
LEDBAT: the new BitTorrent
congestion control protocol

Dario Rossi, Claudio Testa, Silvio Valenti
TELECOM ParisTech

Paris, France
firstname.lastname@enst.fr

Luca Muscariello
Orange Labs
Paris, France

luca.muscariello@orange-ftgroup.com

Abstract—A few months ago, BitTorrent developers announced
that the transfer of torrent data in the official client was about to
switch to a new application-layer congestion-control protocol us-
ing UDP at the transport-layer. This announcement immediately
raised an unmotivated buzz about a new, imminent congestion
collapse of the whole Internet. As the new congestion control
aims at offering a lower than best effort transport service, this
reaction was not built on solid technical foundation. Nevertheless,
a legitimate question remains: whether this new protocol is
a necessary building block for future Internet applications, or
whether it may result in an umpteenth addition to the already
well populated world of Internet congestion control algorithms.

To tackle this issue, we implement the novel congestion control
algorithm and investigate its performance by means of packet-
level simulations. Considering a simple bottleneck scenario,
where the new BitTorrent competes against either TCP or other
BitTorrent flows, we evaluate the fairness of resource share
as well as the protocol efficiency. Our results show that the
new protocol successfully meets some of its design goals, as for
instance the efficiency one. At the same time, we also identify
some potential fairness issues, that need to be dealt with. Finally,
we point out that end-users will be the final judges of the new
protocol: therefore, further research should evaluate the effects
of its adoption on the performance of the applications ultimately
relying on it.

Keywords-BitTorrent; Congestion Control; LEDBAT;

I. I NTRODUCTION

A few months ago, a post in the thread announcing the new
µTorrent release 1.9-alpha-13485 in the BitTorrent developer
forum [1] raised a lot of motivated interest as well as quite
a few unmotivated buzz [2]. Not only the official BitTorrent
client would no longer be open-source, but it was, above
all, introducing a novel “micro transport protocol”, a new
application-layer protocol for data transfer implementing a
innovative congestion-control algorithm and exploiting UDP
at the transport layer.

Nevertheless, the main item retained was that BitTorrent
would have switched its data transfer over UDP – which do
not implement any kind of congestion control and is thus
usually associated withunresponsivesource. This fallacious
interpretation raised serious concerns: as BitTorrent constitutes
a significant portion of nowadays Internet traffic, its switchover
to UDP was seen as the cause for the forthcoming collapse of
the network. This “Internet meltdown” buzz rapidly flooded on
the Internet, and only after an official reaction of BitTorrent

followed by intense discussions, this climax started slowing
down [2].

Yet, the buzz was not built on solid technical foundation: in
fact, the original post [1] clearly stated that the design goal of
the new protocol was to avoid“killing your net connection –
even if you do not set any rate limits,”and to be able instead
to “detect problems very quickly and throttle back accordingly
so that BitTorrent doesn’t slow down the Internet connection
and Gamers and VoIP users don’t notice any problems.”The
inner working of this novel protocol is under discussion as
BitTorrent Enhancement Proposals BEP29 [3], as well as IETF
Low Extra Delay Background Transport (LEDBAT), whose
first draft [4] has been accepted as a WG item in August 2009.
To date, slight discrepancies exist between the two documents,
mainly concerning parameter settings: as such, in the reminder
of this work we will adhere to the LEDBAT flavor of the new
protocol.

LEDBAT is described in [4] as a windowed protocol,
governed by a linear controller designed to infer earlier than
TCP the occurrence of congestion on a network path. Its
congestion control algorithm is based on the one-way delay
estimation: queuing delay is estimated as the difference be-
tween the instantaneous delay and a base delay, taken as the
minimum delay over the previous observations. Whenever the
sender detects a growing one-way delay, it infers that queue
is building up and reacts by decreasing its sending rate. This
way, LEDBAT reacts earlier than TCP, which instead has to
wait for a packet loss event to detect congestion.

While LEDBAT design goals are sound, technical points
have been raised by the scientific community participating
to the LEDBAT working group, that ongoing discussion has
not fully flattened yet. A legitimate question is whether the
novel LEDBAT addition to the already well populated world
of Internet congestion control algorithms is really necessary
and motivated. LEDBAT-reluctants suggest indeed to consider
already existing, and therefore more stable and better under-
stood, algorithms for lower than best effort transport, such
as TCP-NICE [5] or TCP-LP [6]. These comments, coupled
with the move toward a closed source code, motivate the
need for independent studies, so that claims concerning, e.g.,
the friendliness and efficiency of this new protocol, can be
confirmed by the research community.

This work tackles precisely this issue, filling an important

gap in BitTorrent research: indeed, due to LEDBAT very
recent evolution, with the exception of [7] where we analyze
LEDBAT behavior through an active testbed methodology, pre-
vious work on BitTorrent [8], [9] focused on complementary
aspects to those analyzed in this work. Rather that proposing
any modification to LEDBAT, we aim at evaluating the draft
specification [4]as is. Therefore, we implement and evaluate
the simplest controller that strictly satisfies all the drafts
requirements inns2 and evaluate the LEDBAT controller by
means of packet-level simulations. The source code of our
LEDBAT implementation is made available to the scientific
community upon request.

Our results show that LEDBAT fulfills several of its design
goals: it is able to efficiently exploit network capacity, to
quickly yield to TCP or other higher priority traffic, and is
by design robust to misconfiguration (e.g., fair competition
with TCP in the worst case). However, we also point out that
a late-comer advantage may arise between LEDBAT flows,
with newly born connections absorbing all resources, bringing
already started sessions to starvation. Although we show that
this is mostly due to incorrect estimation of the base delay
and can be easily fixed (e.g., by the use of slow-start), at the
same time we believe that further effort is however needed to
build a full relief picture of LEDBAT performance in actual
scenarios.

Overall, LEDBAT may become a useful building block of
the future Internet, and its deployment within a very popular
P2P application such as BitTorrent already constitutes a very
advantageous starting point. Yet, we underline that its success
not only depends on its network friendliness, but also on the
overall performance of applications relying on it. For instance
issues like BitTorrent download time, interaction with peer
selection strategies and tit-for-tat, will have a major impact on
users experience and definitely deserve further investigation as
well.

II. LEDBAT OVERVIEW

This section provides a basic overview of the LEDBAT
draft [4]. To better understand the motivations behind LED-
BAT, let us recall that the standard TCP congestion control
needs losses to back off: this means that, under a drop-tail
FIFO queuing discipline, TCP necessarily fills the buffer. As
uplink devices of low-capacity home access networks can
buffer up to hundreds of milliseconds, this may translate into
poor performance of interactive applications (e.g., slow Web
browsing and bad gaming/VoIP quality).

To avoid this drawback, LEDBAT implements a distributed
congestion control mechanism, tailored for the transport of
non-interactive traffic with lower than Best Effort (i.e., lower
than TCP) priority, whose main design goals are:

• Saturate the bottleneck when no other traffic is present,
but quickly yield to TCP and other UDP real-time traffic
sharing the same bottleneck queue.

• Keep delay low when no other traffic is present, and add
little to the queuing delays induced by TCP traffic.

on data_packet @ RX:
remote_timestamp = data_packet.timestamp
acknowledgement.delay =

local_timestamp() - remote_timestamp

on acknowledgement @ TX:
current_delay = acknowledgement.delay
base_delay = min(base_delay, current_delay)
queuing_delay = current_delay - base_delay
off_target = TARGET - queuing_delay
cwnd += GAIN * off_target / cwnd

Fig. 1. Pseudocode of the LEDBAT sender and receiver operations

• Operate well in drop-tail FIFO networks, but use explicit
congestion notification (e.g., ECN) where available.

Intuitively, to saturate the bottleneck it is necessary that
queue builds up: otherwise, when the queue is empty, at least
sometimes no data is being transmitted and the link is under-
exploited. At the same time, in order to operate friendly toward
interactive applications, the queuing delay needs to be as low
as possible: LEDBAT is therefore designed to introduce a non-
zero target queuing delay.

In order to achieve this goal, LEDBAT follows a simple
strategy. First of all, it exploits the ongoing data transfer
to measure the one-way delay, from which it derives an
estimate of thequeuing delayon the forward path. Using one-
way delay instead of round-trip time has the main advantage
of preventing unrelated traffic on the backward path from
interfering with data transmission. Second, it employs alinear
controller to modulate the congestion window, and conse-
quently the sending rate, according to the measured delay.
LEDBAT operations can be summarized in the pseudocode in
Fig. 1.

In the following, we first consider the two main components
of the LEDBAT algorithm separately, and then we report some
further considerations on the TCP-friendliness of the novel
protocol.

A. Queuing Delay Estimate

Delay measurements are performed collaboratively by the
sender and the receiver. The former puts a timestamp from
its local clock in each packet. The latter, instead, calculates
the one-way delay as the difference between its own local
clock and the received timestamp, and communicates it back
to the sender in the acknowledgements. The sender, besides,
maintains a minimum of all observed delays, which represent
the base delayused in queuing delay estimate.

To explain the rationale behind such technique, let us con-
sider the different components of one-way delay: propagation,
transmission, processing and queuing. Neglecting the process-
ing delay, propagation and transmission delays are constant
components, while the only variable component is the queuing
delay. Intuitively, a packet which finds the queue empty (i.e.,
null queuing delay) will accurately estimate the constant
portion of the one-way delay (i.e., the sum of propagation
and transmission delays). This measure yields a minimum of

the delay, that will be stored as a reference: then, the queuing
delay can be estimated as the difference between the current
and the reference delays.

One-way delay measurements are notoriously difficult, es-
pecially for non-synchronized hosts. Yet thevariation of delay
with respect to the base delay, which is actually exploited
by LEDBAT, is a much more robust metric. In particular, it
does not suffer form timestamp errors such as fixed offsets
and skews from the true time. For instance, the sender and
receiver offsets could severely affect the absolute one-way
delay estimate, but they happily cancel in the arithmetic differ-
ence queuing_delay=current_delay-base_delay
(since both delays correspond in their turn to the difference of
the receiver minus the sender delay). Further considerations
about clock skew, noise filtering and route changes issues can
be found in [4].

B. Controller Dynamics

A proportional-integral-derivative (PID)controller governs
the dynamic of the congestion window in both the ramp-up
and ramp-down phases. The controller continuously adapts
the window to the estimated delay, in order to match the
target delay. Clearly, when the queuing delay estimate is lower
than the target (i.e.,off_target<0) the sending rate has to
increase, so that queuing delay reaches the target. Conversely,
when the queuing delay estimate is higher than the target (i.e.,
off_target>0) the controller slows down the sending rate.

In Fig. 1 we observe that the controller itself is characterized
by two parameters, theTARGET delay and theGAIN coeffi-
cient. The draft states that“ TARGET parameter MUST be set
to 25 milliseconds andGAIN MUST be set so that max ramp
up rate is the same as for TCP.”. The selection of a constant
and moreover specific value forTARGET is quite controversial,
as it is clear that non-compliant implementation with a larger
target delay are advantaged and could introduce severe fairness
issues (notice for instance that values in BEP29 [3] are larger
than those specified in [4]). Concerning the second parameter,
we set it toGAIN=1/TARGET, choice that we motivate in the
next section.

We underline here a nice property of the PID controller:
the window growth is directly proportional to the differ-
ence between the queuing delay estimate and the target
off_target. In this way, when the queuing delay is close
to the target, the controller response will be near zero, thus
avoiding undesirable oscillations. Conversely, when the esti-
mation is far from the target, the controller will increase the
window faster and hopefully converge earlier.

C. TCP Friendliness Consideration

An important goal of LEDBAT concerns its ability to yield
to TCP traffic when sharing the same bottleneck resources.
LEDBAT should be able both to detect the traffic already
present on links, and to yield quickly to newly incoming
connections.

At the same time, LEDBAT must avoid starvation. In fact
if LEDBAT always yielded to any kind of traffic, even to the

one generated by non interactive application (e.g., a long-lived
FTP transfer), the performance degradation perceived by users
may convince them to simply revert to TCP-based transfers,
regardless of LEDBAT potential advantages.

A first necessary condition for TCP friendliness, is that
LEDBAT should never ramp-up faster than TCP. Since LED-
BAT increases its congestion window of the largest amount
when the delay estimate is zero (notice also that estimated
delay can never be negative), by selectingGAIN=1/TARGET
we guarantee that LEDBAT never ramps-up faster than TCP,
as its maximum ramp-up speed is limited to one packet per
RTT (i.e. like TCP in congestion avoidance).

A second requirement is that the delay-based LEDBAT
congestion controllershould react earlier than loss-based TCP
controller: intuitively, if the former can ramp-down faster than
loss-based connections ramp-up, it will yield to the latter. The
draft states that LEDBAT should“yield at precisely the same
rate as TCP is ramping-up when the queuing delay is double
the target”. Again our choice ofGAIN=1/TARGET fulfills
this requirement: in fact, when the queuing delay is twice the
target, LEDBAT will ramp-down at a rate equal to one packet
per RTT, matching thus TCP congestion avoidance ramp-up
speed.

A third final condition is that,in case of loss, LEDBAT
should behave like TCP does(i.e., halve its congestion win-
dow). From all these considerations, one can derive that
LEDBAT design follows a quite conservative approach, as in
the worst case (when the queue estimation always equals zero)
its most aggressive behavior simply degenerates into TCP.

III. LEDBAT P ERFORMANCE

In this section, we report results gathered with our imple-
mentation of the LEDBAT controller in the Network Simulator
ns2: we start by illustrating some telling examples of the
LEDBAT dynamics in simple cases, incrementally adding
complexity to refine the picture later on. For details concerning
the implementation, which is available as open source to the
research community upon request, please refer to [10].

A. Reference scenario

As reference scenario, we consider a bottleneck link of ca-
pacityC Mbps and buffer sizeB packets. For the sake of sim-
plicity, we assume that all transceivers adoptP = 1500 Bytes
fixed-size packets. Traffic flows in a single direction, and
acks are not delayed, dropped nor affected by cross-traffic on
their return path. All flows have the same round trip time
RTT = 50ms, half of which is due to the propagation and
transmission delay components of the bottleneck link (i.e., a
one-way base delay of 25 ms).

In this work we restrict our attention to a simple high-
speed access scenarios, with a link ofC = 10Mbps capacity
for downlink/uplink (an extended set of simulations, including
an ADSL-like case is available in [10]), and different buffer
sizesB ∈ [10, 100] ⊂ N packets. Notice that, once fixed the
link capacity C and the packet sizeP , we can express the
queuing delayTARGET in terms of either a time-lapse or

 0

 20

 40

 60

 80
S

en
de

r
w

in
do

w
[p

ac
ke

ts
]

TCP
LEDBAT

Total

 0

 20

 40

 0 2 4 6 8 10 12 14

B
uf

fe
r

si
ze

[p
ac

ke
ts

]

Time [s]

(a)

 0

 20

 40

 60

 80

S
en

de
r

w
in

do
w

[p
ac

ke
ts

] LEDBAT 1
LEDBAT 2
Total

 0

 20

 40

 0 2 4 6 8 10 12 14

B
uf

fe
r

si
ze

[p
ac

ke
ts

]

Time [s]

(b)

Fig. 2. Temporal evolution of the sender window (top) and of the queue size (bottom) for TCP-LEDBAT (a) and LEDBAT-LEDBAT interaction (b)

bytes (and packets). Denoting for short theTARGET as τ , in
the following we will refer indifferently to the queuing delay
in terms of time-lapseτT = 25 ms or packetsτP = τT C/8P
(with capacity expressed in kbps and packet size in bytes). For
instance in our high-speed scenario,τT = 25 ms corresponds
to τP = 20.8 packets. Thus, a buffer size ofB = 40
packets, almost equal to the bandwidth-delay product, can
accommodate twice as much queuing delay than the LEDBAT
targetτ .

As performance metrics, we consider thefairness and
efficiencyof the data transfer. For the former, we use Jain’s
fairness indexF , which is defined as:

F =
(
∑N

i=1
xi)

2

N ·
∑N

i=1
x2

i

(1)

where{xi}
N
i=1

is the set of rates achieved byN flows sharing
the same bottleneck resource. This index ranges between as
maximum value of1 (when the bandwidth is perfectly shared
among theN flows) and a minimum of1/N (in case one flow
takes all the resource, leaving the others in starvation). Being
LEDBAT a lower than best-effort protocol, we expectF < 1
when it competes with TCP, butF ≃ 1 when LEDBAT flows
share the same bottleneck. Regarding efficiency, we consider
the link utilization η metric, defined as the ratio of the overall
link throughput (including headers) over the link capacityC.

B. Homogeneous Initial Conditions

Our investigation starts by considering a LEDBAT flow
competing for the same bottleneck resources with either i)
a TCP or ii) another LEDBAT flow. For the time being, we
disable slow-start in both implementation as we are interested
in the interaction of the LEDBAT PID the TCP AIMD
controllers. We let both flows start att = 0, when the queue
is empty and no other traffic is present on the link, so that
LEDBAT is able to accurately measure the base delay.

Fig. 2-(a) shows the temporal evolution of the LEDBAT and
TCP windows (top) as well as of the queue length (bottom),

with a buffer size ofB = 40 packets. We recognize the
usual TCP sawtooth behavior, which defines a number of
cycles. During the initial ramp-up (t < 2 s), LEDBAT and
TCP windows grownearly at the same speed of one packet
per RTT. LEDBAT grows at its maximum speed because
the available link capacity keeps the queue empty. As soon
as queue builds up, the LEDBAT linear controller reacts
accordingly by slowing down the increase of its sending rate,
while TCP behavior remains instead unaltered. Soon after
t = 2 s, LEDBAT hits theτP = 20.8 packet target, and halts
the window growth, so presenting a flat sender window curve.
TCP, instead, continues its additive increase, so that the queue
keeps building up until the queuing delay exceeds the target:
the LEDBAT controller, unlike TCP, reacts by decreasing its
sending rate, finally reaching the minimum rate of one packet
per RTT just beforet = 6 s.

Slightly afterwards, TCP causes a buffer overflow: conse-
quently, TCP abruptly decreases its sending rate by halving
is congestion window. The capacity drains the queue empty,
giving thus start to a new cycle. In fact, LEDBAT detects
the delay reduction and reacts by opening its window again.
However, in this cycle TCP has an initial window size of about
40 packets, which means that it can create queuing sooner with
respect to the previous cycle. Therefore, LEDBAT window
growth is slower, the TARGET delay is hit earlier (at about
t = 7 s) and also the window shrink phase appears much
shorter. When TCP is again the sole sender on the link, it
increases its sending rate until a new loss happens, which in
turn triggers the start of a new cycle.

Fig. 2-(a) confirms that, as LEDBAT reacts to congestion
earlier than TCP by estimating the queuing delay, it is able
to yield to TCP, which canwork undisturbed. In fact, losses
are due to the normal AIMD dynamic of TCP rather than
to the LEDBAT-TCP interaction. Fairness in this case equals
F = 0.65, with TCP transferring 6 times as much data
with respect to LEDBAT during the same timeframe. Fig. 2-
(a) also reports the sum of both TCP and LEDBAT sender

windows, which represents an estimate of the instantaneous
link utilization. When TCP and LEDBAT coexist on the link,
its utilization increaseswith respect to the case where TCP is
alone – in the figure utilization increases by 16%, compared
to the case where TCP is alone on the bottleneck.

Fig. 2-(b) shows a similar experiment, in which two LED-
BAT sources start competing att = 0 for the bottleneck
resources. In this case, both senders employ a linear controller
and are able to share resources fairly (F > 0.99) and
efficiently (efficiency is only 0.7% less than in the Fig. 2-(a)
case). As expected, once the delay target is reached, LEDBAT
sources settle (since the offset from the target is zero, andso
the controller response). Notice also that, since the two sources
started together, they measured the same base delay att = 0.
Therefore, each sender independently settles when measuring a
queuing delay equal to the target, thus it is actually responsible
only for half of buffer occupancy.

C. Heterogeneous Initial Conditions

In this section we consider different start times for different
sources. This implies that each sender will measure a different
base delay at startup, gathering also a different estimate of the
queuing delay. Indeed, assume that the first flow starts at time
t1 = 0, while the second starts at timet2 = t1 + ∆T . In case
the queuing delay att2 is not zero but equal totQ(t2), the
second source will over-estimate the base delaytB(t2) with
respect to the one measured by the first source astB(t2) =
tB(t1) + tQ(t2). So, the second source will set its target to
a value higher than the first one, increasing the chances of a
buffer overflow.

In case of interaction between LEDBAT and TCP, het-
erogeneity of initial conditions has a negligible impact. To
convince of this, consider that, whenever LEDBAT starts first,
it will be able to correctly estimate the base delay, and then
to yield to TCP. Conversely if the LEDBAT flows starts later
at t2, it will over-estimate the base delay by the amount of
TCP packets present in the buffer. This will in turn make
LEDBAT under-estimate the queuing delay, resulting in an
increased sending rate which willanticipatethe first loss cycle.
The system later evolves in a way similar to Fig. 2-(a), since
after TCP halves its window, the capacity drains the queue
empty and LEDBAT corrects its wrong base delay estimate.
In subsequent cycles, LEDBAT will then dutifully yield to
TCP.

By means of Fig. 3, we show, instead, that the interaction
among LEDBAT flows is heavily influenced by the buffer size
B and the start time gap∆T . Each graph reports the sender
window of two competing LEDBAT flows. In the top plot,
obtained for(∆T,B) = (2, 40), the second flows activates
before the first one has started to create queuing. So, the
two flows measure the same base delay and set the same
target, which they together reach soon. But the first flow,
having started before, attains a larger congestion windows,
and actually owns the biggest share of the queue.

Instead, extremely different dynamics can be observed for
(∆T,B) = (10, 40) in the middle plot. In this case the second

 0

 25

 50

 75

LE
D

B
A

T
 s

en
de

r
w

in
do

w
 [p

kt
s] ∆T=2 LEDBAT 1

LEDBAT 2

 0
 25
 50
 75

∆T=10

 0

 25

 50

 75

 0 5 10 15 20 25 30

Time [s]

∆T=10, B=100

Fig. 3. LEDBAT vs LEDBAT: Time evolution of congestion windowfor
different initial condition and late-comer advantage phenomenon

flow starts later enough to allow the first one to create some
queuing delay, in particular a delayτT equal to its target.
For this reason, the second flow wrongly senses a base delay
equal toτT , and consequently sets its target to twice this value.
Therefore, the newcomer starts increasing its rate right away,
while the first one senses a growing queuing delay and begins
to slowdown until, slightly aftert = 20 s, it finally reaches the
minimum rate.

Afterwards, dynamics depend on the specific buffer size.
The middle plot shows a case where the buffer cannot ac-
commodate the target queuing delay of the second flow (as
B=40 < 2τP =41.6). In fact, aroundt = 25 s, the second
flow causes a loss on the bottleneck link and consequently
drops its sending rate. Afterwards, similarly to the TCP case,
the capacity drains the queue empty, providing the second
flows the chance to correct its wrong base delay estimation.
Subsequently, flows appear to share much more fairly the
bottleneck capacity.

The bottom plot, depicts instead the effect of a larger
B = 100 buffer, able to absorb the extra delay of the second
flow. Basically, since no loss occurs, the second flows reaches
its target and then settles, leaving the first flow in starvation.
Unfortunately this unfair state persists for a possibly long time
(namely, due to route changes considerations, the draft [4]
imposes a reset of the base delay every 2-10 minutes).

D. Side Effects of Slow-Start

We have seen that competing LEDBAT flows may get stuck
in an unfair state during a relatively long time. Yet, comparing
the middle and bottom plots of Fig. 3, we notice that a loss
event may partly re-establish the fairness. In fact, loss events
resynchronizes the start of flows, possibly draining the queue
empty and allowing each sender to gather correct measures of
the base delay.

From this observation, the fairness problem could be solved
by having each LEDBAT flow force a loss event at startup, so
to gather a correct measure of the base delay.Slow-startrep-
resents a simple, even though intrusive, way of achieving this

effect. As the draft [4] deems slow-start as optional, we resort
therefore to the standard TCP mechanism. In TCP, slow-start
initially setsssthresh to ∞, and performs an exponential
window increase. Then, in case of loss, it setsssthresh
= cwnd/2 and cwnd=0, and the process iterates until the
window exceedsssthresh.

Simulation results, only briefly reported here due to lack
of space, but exhaustively presented in [10], confirm this
intuition. We consider different capacityC = {2, 10} and
buffer B = {10, 50} settings, and vary the start time of
the second flow uniformly in∆T = U(0, 10) s. For each
setting we perform 100 simulations runs measuring fairness
and efficiency among the two LEDBAT flows. Even in worst-
case scenarios (i.e., when we have a behavior similar to the
bottom plot of Fig. 3), the use of slow-start raises the LEDBAT
vs LEDBAT fairness fromF = 0.53 to F = 0.99.

Moreover, as slow-start generates losses events only at the
beginning of each connection, we expect the loss rate to
keep low. Simulation results show that the absolute amount
of losses is limited to about 1 out of 100 packets in the
worst case, with an average of 0.3% over all the scenarios
considered. Nevertheless, a more comprehensive evaluation is
definitively needed, considering the degradation this may have
on VoIP/Gaming performance as well.

IV. D ISCUSSION ANDCONCLUSIONS

In this work, we report on the evaluation of LEDBAT,
the novel BitTorrent congestion control algorithm for low-
priority data transport. LEDBAT aims at being friendly and
non-intrusive toward other protocols (such as TCP, VoIP and
gaming), while being able to effectively exploit the available
resources at the same time. By means of simulation, we
illustrate some interesting aspects of the LEDBAT congestion
window dynamics in simple scenarios. Summarizing:

• LEDBAT is able to achieve inter-protocolfriendliness
(i.e., yield to TCP) and at the same time to efficiently
exploit the extra available resources.

• Inter-protocol fairness is maintained even in case of
wrong parameter settings, in which case LEDBAT simply
degenerates into TCP.

• The PID controlleralone is not sufficient to guarantee
intra-protocol fairness: in presence of large buffers, a late-
comer advantage arises among LEDBAT flows.

• Slow-start offers an uncoordinated and distributed way
of achieving intra-protocol fairness, allowing newcomer
flows to correctly measure the base delay: interestingly,
slow-start happens to be necessary for its beneficial side
effect on fairness, more than for efficiency reasons.

Nevertheless these preliminary results convey just a limited
view of the potential impact of a widespread adoption of
LEDBAT in the Internet. First of all, simulation on a wider
range of scenarios (e.g., heterogeneous RTT, multiple flows,
impact on the QoE of VoIP traffic, comparison with other
low-priority approaches, etc.) is needed to refine the picture.
Also, performance of LEDBAT should be contrasted to those

of related protocols sharing the same low-priority goal (e.g.,
TCP-LP [6] and TCP-NICE [5]).

Most important, LEDBAT underlying mechanism should be
better analyzed, and a formal model of LEDBAT dynamics is
required to back simulation evidence with more theoretical
findings. Indeed, thenewcomer advantagedue to Additive-
Increase Additive-Decrease (AIAD) control similar to the one
adopted by LEDBAT has already been observed [11]. Under
this light, the proposed slow-start solution can be seen as an
uncoordinated mechanism that allows newcomers to introduce,
by way of forced losses, a multiplicative decrease in the
sender window of the already opened flow, which is known
to re-establish fairness [11]. However, other techniques to
ensure intra-protocol fairness shall be studied besides slow-
start: specifically, as the ultimate goal of LEDBAT is low-
priority, this technique should be as friendly as possible to
other traffic – possibly trading efficiency for non-intrusiveness.

Besides, we stress that the success of LEDBAT will ulti-
mately depend on its end-users, who will evaluate the novel
protocol mainly in terms of the overall application perfor-
mance. Under this light, the ability of LEDBAT to yield to
interactive traffic is a clear incentive to protocol adoption,
as it improves the QoE of interactive application that could
otherwise suffer from self-congestion on the access link. Still,
users may not welcome a degradation of the P2P performance
caused by an excessive friendliness towards non-interactive
traffic, such as P2P downloads of other users. As such, a wider-
spectrum analysis of the impact of LEDBAT on BitTorrent
remains, to date, a missing piece of the LEDBAT puzzle:
important points that remain to date open concern e.g., the
completion time of a torrent download under LEDBAT, or the
impact of LEDBAT on BitTorrent peer selection mechanism.

REFERENCES

[1] S. Morris. (2008, Dec.)µTorrent release 1.9 alpha 13485. [On-
line]. Available: http://forum.utorrent.com/viewtopic.php?pid=379206#
p379206

[2] (2008, Dec.) BitTorrent Calls UDP Report ”Utter Nonsense”. [Online].
Available: http://tech.slashdot.org/article.pl?sid=08/12/01/2331257

[3] A. Norberg. uTorrent transport protocol. BitTorrent Enhancement
Proposals. [Online]. Available: http://www.bittorrent.org/beps/bep0029.
html

[4] S. Shalunov, “Low extra delay background transport (ledbat),” IETF
Draft, Mar. 2009.

[5] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: a mechanism
for background transfers,” inUSENIX OSDI’02, Boston, MA, US, Dec.
2002.

[6] A. Kuzmanovic and E. W. Knightly, “TCP-LP: low-priority service via
end-point congestion control,”IEEE/ACM Trans. Netw., vol. 14, no. 4,
Aug. 2006.

[7] Yes, we LEDBAT: Playing with the new BitTorrent congestion control
algorithm, Zurich, Switzerland, April 2010.

[8] D. Qiu and R. Srikant, “Modeling and performance analysisof
BitTorrent-like peer-to-peer networks,” inACM SIGCOMM’04, Portland,
Oregon, USA, Aug. 2004.

[9] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and
Improving a BitTorrent Networks Performance Mechanisms,” inIEEE
INFOCOM’06, Barcelona, Spain, Apr. 2006.

[10] D. Rossi, C. Testa, S. Valenti, P. Veglia, and L. Muscariello, “News from
the Internet congestion control world,”ArXiv e-prints, Aug. 2009.

[11] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,”Comput. Netw.
ISDN Syst., vol. 17, no. 1, pp. 1–14, 1989.

