
1

Identifying key features for P2P traffic classification
Silvio Valenti, Dario Rossi

TELECOM ParisTech
Paris, France

firstname.lastname@enst.fr

Abstract—Many researchers have recently dealt with P2P
traffic classification, mainly because P2P applications are contin-
uously growing in number as well as in traffic volume. Addition-
ally, in response to the shift of the operational community from
packet-level to flow-level monitoring witnessed by the widespread
use of NetFlow, a number of behavioral classifiers have been
proposed. These techniques, usually having P2P applications as
their main target, base the classification on the analysis of the
pattern of traffic generated by a host and proved accurate even
when using only flow-level data. Yet, all these approaches are very
specific and the community lacks a broader view of the actual
amount of information of behavioral features derived by flow-
level data. The preliminary results presented in this paper try to
fill this gap. First of all we define a comprehensive framework by
means of which we systematically explore the space of behavioral
properties and build a large set of potentially expressive features.
Thanks to our general approach, most features already used by
existing classifiers are naturally included into this set. Then, by
employing tools from information theory and data from packet-
level traces captured on real networks, we evaluate the amountof
information conveyed by each feature, ranking them according
to their usefulness for application identification. Finally we show
the classification performance of such a set of features, using a
supervised machine learning algorithm.

I. I NTRODUCTION

Since their birth in the early Nineties, P2P applications
have always represented a concern for network administrators
and ISPs, due to the large volume of traffic they are able
to generate. Therefore, it is not by chance that the research
community invested a lot of effort in designing efficient
and accurate methods to identify this traffic [5], [9], [11],
[12], [14], [16]–[18], [23], [28], [30], [31]. Things have not
changed recently: P2P still powers several killer applications in
nowadays Internet (e.g., Spotify, Skype, BitTorrent, and P2P-
TV applications) and their classification remains a relevant
issue.

Last years, instead, confirmed the trend in flow-level mon-
itoring of operational networks: the growing use of NetFlow,
also standardized as IPFIX at the IETF [7], is motivated by
a larger scalability with respect to packet-level measurement
along with a larger expressiveness compared to the coarse-
grained counters of SNMP. Indeed, IPFIX allows to associatea
number ofattributesto flows identified by the classical 5-tuple.
Attributes include cumulative packets and bytes counters,flow
starting and finishing timestamps, IP type of service, TCP
flags, etc. This information, though valuable, differs however
from what has typically been exploited to classifyindividual
flows. For example, neither the size and direction of the
first few packets [5], nor their timestamps [9], nor any fine-
grained measures concerning flows [23], nor least of all packet

payload [11], [14] is any longer available with IPFIX.
For this reason, with [18], [30]–[32] researchers started

developing “behavioral” classifiers. This family of classifi-
cation techniques, which apply toflow aggregatesand ex-
ploit only coarse-grained information available at transport-
level, is very promising; in fact, behavioral classifiers are
not only particularly effective with P2P traffic (usually their
main target), but they are also able of fine-grained traffic
classification [12], [30], [31], while still remaining compatible
with the information found in IPFIX records [16], [28].

However, research has so far focused on very specific
approaches [12], [16], [28], [30], [31], moreover evaluated on
specific datasets, and the community lacks a broad view of
the relative importance, in the context of traffic classification,
of any feature that can be defined over IPFIX flow-level data.
Similarly, as considering a single dataset can bias the evalua-
tion, a careful analysis should explicitly take into account the
relative stability of the feature expressiveness over multiple
network scenarios.

This work goes in the direction of filling this gap, assessing
the reliability of P2P traffic classification based on data from
IPFIX-compliant monitors. First of all, we propose a com-
prehensive framework for the definition of features derivable
by IPFIX-records. Our aim is to provide the community
with a reference as complete as possible of all behavioral
features suited for P2P traffic classification, similarly towhat
has been done in [22] with flow-level features. We add also
the constraint that such features should be fully compliant
with IPFIX records. By clearly stating the criteria that guide
our definition, we are able to thoroughly explore the space
of features and define a long list of potentially expressive
characteristics. The resulting framework is general enough to
include features of existing classifiers [12], [18], [24], [31],
[32], enabling their evaluation as well.

Next, we quantify the amount of information contained in
the defined features and exploitable for the classification of
P2P traffic. Our analysis is close to what has been done by
the authors of [10], which focused on the on the stability of the
information carried by traffic flows at thepacket-level; instead,
this work aims at assessing the stability of behavioral features
computed at theflow-level. We use several packet-level traces
from controlled testbeds and real networks, containing traffic
from different kinds of P2P application (P2P-TV, VoIP, file-
sharing) so that our dataset is representative of various scenar-
ios. From such traffic data, we first compute the features and
then evaluate their usefulness for the classification employing
metrics from statistics (Hellinger distance) and information
theory (mutual information). After ranking the features in
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terms of their information content, we briefly presents their
classification performance with a supervise machine learning
algorithm, namely Support Vector Machines.

II. A F RAMEWORK FORP2P FEATURESDEFINITION

Our classification target is a peer, identified as a socket
(or an aggregate of sockets) running on a host. As this peer
contacts other peers and exchanges information with them,
we suppose that an IPFIX monitor at the edge of the network
produces records for all the traffic related to the host. Our
framework takes this data as input and derives the features to
be used for the classification.

In order to perform a systematic exploration of the feature
space, we first introduce a series of criteria, described in the
following, to guide the feature definition. We find a good
mapping between features used by existing classifiers and
our framework, which proves the generality of our approach.
While we want to keep our framework as general as possible in
its definition, in the experimental part we actually restrict our
attention on a smaller subset of the possible features, which
is listed in Tab. I and detailed at the end of this section.

A. Timescale

This criterion refers to the temporal duration of the periodi-
cal statistics collection, thus dividing time in subsequent time-
slots in which features are computed. Observation timescale
is subject to the following tradeoff. On the one hand, we
would like T to be as small as possible, to supportearly
classification for tasks like QoS verification, security and
lawful interception. On the other hand, we would likeT to
be as large as possible for lightweight operation, which would
however limit possible applications of the classification to
post-mortem analysis(e.g accounting, monitoring). Coherently
with this requirements, values used in literature range from
T = 5 s in [30] up to T = 5 minutes in [31].

Current IPFIX implementations impose further constraints
on the choice ofT , as they dump statistics on active flows
everyT = 30 minutes, with a configurable minimum ofT = 1
minute. To have a finer timescale, however, one could use
custom implementations on dedicated high-profile device such
as Endace [2] or AITIA [1] cards.

B. Entities

We can define the entities involved in a P2P system at
different network layers, which in their turn correspond to
different levels of traffic aggregation. In fact, a peer can be
identified either at L3 by its IP address, at L4 by its port
number, or at the endpoint-level by the combination of IP and
port.

This is better explained with the help of a simple example.
Consider an application running on a hostIPx, receiving all
traffic on a single socket on portpx of L4-protocol typePT ∈
{TCP,UDP}. By focusing on different network layers, we
can identify the following different entitiesE

• At the endpoint-level,E(y) = IPy : py, by aggregating
all IPFIX recordsPT : IPy : py : IPx : px

• At the L3 host-level,E(y) = IPy, by aggregating all
IPFIX recordsPT : IPy : ∗ : IPx : px

• At the L4 port-level,E(y) = py, by aggregating all IPFIX
recordsPT : ∗ : py : IPx : px

Basicallyendpoint-levelentities correspond to single flows,
and have been used in [28], [30], [32]. The other entities,
instead, decouple L3 from L4.Host-levelaggregation, found
for instance in [18], [31], may be useful in cases where an
application runs multiple sockets (e.g., aggregating several
client TCP connections using ephemeral ports, or several UDP
sockets with different functions, such as data or signaling).
Port-level aggregation, instead, might help in evaluating how
an application uses the port space (e.g., by using several
different random ports, or a single deterministic port). This has
been shown to be a good discriminator in [18], [27]. Notice
also that, as recently underlined in [19], the port number itself
may still be a helpful feature.

C. Granularity and Direction

Since IPFIX records provide counters with different granu-
larities, a trivial criterion regards the level of coarseness of the
statics: features can be computed entity-wiseE, packet-wise
P and byte-wiseB.

Another intuitive criterion consists in discriminatingincom-
ing versus outgoing traffic, or aggregating both directions
together. Notice that the adopted type of transport layer
protocol can cause significant difference in the pattern of traffic
observed in the two directions. For example, an application
using a connectionless service (i.e. a UDP datagram socket)
can easily multiplex all incoming and outgoing traffic over the
same endpointIPy : py. Conversely an application employing
a connection oriented service (i.e., a TCP stream socket)
is likely to receive traffic on a single TCP port (py), but
it surely spreads the outgoing traffic on different ephemeral
ports, whose allocation is controlled by the OS.

D. Categories

The entities involved in the communication with the target
peer can be further categorized according to different prop-
erties. More on detail, we define some rulesC to partition
the set of entitiesS = SC ∪ SC . Although in principle the
subsets do not need to be disjoint, we believe that requiring
SC∪SC = ∅ induces more clarity and simplifies the collection
of the statistics. We can envisage a number of different
properties, related to either thespatial or temporaldomain.

Let us focus on thespatial category first. P2P applications
offer services built on top of an overlay network which needs
to be continuously maintained to handle peers churn. Thus,
traffic can roughly be divided in either data or signaling traffic.
We considercontributingor dataentitiesEd, peers sending or
receiving a number of bytes larger than a given threshold.
More formally, indicating withBy the amounts of bytes
exchanged with entityE(y), we haveSd = {E(y) : By > β}.
Unfortunately, the choice of a proper threshold is not trivial,
as it has been shown that good values might be application
dependent [27]. In the rest of this work, consistently with [15],
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TABLE I
L IST OF P2PTRAFFIC FEATURES USED IN THE EXPERIMENTS, FOR A

SINGLE DIRECTION AND A SINGLE TIMESCALE.

Categories
Operation All New Peers Data Peers
O(·) S Sn Sd

None E (entities) En Ed

O(x) = x P (packets) Pn Pd

B (bytes) Bn Bd

Difference ∆t(E) ∆t(En) ∆t(Ed)
O(x, t) = ∆t(P ) ∆t(Pn) ∆t(Pd)
xt−1 − xt ∆t(B) ∆t(Bn) ∆t(Bd)
Breakdown - En/E Ed/E
O(xcat, x) = - Pn/P Pd/P
xcat/x - Bn/B Bd/B
Ratio P/E Pn/En Pn/En

O(x, y) = B/E Bn/En Bn/En

x/y B/P Bn/Pn Bn/Pn

Mean E[P] E[Pn] E[Pd]
O(x) = E[B] E[Bn] E[Bd]
E[x] E[B/P] E[Bn/Pn] E[Bd/Pd]
Std Std[P] Std[Pn] Std[Pd]
O(x) = Std[B] Std[Bn] Std[Bd]
Std[x] Std[B/P] Std[Bn/Pn] Std[Bd/Pd]

we use a valueβ = 12KB, and leave a careful sensitivity
analysis as a future work.

We now move to thetemporalproperties. Consider the set
Si of entities observed at thei-th slot, i.e.,t ∈ [iT, (i+1)T )).
By comparingSi with the previous slotSi−1, we can define
the set ofnew entities asSn = Si\Si−1, i.e. the set of peers
discovered in the current timeslot. A similar distinction can
be found in many works on P2P traffic analysis [6], [27], or
P2P traffic classification [31].

While in this work we just consider the above two rules, it is
worth mentioning a few other partitions related to the temporal
domain. For instance we can define the set ofk-persistent
neighbors as the set of peers that have been seen in (at least)
k consecutive roundsSk−per = ∩i−k

j=iSj . Symmetrically we
could define the set ofk-recurring peers, i.e., the peers that
are to be found in the current and in thek-th previous slot, as
Sk−rec = Si ∩ Si−k. Besides, many more complex presence
indicator such as those defined in [26] could be evaluated.

E. Operations

Finally, a wide range of computation can be performed
on the gathered counters data, ranging from very simple to
rather complex operations. As examples of the latter, in [30],
a probability mass function is built starting from the counts of
packets and bytes exchanged by the target peer with the other
entities. In [12], instead, the Autocorrelation function (ACT)
and the discrete Fourier transform (DFT) is applied to the time
series of entity counts, of data rates exchanged with a given
entities, and of start and end time of flows.

Within the scope of this work, however, we limit the analysis
to the following few simple operationsf(·) : Nm → R, that
produce a single scalar value.

• None, use the raw count as feature.
• Temporal differencewith respect to the previous slot

(e.g., the rate at which the number of packets received
is changing∆t(P ) = Pt − Pt−1)

• Category breakdownper-category breakdown (e.g., the
percentage ofnewentitiesEnew/E).

• Ratioof different counters for a given entity (e.g.,By/Py

the mean packets size of a given entityy).
• Spatial mean and standard deviationof a counter over

a set of entities (e.g., mean number of packets per peer
E[P])

Despite their simplicity, quite a few of these operations have
already been successfully employed for traffic classification,
for example in [17], [18], [24]. We point out that this list is
clearly not exhaustive (e.g., temporal means and other statistics
can naturally be defined). However, we believe that the merit
of the framework is not weakened by considering, for the time
being, a small but well-defined list, and leaving the thorough
exploration of this criterion as future work.

Let us clearly state here the set of features we are going
to analyze in the experimental part. First of all, we decided
to consider two timescalesT ∈ {5, 120} s, outgoing and
incoming traffic separately, and endpoint-level entities.Fi-
nally, operations and categories are summarized in Tab. I.
Features are organized in columns according to the category
they pertain to (i.e. all, new and data entities), and in rows
according to operation performed to calculate them. Notice
that we use counters of all possible levels of granularity (entity,
packets, bytes), along with all their meaningful combinations
in computing ratios and statistical indexes. Overall the final
set is composed of 102 features.

III. T HE FRAMEWORK IN ACTION

A. Dataset

In order to obtain robust results, we resorted to a large
dataset of packet-level traces with associated ground-truth,
composed by three distinct parts. For lack of space we omit the
details, for which we rather refer the reader to [4], [11], [28].
Here, we only briefly summarize its characteristics: it consists
of 7 applications (see below for further information), for atotal
of 900K distinct IP addresses,120M packets and50G bytes.
Traces have been collected with a mixture of active (from 7
vantage points in Europe) and passive methodologies (from
three different networks), and are thus a good starting point
for the evaluation1. The ground-truth for the passive traces is
provided either by a DPI classifier and manual inspection, or
by GT [13].

Let us spend some words on the target applications. In
order to gather consistent results, we tried to include in our
dataset a representative sample of the whole spectrum of P2P
applications. More on details, the dataset is made up of traffic
from four P2P-TV applications (PPLive, TVAnts, SopCast,
Joost2), two file-sharing applications (Edonkey, BitTorrent)
and aVoIP application (Skype).

1Active testbed and part of passive traces are available uponrequest,
respectively at [3] and [4]. The other passive traces are instead protected
by NDA

2Traces date back May 2008, when Joost was still exploiting P2P for video
distribution
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Fig. 1. Scatter plots of the breakdown of new entities versusthe breakdown of data entities for four applications and twotimescales. Captions report the
values of the statistical metrics for the feature on x and y axis.

B. Methodology

In this section we describe the procedure followed to
evaluate the importance of each feature for traffic classifica-
tion. We started by extracting IPFIX-records from the packet
traces. Then we aggregated the records related to the relevant
endpoints and compute the features. The result is a list of
couples(Y,X), whereY is the application label, andX is
the vector of features listed in Tab. I, computed on both
incoming and outgoing traffic. Afterwards, similarly to [10],
we extracted a random subset of all data, in such a way
that it finally contains the same number of samples for each
application–corresponding to about 6 hours worth of trafficfor
each application. Besides facilitating our analysis, thisprocess
removes any bias deriving from unbalanced traffic mixture.

Subsequently, we evaluated the expressiveness of each fea-
ture by means of two statistical metrics. The first metric is
the mutual informationI(X,Y ) [8] between a featureX
and the application labelY . I(X,Y ) measures the amount
of information shared by the two random variablesX and
Y , or, in our case, how much the knowledge of featureX
tells about the protocol labelY . This quantity is always
positive and usually measured in bit. If the two variablesX
and Y are completely unrelated, their mutual information is
zero. Conversely, a featureX is a perfect discriminator if the
conditionI(X,Y ) = H(Y ) is met, whereH(Y ) is the entropy
of the protocol label (i.e. the number of bits needed to perfectly
describeY ). In our case of 7 applications represented by the
same number of samples we haveH(Y ) = log

2
(N) ∼ 2.8.

The second metrics, theHellinger distanceHD(p, q), mea-
sures the similarity between the two probability distributions
p and q. It takes values in[0, 1]: a score of 0 means that
the two probabilities are identical, while a score of 1 means
that they are completely different. We already used this metric
to asses the impact of sampling on flow-level measurements
in [25] and to assist traffic classification in [30]. In this context
we actually evaluateEY [HD(pX|Y , pX)], i.e. the expectation
over all classesY of the distance between the marginal
distributionpX of featureX, and the conditioned distribution

pX|Y . Intuitively, if all the conditioned distributionspX|Y

related to the same feature are distant from the marginal
distributionp(x), then they can be easily distinguished. Given
this consideration, the larger the score of this metric, the
more likely it is that the feature is a good discriminator.
Notice also thatI(X|Y ) can be expressed in a similar way
as I(X,Y ) = EY [DKL(pX|Y , pX)], whereDKL denotes the
Kullback-Leibler divergence.

To calculate the above metrics we need an estimation of
the distributionspX and pX|Y . All along this work, we use
empirically probability mass functions: in other words we
approximate the real distribution of a feature with its his-
togram, using a linear binning over the support of the feature
itself. This is known to introduce some bias, especially in the
estimation of the mutual information; therefore, to mitigate
this effect, we apply the Miller-Meadow correction [21] to
our results. We do not apply any correction to the Hellinger
distance, which, in our experience [25], behaves well with
empirical distributions.

C. Example

Before applying the above metrics to the whole set of
features, we show a preliminary example of their discrimi-
nating power. In Fig. 1 we report the scatter plots of two
features, namely the breakdown of new entities (En/E) on
the x-axis, and the breakdown of data entities (Ed/E) on
the y-axis, considering four applications and both timescales
T ∈ 5, 120 s. Although for clarity sake we do not represent all
the 7 applications, nevertheless pictures include at leastone
example for each service (P2P-TV, filesharing, VoIP).

At first glance, the impression is that each application gen-
erates a distinct pattern, as points cluster in different regions of
the plane. The larger time scales seems to yield better results
as point clouds appear to be very well differentiated, with few
regions of intersection between each other. Notably, a bimodal
behaviors of PPLive is highlighted, with two distinct clouds of
points corresponding exactly to the two typical activitiesof a
P2P application: discovering new peers (i.e. low percentage of
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data peers, but high percentage of new peers), and transferring
data (i.e. high percentage of data peers, but low percentageof
new peers). Notice, instead, that forT = 5 s the region of
space near the origin, i.e. low percentage of both new and
data peers, is more or less common to all applications.

A general observation, which is confirmed by the values of
the statistical metrics reported in the figure captions, is that
applications are better separated along the x-axis than along
the y-axis. In fact both metrics present larger scores for the
breakdown of new peers, than for the breakdown of data peers.
It can be argued that considering the information contained
in the combinationof the two features would provide further
insight in this kind of analysis. Yet, in this paper, we prefer
to adopt a simpler approach and evaluate each feature on its
own, leaving the investigation of this issue as a future work.

D. Experimental Results

We now extend our analysis to the whole set of features.
Fig. 2 reports the scores assumed by the two metrics for each
feature, computed with a timescale ofT = 5 s. The top row of
graphs reports the mutual information, while the bottom row
shows the mean Hellinger distance. Each row is composed by
three plots, related to the different granularities of the counters
(from left to right: entities, packets and bytes); each plots
is further divided in three histograms, one for each category
of entities (all, new, data). Finally, each possible operation
is represented by a bar, with white bars denoting features
calculated over the incoming direction, while gray bars report
values for the outgoing direction. Because of space constraints,
we omit results forT = 120 s, as they show a qualitative
similar behavior.

Like in the preliminary example, the two statistical metrics
yield coherent results: they assume high values for the same
features. Most of information seems to be captured by the
entity-wise and byte-wise features, while packet-wise features
appear less relevant, except for the breakdown operation,
which interestingly yields the most valuable features. We also
observe that the data category has, on average, better scores
than the new category, revealing itself a good discriminator,
despite its being threshold based.

Nevertheless, the most important conclusion that can be
drawn is that no feature is a significant discriminator on its
own. Notice, in fact, that only a few features exceed the score
of one bit for the mutual information, or the score 0.5 for
the Hellinger distance. This was somehow expected since the
features considered are very simple. To compensate this issue,
a behavioral classifier must either choose a wise combination
of features (as we do in the next section), or use more complex
operations on the counters (e.g. what found in [12], [30]),
which try to capture more specific properties of the pattern of
traffic. In our future work we intend to apply our methodology
to this second kind of features as well.

E. Classification

In this section we present the performance of our features
when they are used for traffic classification. We resort to
Support Vector Machine as classification algorithm, as it

TABLE II
(A) TOP FEATURE INDIVIDUATED BY EACH METRIC AND (B)

CLASSIFICATION ACCURACY(%) FORT = 5 s

(a)
Feature set

HD I
En/E Bd/Pd

Pn/P E[Bd/Pd]
Pd/P P
B/P Ed/E
Bc/Pc -
E[B/P] -
E[Bd/Pc] -
⋆Pn/P -
⋆Bn/B -

(b)
Accuracy

App. HD I
PPLive 29.2 7.6
TVAnts 40.5 30.95
SopCast 94.1 83.9

Joost 97.1 98.6
Edonkey 65.4 53.3

BitTorrent 94.7 93.4
Skype 70.6 57.7
Overall 70.2 60.8

was proved particularly accurate for network traffic classifi-
cation [19].

When dealing with such a large number of features, it is
a common practice to use feature selection algorithms, which
remove useless or possibly misleading features. Yet, in this
work we decided to use the results from the previous analysis
and implement a naı̈ve feature selection, using a simple greedy
algorithm. We first perform the classification using the most
relevant feature according to one statistical metric. Thenwe
repeat the classification including the second most relevant
feature, and we proceed incrementally adding new features
in descending order of score of the metric, until no further
improvement of the classification performance is appreciated.

In Tab. II-(a) we list the features identified by our algo-
rithm for the two statistical metrics, where starred features
refers to the outgoing direction. Tab. II-(b) shows, instead,
the per-application classification accuracy forT = 5 s. Both
metrics select a small number of features, achieving however
a good accuracy, given also the simplistic approach adopted.
Interestingly among selected features there is a majority of
ratios and breakdowns, which means that relative values are
more expressive than absolute ones. Greedy feature selection
appears to work well withHD, which exploits 9 features and
achieves a better accuracy, whereasI seems to need more
sophisticated selection algorithms. Among the applications,
PPLive is the most difficult to recognize, while extremely good
performance is shown for Joost, Edonkey and BitTorrent.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we presented two main results. First we
introduced a coherent and comprehensive framework for the
definition of behavioral features for the classification of P2P
traffic. In its definition, we assumed that only flow-level
measurements are available. By clearly stating the criteria at
the base of feature definition, which take into account both
the nature of input data (IPFIX flow counters), and of the
target traffic (meshed P2P systems), we obtained an extremely
general framework, which, in our opinion, could represent a
valuable reference for the research community.

In the second part of this work, we performed an analysis
of the amount of information carried by the defined features,
using two statistical metrics. We considered a large set of
about 100 features, with two different timescales for statistic
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Fig. 2. Values ofI(X,Y ) and meanHD for T = 5 s for incoming and outgoing direction of traffic. Bars in each histogram represent the different operations
in the order listed in Tab. I.

collections, over a large dataset of traces generated with active
and passive methodologies and including 7 P2P applications.
Results showed that each feature in isolation conveys only
a limited amount of information, but that carefully chosen
combinations of features might represent good discriminators
for traffic classification. In fact, by means of a naı̈ve feature
selection scheme based on a greedy algorithm, we are able to
achieve 70% of accuracy, by using only the best 9 features
according to the statistical metrics.

Our future work will be addressing first of all the extension
of the set of features, taking into account different levelsof
aggregation (e.g. host-level and port-level) along with more
complex operations on the counters, as these have been shown
to enhance classification accuracy [12], [30]. We also want to
improve the estimation of mutual information, for instance
by employing non parametric methodologies [29], possibly
in combination with specific feature selection schemes based
on this estimation, like e.g. [20], which will enable a better
assessment of the classification performance.
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