Fine-grained traffic classification with Netflow data

Dario Rossi, Silvio Valenti
Telecom ParisTech, France
INFRES Department

first.last@enst.fr

ABSTRACT

Nowadays Cisco Netflow is the de facto standard tool used by net-
work operators and administrators for monitoring large edge and
core networks. Implemented by all major vendors and recently a
IETF standard, Netflow reports aggregated information about traf-
fic traversing the routers in the form of flow-records. While this
kind of data is already effectively used for accounting, monitor-
ing and anomaly detection, the limited amount of information it
conveys has until now hindered its employment for traffic classifi-
cation purposes. In this paper, we present a behavioral algorithm
which successfully exploits Netflow records for traffic classifica-
tion. Since our classifier identifies an application by means of the
simple counts of received packets and bytes, Netflow records con-
tain all information required. We test our classification engine,
based on a machine learning algorithm, over an extended set of
traces containing a heterogeneous mix of applications ranging from
P2P file-sharing and P2P live-streaming to traditional client-server
services. Results show that our methodology correctly identifies
the byte-wise traffic volume with an accuracy of 90% in the worst
case, thus representing a first step towards the use of Netflow data
for fine-grained classification of network traffic.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network management, Network monitoring
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Algorithms, Measurement
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1. INTRODUCTION

As networks become increasingly complex and data transmis-
sion speed keeps growing at a steady rate, networks operators are
constantly demanding efficient and dependable tools to support them
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in network management and monitoring tasks. In this context, a re-
liable traffic classification engine, able to efficiently identify the ap-
plications generating the traffic, is a very desirable tool. This would
enable several important management activities like accounting,
SLA compliance verification, lawful interception, etc. Unfortu-
nately, traditional classification techniques, such as port-based clas-
sification or deep packet inspection, are ineffective with modern
applications and unable to deal with the increasing amount of traf-
fic of nowadays networks. In response to such problems, the re-
search community has proposed a number of solutions which base
the classification on different information, either the statical prop-
erties of traffic [1, 13] or the characteristics of the specific pattern
of traffic generated by an application [10, 12, 20].

The use of aggregated measurements has represented an efficient
way to cope with the huge amount of traffic for many network man-
agement tasks. For instance, in recent years Netflow has established
itself as the main solution for flow-level measurements. Widely im-
plemented in routers and recently standardized in a IETF draft [4],
Netflow reports aggregated information on network traffic in the
form of flow-records. Operators already employ such information
successfully for accounting, anomaly detection and network mon-
itoring, but, to date, there have been only a few tentatives [2, 11]
of using it for traffic classification. It is a common belief that the
amount of information carried by flow-records is not enough to sup-
port an accurate identification of network applications. Yet, with
the widespread adoption and availability of Netflow we argue that
a classification engine based on flow-records would be highly ap-
preciated by ISPs. Possible applications we foresee are long-term
monitoring of network usage in large networks (e.g. to investigate
and rank application popularity) or charging (e.g. charge specific
traffic more than other).

In this work we extend the Abacus behavioral classification algo-
rithm, formerly presented in [20], to make it able to work with Net-
flow data. The Abacus classifier, designed with P2P live-streaming
traffic as main target, characterizes the behavior of an application
by means of the simple count of packets and bytes exchanged with
other hosts in small time-windows. We found that these measure-
ments capture characteristic properties of target applications, and
so, in combination with a powerful machine learning algorithm,
they enable the high classification accuracy showed by Abacus.

This work extends the classifier in several ways. First, we want
the methodology to be fully compliant with Netflow data. There-
fore, we consider larger time-scales, in the order of minutes, which
is the usual time granularity of Netflow whereas in [20] we just
used smaller time-scales for faster classification. Second, we take
into account a larger set of applications, which also includes other
P2P services besides P2P-TV, such as file-sharing (e.g, BitTorrent,
eDonkey) and VoIP (e.g., Skype), as well as traditional client server



applications (e.g. DNS). Finally, we use a more robust training
phase, introducing an explicit class “others” for all traffic not per-
taining to target applications. In this way we simplify the classi-
fication methodology by getting rid of the rejection criterion [20]
formerly needed to filter out “unknown” traffic.

We validate the classifier on a large set of packet-level traces,
from which we derive Netflow records used by the classification
engine. Traces come either from active testbed experiments, which
guarantee the best accuracy for the ground truth, or from passive
measurements from operational networks, in which case the ground
truth is provided by a traditional DPI classifier. Results, which con-
sider different setting for Netflow timers, show that Abacus is able
to achieve a high classification accuracy (90% in the worst-case)
relying only on flow-records, so representing a first step towards
fine-grained traffic classification based on Netflow data.

2. RELATED WORK

Two bodies of work are related to our effort. On the one hand, we
have research works which focus on traffic classification [1,2,7,9—
13,16, 20], but that with minor exceptions [2, 11] do not explicitly
consider Netflow input. On the other hand, we have works which
explicitly use Netflow records for other purposes [6,14,17,18], such
as for traffic monitoring, accounting or anomaly detection.

The first body of literature [1,2,7,9-13, 16, 20] is a clear evi-
dence of the great interest of the research community in the topic
of network traffic classification. Still, despite the number of pro-
posed solutions, a reliable identification of the application protocol
associated to network packets remains an open challenge. A first
part of studies bases the classification on the inspection of packet
payload, either by searching for known signatures [16] or by de-
riving a statistical description of transmitted data [7,9]. A second
part of works [1,2, 11, 13] relies on statistical properties of flows
generated by a given application. Finally, some studies [10, 12,20]
characterize the behavior of an application, recognizing the pattern
of traffic generated. Our work fits in this last category but is the
first that, to the best of our knowledge, is capable of fine-grained
application detection based on behavioral data.

The research community has also investigated the possible uses
of Netflow records for different network managing tasks. The most
natural applications of flow-level data are obviously accounting [18,
19] and network traffic reporting and monitoring [6]. Other works
[14, 17] present effective techniques to perform anomaly detec-
tion based on Netflow data. Finally a few works [2, 11] closer to
ours have recently proposed traffic classification based on Netflow
records. Both these studies belong to the family of statistical based
classifiers, while our work is the first example of behavioral classi-
fier explicitly addressing the use of Netflow records. Moreover this
work differentiates from them in the aim of the classification as it
is the first to distinguish among specific applications belonging to
the same class of service.

3. NETFLOW DATA AND CLASSIFICATION

ALGORITHM
3.1 Netflow data

Netflow [3] represents the de facto standard for flow level mea-
surements in the networking operational community. Originally de-
signed by Cisco as a cache to improve IP flow lookups in routers, it
soon revealed itself to be a very useful tool for network traffic mon-
itoring and reporting. Netflow main feature relies in the level of in-
formation it provides — more compact than packet level traces, but
still more expressive than coarse-grained counters of SNMP. Af-

ter several subsequent versions, with v5 being the most commonly
used, Netflow v9 has finally evolved in a IETF standard, IPFIX [4],
already implemented by most network equipment vendors.

A Netflow probe tracks flows, i.e. unidirectional sequences of
packets exchanged by two endpoints. First, it extracts from each
packet a key composed of specific header fields (for v5 it is the
classical 5-tuple: IP source and destination addresses, transport-
layer source and destination ports, IP protocol). This key identi-
fies a record in memory, where the probe stores, besides the key
itself, a number of attributes, like cumulative packets and bytes
counters, flow starting and finishing timestamps, IP type of service,
TCP flags, MPLS label, physical input and output interface indexes,
only to cite the most important ones. Although last releases have
introduced the possibility to specify custom keys and attributes, in
the following we employ the flow definition of v5 for compatibility
reasons.

Whenever a flow expires, the router transmits a UDP packet con-
taining the related record to a Netflow collector, which elaborates
and eventually stores this information. Different reasons can cause
a flow expiration: (i) a packets explicitly terminates the flow (e.g, a
TCP FIN packet); (ii) the flow has been inactive for a time greater
than the inactive_timeout (iii) the flow has been active for
a time greater than the active_timeout; (iv) the flow cache is
full and some space needs to be freed for new flows. Default values
for inactive_timeout and active_timeout are respec-
tively 15 seconds and 30 minutes. In Sec. 4 we will see that the
value of these timeouts has an important impact on classification
performance.

3.2 Classification methodology

In the following we will introduce our classification method and
the modifications needed to couple it with Netflow. We focus more
on the intuitions behind the algorithm, and refer the reader to [20]
for a more rigorous and detailed presentation and to [8] for a com-
parison with another payload based classifier.

Abacus classifies application endpoints, i.e the pair IP address
and transport layer port (I Py, po). In this work, we focus on UDP
traffic and applications running over it. We consider a single traffic
direction and we also assume that all traffic directed to the target
endpoint is observed by our engine. The classification is based on
the raw count of packets and bytes that the endpoint (I Py, po) re-
ceives from others parties of the communication C = {(IP;, pi) }iL 1,
where C represents the set of IV neighboring endpoints which con-
tacted (I Po, po) during an interval AT. In more detail, we evaluate
the distributions p and b of the N endpoints according to the count
of exchanged packets P and bytes B respectively: notice that, by
definition, |p| = 1 and |b] = 1. We use a logarithmic binning
with base 2 as support for both distributions: indeed, logarithmic
binning has the advantage of highlighting the differences for lower
counts of packets and bytes (e.g., having exchanged 1 or 4 pack-
ets w.r.t 1001 or 1004 packets), as well as that of providing a more
concise representation.

The final Abacus signature is simply the combination of the packet-
wise and byte-wise distribution s := (p, b). This compact descrip-
tion of the endpoint behavior is fed to a machine learning algorithm,
namely Support Vector Machine (SVM) [5], to perform the classi-
fication.

An example will clarify the methodology. If an endpoint receives
only single-packet probes from its IV neighbors during AT, the dis-
tribution will be p = (1,0, 0,0, .. .) as all peers fall in the first bin.

Instead, a distribution like p = (%, %, 0, i, ...) means that half of
the endpoints sent single-packet probes, while the remainders have

sent either n = 2 or a number n € (4, 8] of packets to (I Py, po).
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Figure 1: Mean byte-wise signature for the considered applications.

Despite the use of a simple count, furthermore relative to a single
traffic direction, Abacus signatures capture distinctive properties of
the observed applications. Concerning P2P applications, a number
of design choices directly reflect in the signature s: for instance,
different peer discovery techniques (e.g., single-packet probe ver-
sus handshakes) clearly make peers fall into different bins (e.g., the
first or second respectively). In the same way, even though several
applications may adopt similar content-diffusion techniques (e.g.,
mesh-pull diffusion for BitTorrent, SopCast, PPLive) the use of
specific chunk-sizes, or even packet sizes, still makes them eas-
ily recognizable (e.g., by making a specific bin more likely than
others in the p and b). Concerning client-server traffic, instead,
we expect the length of requests to be particularly tied to the pro-
tocol (e.g., very short DNS queries, versus medium length HTTP
requests, versus rather long SMTP message transmissions).

During our experiments we empirically found that Abacus sig-
natures calculated on the downlink traffic are more stable over time
and also able to better differentiate the target applications. We can
individuate some reasons behind such a finding. For instance, P2P-
TV applications strive to download an almost constant bitrate from
other peers to ensure a smooth video playback, so this direction
of traffic exhibits a rather steady downlink throughput. Other P2P
applications do not have such constraints and are usually character-
ized by multi-modal behaviors on both directions, so there is no real
advantage in considering one direction over the other. For client-
server traffic, since we focus on the classification of endpoints talk-
ing with many hosts, we are actually concentrating on servers, and,
as already said, we expect the incoming direction (i.e. directed to
the server) to be more representative.

To support our intuition, we report in Fig. 1 a pictorial repre-
sentation of the average byte-wise signature b of all the applica-
tions considered in the experiments. We represent signatures as
histograms, where each bar corresponds to the value of the compo-
nent of the distribution identified by the index on the x-axis. Notice
that each application generates a different and characteristic pat-
tern. For instance, DNS adopts short exchanges of data for the
majority of communications, which contribute to larger values of
lower bins (e.g. most DNS queries fall into bin number 7, corre-
sponding to single packets having size in the 128-255 Bytes range).
Instead all P2P-TV applications (top row) together with BitTorrent
show a considerable percentage of peers falling in the last bin (cor-
responding to hosts which are contributing with most of the video
or data stream), but still differentiate among themselves thanks to
lower bins.

We had to tweak the original Abacus classifier to have it work
smoothly with Netflow data. First, in our previous work we used
a duration of 5 s for the endpoint observation window, which is in-
compatible with the time granularity of Netflow: hence, we now
consider values of AT in the time-scale of minutes. A second dif-
ference derives from the fact that flow-records exports are not syn-
chronous. In other words we cannot ask Netflow to terminate and
emit all flow-records at a given time (e.g. at the end of AT). As a
result, we may end with some flow spanning over two windows. In
this case we simply divide the flow in two parts, by prorating the
number of packets and bytes (i.e., we split the flow-record at the
end of the current AT and divide the packets and bytes between
the two segments proportionally to their duration), as already done
in [19].

4. EXPERIMENTAL RESULTS
4.1 Dataset and Methodology

We validate our classification engine on a large set of traces, col-
lected in different environments and whose main characteristics are
reported in Tab. 1. We concentrate on UDP traffic, which is not only
the preferred transport-layer protocol of P2P live-streaming appli-
cations and VoIP, but has also recently become the choice of the
most popular file-sharing application, namely BitTorrent.

The traces containing P2P live-streaming traffic were captured
during a series of experiments performed in the context of the Na-
paWine project [15]. All partners participated to the experiments
with a number of machines (having different ADSL or high band-

width access), running different popular P2P-TV applications (PPLive,

SopCast, TVAnts, Joost) and capturing the generated traffic. Bit-
Torrent traces were instead collected by running the official client
connected to the Internet through an ADSL access. Using traces
from controlled active scenarios has the advantage of providing a
reliable ground truth, as there is no doubt on the application gener-
ating the traffic.

For the remaining applications, we resorted to a day-long trace
passively collected at the POP of a large Italian Internet provider.
By running a traditional DPI classifier we were able to extract flows
pertaining to eDonkey, Skype and DNS, as representative of P2P
file-sharing, P2P VoIP and client-server traffic respectively. Finally
we built the “other” class with all the traffic contained in the first
hour of this trace and not related to any of the previous protocols.
By providing SVM with a description of the background traffic,
the machine will correctly handle traffic not belonging to any of



Table 2: Confusion matrix: Classification accuracy as a percentage of signatures (%S) and percentages of bytes (% B)

Classification outcome
PPLive TVAnts SopCast Joost eDonkey  BitTorrent Skype DNS Other
%S %B %S %B %S %B %S %B | %S %B %S %B %S %B | %S %B | %S %B
PPLive 63.6 96.0 1.0 3.2 0.7 03 0.1 - - - 0.1 0.4 29 - 94 - 223 -
TVAnts 31 68 544929 1.0 03 02 - - - 02 - 74 - 9.5 - 243 -
— | SopCast 0.7 02 04 04 49.7 994 - - 0.1 - 03 - 48 - 159 - 28.1 -
-§ Joost 02 - - - - - 532999 | 03 - 02 - 45 - 9.1 - 225 -
:ﬁs eDonkey - - - - - - - - 94.4 98.9 - - - - 07 02 | 48 09
£ | BitTorrent | 06 - 0.5 0.1 0.8 0.8 03 19 - - 125 89.1 | 52 1.7 [ 613 58 | 18.8 0.6
Skype - - - - 0.1 03 - - - - 02 04 [861905] 58 25 78 64
DNS 0.1 - - - 0. 03 - 02 0.3 0.9 - 05 6.5 39 [63991.2]29.1 29
Other 0.1 - - - - - - - 04 0.1 - 0.1 35 - 83 - 87.6 99.8

Table 1: Summary of the dataset

Category Application | Packets  Bytes
PPlive 73M  1.13G

Sopcat 32M 045G

P2PTV TVAnts | 24M 256G
Joost 3.4M 2.14G

. . eDonkey 224M 693G

P2P File-sharing | girorent | 14M 074G
P2P VoIP Skype 6.I1M 291G
Naming DNS 1.5M 103M
Remaining UDP Other 10M 109G

the target applications and label it as “other”.

We implemented a custom tool similar to [6], which converts
traffic traces into Netflowrecords, from which we build the Abacus
signatures. We randomly sample 10% of the signatures of each
protocol that we use to train the SVM model. The trained model
is then applied to the remaining signatures, used as validation set.
This process is repeated 10 times, varying the train and validation
set each time.

4.2 Classification results

In Tab. 2, we show the classification results obtained by set-
ting the active_timeout and AT to 120s, while we leave the
idle_timeout to its default value of 15s (we will discuss this
parameter choice later). The table adopts the classical confusion
matrix representation: rows correspond to the real traffic, while
columns show the possible classification outcomes. Classification
performance is expressed both as percentage of signatures (%5S)
and as percentage of bytes (% B). In fact by adding the bytes trans-
ferred by all flows seen in a AT, we can associate a precise amount
of data to each signature. we expect ISP to prefer the bite-wise met-
ric, as it refers to the bulk of the traffic volume. For instance, the
first value on the first row tells us that 63.6% of all PPLive sig-
natures were correctly classified as PPLive, and these signatures
correspond to the 96% of the total PPLive traffic in terms of bytes.
Values in bold on the diagonal represent the percentage of correctly
classified traffic. All other values represent false negatives, in par-
ticular in the last column we report the percentage of traffic classi-
fied as “other”. Finally it is worth saying that diagonal values can
be regarded as the recall of that class, since they are calculated as
the ratio of true positives over the sum of true positives and false
negatives.

For the sake of simplicity, let us consider different families of
applications separately. We first observe the performance related
to P2P-TV services, which were the original target of the Abacus
classifier in [20]. Byte accuracy is extremely high for all four ap-
plications, always greater than 90%, with Joost and SopCast ex-

ceeding the 99%. Instead, the percentage of correctly classified
signatures is lower (not even approaching the 65%), with a large
fraction of classifications falling in either the DNS or the “other”
class. From this, we can conclude that heavy signatures (i.e., car-
rying more bytes) are more robust to the classification, which is a
positive finding as ISPs are interested in classifying the bulk of the
traffic. This is also somewhat expected, as signatures carrying less
traffic (e.g., few flows in the unit of time AT’) are also statistically
less significant.

Byte accuracy remains high also for the two P2P file-sharing ap-
plications, with eDonkey showing also very high values at a sig-
nature level. BitTorrent signatures are instead harder to classify in
general, except those carrying the greatest portion of traffic (bytes
accuracy approaches 90%). Again, it seems that the classifiers cor-
rectly identifies BitTorrent traffic when the application is actively
downloading from other peers, while it has some problems under
different conditions (e.g., when just discovering new peers or per-
forming signaling). Moreover, we point out that due to the recent
evolution of its protocol, we have collected just a limited dataset,
so the poor performance may also be caused by the incomplete rep-
resentation of the protocol in the training set. Interestingly, no-
tice also that BitTorrent, which adopts swarming algorithms simi-
lar to P2P-TV ones, is sometimes misclassified as P2P-TV, whereas
eDonkey is confused rather with DNS.

Similar considerations apply also to Skype and DNS, both per-
forming better when considering bytes instead of signatures. DNS,
the only non-P2P applications considered in this work, is the pro-
tocol which shows the greatest portion of signatures labeled as
“other”. This issue, which we aim at inspecting further in future
work, is likely due to the presence of other client-server applica-
tions in the background class, which, having a behavior similar to
DNS, cause the misclassification.

In the last row of the table we instead evaluate how the classi-
fier deals with traffic other than the target applications. Again, the
signatures corresponding to the majority of bytes are correctly as-
signed to the “other” class, showing the effectiveness of this strat-
egy for handling any kind of traffic (a limited percentage of sig-
natures is still misclassified as DNS, which further confirms our
previous considerations on the similarities between these classes).

Besides the results reported in Tab. 2, we conducted a series of
tests to investigate the effect of different settings of Netflow time-
outs on classification performance, that we only briefly report here
for lack of space. Fig. 2 depicts the byte accuracy of the different
applications for increasing values of the act ive_timeout. Asa
reference, the leftmost set reports the performance of [20] gathered
for AT = 5 (not applicable to real Netflow). Coherently with our
previous work, this small interval provides the best performance
for P2P applications, but deals poorly with DNS and the “other”
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Figure 2: Byte accuracy for different values of active timeout.

classes. From the picture, it can be gathered that AT = 120 s rep-
resents a good compromise between smaller intervals, which en-
hance P2P-TV classification accuracy, and larger ones, which per-
form better for other applications.

5. CONCLUSIONS

This paper described a behavioral classification engine able to
achieve an accurate fine-grained classification of network traffic,
by exploiting Netflow records. Our solution characterizes the be-
havior of an application by a simple count of packets and bytes ex-
changed with other hosts, which is directly found in standard Net-
flow records. We tested our methodology on a large set of traces,
ranging from P2P applications to traditional client-server services.
Results show that the proposed technique, albeit not infallible in
term of individual signatures, classifies all the target applications
with high byte accuracy, and also correctly handles non-relevant
traffic.

We believe that this work represents a first step toward fine-
grained traffic classification using Netflow data. However, a num-
ber of aspects deserve a deeper investigation: for instance the porta-
bility of signatures should be tested by running the classifier on
traces collected in different place and time from the ones used for
training. Also the applicability of this methodology to TCP traf-
fic would be an interesting point, which we plan to address in our
future work.
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