehow expected since thF .
) : .~ Introduced a coherent and comprehensive framework for the
features considered are very simple. To compensate this,iss, .. ... . .
. o . . -~ definition of behavioral features for the classification @PP
a behavioral classifier must either choose a wise combimatio

. ; fraffic. In its definition, we assumed that only flow-level
of features (as we do in the next section), or use more complex

operations on the counters (e.g. what found in [12], [3O]$easurements are available. By clearly stating the aitati

) i~ : e base of feature definition, which take into account both
which try to capture more specific properties of the pattdrn 81e nature of input data (IPFIX flow counters), and of the
traffic. In our future work we intend to apply our methodolog '

) . ¥arget traffic (meshed P2P systems), we obtained an extyemel
to this second kind of features as well. L o
general framework, which, in our opinion, could represent a
o valuable reference for the research community.

E. Classification In the second part of this work, we performed an analysis
In this section we present the performance of our featuresthe amount of information carried by the defined features,
when they are used for traffic classification. We resort tosing two statistical metrics. We considered a large set of

Support Vector Machine as classification algorithm, as about 100 features, with two different timescales for stti

D. Experimental Results
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