
Stochastic Packet Inspection for TCP Traffic

Gianluca La Mantia, Dario Rossi

TELECOM ParisTech – INFRES Department

Paris, France

firstname.lastname@enst.fr

Alessandro Finamore, Marco Mellia, Michela Meo

Politecnico di Torino – DELEN Department

Torino, Italy

firstname.lastname@polito.it

Abstract—In this paper, we extend the concept of Stochastic
Packet Inspection (SPI) to support TCP traffic classification. SPI
is a method based on the statistical fingerprint of the application-
layer headers: by characterizing the frequencies of observed
symbols, SPI can identify application protocol formats by au-
tomatically recognizing groups of bits that take e.g., constant
values, or random values, or are part of a counter. To correctly
characterize symbol frequencies, SPI needs volumes of traffic
to obtain statistically significant signatures. Earlier proposed for
UDP traffic, SPI has to be modified to cope with the connection
oriented service offered by TCP, in which application-layer
headers are only found at the beginning of a TCP connection.

In this paper, we extend SPI to support TCP traffic, and
analyze its performance on real network data. The key idea is
to move the classification target from single flows to endpoints,
which aggregates all traffic sent/received by the same IP address
and TCP port pair. The first few packets of flows sent from (or
destined to) the same endpoint are then aggregated to yield a
single SPI signature. Results show that SPI is able to achieve
remarkably good results, with an average true positive rate of
about 98%.

I. INTRODUCTION

Despite the effort devoted to the task of Internet traffic

classification yield to significant progress in the field [1]–

[14], the ultimate and definitive solution is still far from being

available. Deep Packet Inspection (DPI) is still regarded as

the state of the art and deployed in practice, despite it is

well known that the proliferation of proprietary and evolving

protocols and the adoption of strong encryption techniques are

deemed to make DPI ineffective.

Motivated by the expected raise of UDP traffic volume due

to the popularity of application such as P2P-VoIP and P2P-

TV, we proposed in [11] a classification framework tailored

to UDP traffic, based on Stochastic Packet Inspection (SPI).

Considering Deep Packet Inspection (DPI), typically precise

keywords are searched to identify a specific protocol. With a

human analogy, one may try to recognize the foreign language

of an overheard conversation by searching for known words

from a small dictionary (e.g., “Thanks” for English language,

“Merci” for French, “Grazie” for Italian and so on).

Considering SPI paradigm, the packet payload is statistically

analyzed (e.g., by means of entropy measures, or Chi-Square

tests) to automatically build protocol signatures. The intuition

behind SPI is that an application-layer protocol can be iden-

tified by statistically characterizing the values observed in a

stream of packets. Considering the previous analogy, this time

we aim at recognizing the foreign language by considering

only the cacophony of the conversation, e.g., observing the

frequencies of the occurrence of symbols like “x”, or “h”, or

“i”. In other words, statistical characterization of application-

headers lets the protocol format emerge, while ignoring the

actual semantic.

The SPI approach has proven very effective in the classifi-

cation of UDP traffic (i.e., over 98% true positive classification

in the worst case, with negligible false positive events [11]).

It is therefore interesting to assess whether SPI could also be

used to handle TCP traffic classification as well. Extension of

SPI to TCP traffic is indeed not straightforward: SPI typically

needs volumes of traffic (e.g., several tens of packets), being

based on statistical characterization.

Recalling that UDP offers a connectionless service, each

segment has to carry the application-layer header. Moreover,

possible message segmentation has to be handled at applica-

tion layer. As a consequence, applications relying on UDP

have to include headers in each UDP segment, which SPI

techniques can then reliably extract and characterize.

On the contrary, TCP offers a connection oriented service,

according to which the application stream of data may be

segmented into several TCP segments, among which only the

first ones may carry the application-layer header. This contrasts

with the need for volumes of traffic to build statistically

significant SPI signatures.

To extend SPI to TCP traffic, we propose to shift the

classification target from a single flow to an aggregate of flows:

more precisely, we consider TCP endpoint entities, that can be

uniquely identified by the server IP-address and server TCP-

port pair. In this case, rather than constructing signatures over

several segments of a single TCP flow, we aggregate the first

few segments of several flows originated from (or destined

to) the same server endpoint into a single SPI signature. Our

results show that TCP endpoint aggregation is an effective

approach that yields reliable signatures: SPI classification

achieves remarkable results considering TCP traffic, showing

an average and worst-case true positive rate of 98% and 91%

respectively considering most common applications.

II. RELATED WORK

Since port-based classification has become unreliable, three

coarse classes of approaches have been proposed for Internet

traffic classification [1]–[14]. Our work can be ascribed among

Payload-based techniques, such as DPI [1]–[3], with an

important difference. DPI techniques indeed inspect packet



payload for the presence of known strings. The main idea

of SPI is to give instead a statistical characterization of

the observed values in the payload, automatically identifying

constant, random, or periodic values. SPI is also different from

Statistical-based classifications [4]–[8], which are based on

the rationale that, being services extremely diverse (e.g., Web

vs VoIP), so is the corresponding traffic (e.g., short bursts of

large packets vs regular arrivals of short packets). Therefore,

the classification can be based on statistical characterization

of e.g. packet sizes, or inter-packet-gap, while completely

ignoring actual payload values. Finally, Behavioral-based

classification [9], [10], [12] targets a coarse-grained classifica-

tion of Internet hosts on the basis of the transport layer traffic

patterns they generate. For example, a Peer-to-Peer application

generates and receives lot of connections, while an email client

typically contacts only a single server, and a web client never

receives connections.

III. SPI FRAMEWORK

A. SPI Chunks

Statistical fingerprint can exploit a number of different

metrics, such as for instance the Entropy measure, the Pear-

son’s χ2 measure, the Kullback-Leibner divergence, etc. In

the reminder of this paper, we evaluate the performance of

SPI when its signatures are expressed using χ2 metric defined

by a Pearson Chi-Square test.

The original test estimates the goodness-of-fit between

observed samples of a random variable and a given theo-

retical distribution. Assume that the possible outcomes of an

experiment are K different values and Ok are the empirical

frequencies of the observed values, out of M total observations

(
∑

Ok = M ). Let Ek be the number of expected observations

of k for the theoretical distribution, Ek = M · pk with pk the

probability of value k. Given a M large, the random variable

X

X =
K

∑

k=1

(Ok − Ek)2

Ek

(1)

represents the distance between the observed empirical and

theoretical distributions. The distribution of X can be ap-

proximated by a Chi-Square, or χ2, distribution with K − 1
degrees of freedom. In the classical goodness of fit test, the

values of X are compared with the typical values of a Chi-

Square distributed random variable: the frequent occurrence

of low probability values is interpreted as an indication of a

bad fitting.

In SPI, we build a similar experiment analyzing the values

taken by groups of bits having a fixed offset in the packet

payload, called chunks. After a given number of packets (each

giving an observation), the empirical distribution is collected

and then compared to the uniform distribution, so to measure

the amount of randomness of a chunk as an estimate of the

source entropy. Notice that, by doing so, SPI is able to cope

also with obfuscated or encrypted chunks [6].

Fig. 1. SPI signatures of TCP traffic: G groups of b-bits long chunks are
extracted from the first P packets of F different flows (with C = F · P )
originated from (or destined) to the same endpoint (IP, p).

For the time being, let us consider a single traffic stream.

More precisely, consider an arbitrary payload chunk x of b
consecutive bits, and observe the values taken by chunks over

a stream of C packets: due to the fact that the chunk is b-bits
long, we have that x can take values in [0, 2b − 1]. Denoting

with O
(x)
i

the number of times that chunk x takes a value

i ∈ [0, 2b − 1], we have:

χx =

2b
−1

∑

i=0

(

O
(x)
i

− Ei

)2

Ei

with Ei =
C

2b
(2)

Intuitively, χx achieves low values (≃ 0) whenever the chunk

under observation has a random behavior (e.g., due to obfus-

cation, encryption, compression, etc.). In case of deterministic

behavior (e.g., a constant identifier, address, etc.), we have

that χDet = (2b −1)C, which is also the maximum value that

χxcan take. For convenience, we renormalize the χx as:

ωx =
χx

(2b − 1)C
(3)

Chunks have therefore ωx ∈ [0, 1].

B. SPI Signatures

SPI signatures are then built by aggregating together the

ω values of several chunks. As outlined in Fig. 1, the first

N bytes of the payload (i.e., the application protocol header)

are divided into G groups of b consecutive bits each. C
observations of each chunk (i.e., C packets) are necessary to

form the SPI signature.

In the case of UDP, all C packets identified by the same

tuple (IPsrc, UDPsrc, IPdst, UDPdst) belong to the same

flow. Conversely, in case of TCP, the segmentation introduced

at the transport layer reduces the chances that a TCP segment

carries the application protocol header. However, we can

expect that the very first few segments of each flow carries

information that are specific to each protocol (e.g., as in

behavioral classification approaches [7], [8] that exploit the

size and arrival time of the first few packets of a flow).

We therefore consider a TCP endpoint, that is uniquely

individuated by the server IP address and TCP port pair



(IP, p). We assume to be at the edge of the network, where all

the endpoint traffic transits, and separately consider the two

traffic directions, i.e., the traffic directed to, and the traffic

originated from the endpoint (IP, p). As outlined in Fig. 1,

signatures are computed by observing the G groups of chunks

over the first P packets of F consecutive flows originated from

(or destined to) the same endpoint, where P and F satisfies

C = P · F :

ω̂ = {ω1, ω2, . . . , ωC} (4)

The rationale behind SPI signatures ω̂ is that they allow to au-

tomatically discover application layer message header format

without needing to care about specific values of the header

fields (e.g., known keywords). Indeed, we expect application

header to contain fields such as constant identifiers, counters,

words from a small dictionary (message type, commands,

flags, etc), or truly random values coming from encryption

or compression algorithms. These coarse classes of fields can

be easily distinguished through the operation in (2). While

randomness test provides only a coarse classification over

individual groups, by jointly considering a set of G groups

as in (4) the fingerprint becomes extremely accurate. Notice

indeed that the position and length of the different fields within

the application protocol header will likely be different from

protocol to protocol.

C. SPI Parameter Selection

SPI signatures depend on a number of parameters, some

of which are tied to the extension of SPI to TCP endpoint

classification (such as P ,F ), whereas others (such as b, C and

N ) pertain to the ω metric. Here we report guidelines on their

selection, and refer the reader to [11], [15] for a more detailed

sensitivity analysis.

Bits per group (b = 4). The choice of b = 4 trade-offs

opposite needs. On the one hand, b should be as closest as

possible to typical length of protocol fields (e.g., b should be

4 or 8 or a multiple of 8). On the other hand, b should be small

enough to enable statistically significant test over the smallest

possible windows C, to allow live classification if possible.

Packet window (C = 80). While we would like to keep the

packet window as small as possible, the χ2 test is considered to

be statistically significant if the number of samples for each

value is at least 5. Having chosen b = 4, in order to have

Ei = C/2b equal to 5, we need C = 80. Sensitivity to C is

evaluated in [11].

Number of bytes per packet (N = 12). In general, clas-

sification accuracy increases with the number of bytes per

packet. However, complexity of the classification increases

also with the N , in terms of both memory and computational

complexity. As a convenient trade-off we choose N = 12.
Given b = 4, this values corresponds to G = 24 groups for

each signature. Notice that, as can be seen from Fig. 2, a fewer

number of bytes and chunks may be sufficient to successfully

discriminate different protocols.

Number of packets per flow (P = 5). The segmentation

imposed by TCP yields an upper bound on P , the maximum

(a) (b)

Fig. 2. Example of SPI signatures of HTTP (a) and SMTP (b) protocols,
server endpoint is the destination.

number of packets at the beginning of a flow carrying appli-

cation header at the beginning of the payload. As far as the

number of packets per flow is concerned, we employ P = 5
which was observed to be a good value in [7], [8]. Sensitivity

analysis to P is provided in [15].

Number of flows per endpoint (F=C/P=16). Constraints
on C and P yield a lower bound on F = 16, the minimum

number of flows to observe before an endpoint classification

decision can be taken. This translates into a constraint on

the classification timeliness, i.e., how fast and frequently

classification can be taken, since the start of F different flows

have to be observed prior that a classification decision can be

taken. Notice however that, the more active the endpoint, the

quicker the identification (which is beneficial since operators

are interested in classifying volumes of traffic, and should pose

no problem in discriminating between active endpoints such

as server vs P2P).

D. Example of SPI signature

An example of SPI signatures for two different protocols,

namely HTTP and SMTP is given in Fig. 2. It is derived con-

sidering segments of client requests directed toward the server

endpoint. Average SPI signatures over 100 different endpoints

are reported. In the example, parameters are set to their default

values as stated above. The classical header representation is

adopted, representing chunks in network order from left to

right, top to bottom. Four bytes are reported on each row

(i.e., 8 chunks) and, for reference, bit offsets are reported

at the top. Each chunk reports the ω value, which is also

visually represented with different scale of gray. Lighter colors

correspond to higher values of ω, suggesting deterministic

fields, while darker colors correspond to low values of ω,
hinting to random fields. First of all, comparison of Fig. 2-

(a) and Fig. 2-(b) confirms that, though the randomness test

provides only a coarse classification over individual groups,

and expressive fingerprints can be built by considering the

whole set of G chunks. This allows to clearly differentiate

between protocols.

To grasp the SPI signatures expressiveness, let us first con-

sider the case of the Web service, implemented over the simple

and stateless HTTP protocol, whose SPI signature is reported

in Fig. 2-(a). In the HTTP case, requests directed toward the

server often begins with “GET /”: the high occurrence of

this 5-characters string translates into the first 10 chunks to

be almost deterministic (high ω values). Variability of the first

chunks is due to the fact that server can receive other HTTP



methods than GET (e.g., POST, HEAD, PUT). Variability of

subsequent chunks is instead tied to the different resources

that can be specified after the method (e.g., URL in case of

GET, parameters in case of POST, etc.).

Interestingly, HTTP uses an ASCII alphabet, which trans-

lates also into a reduced set of values which each chunk

can take. Given a byte, since we use b = 4 bits long

chunks, an ASCII encoded character is split into two chunks,

corresponding to the most and least significant part of the

byte respectively. The most significant chunk shows higher

determinism (ω≃0.6), while least significant chunk shows

higher randomness (ω ≃0.3). For example, consider the ASCII

uppercase letters {A,. . . ,Z} which take hexadecimal values in

{0×41,. . . , 0×54}. The most significant bits of a character fall

into a chunk that takes only values of 4 and 5. Conversely,

least significant bits falls into a chunk that takes any possible

values from 0 to 15. This leads to different ω values, i.e.,

a different randomness. In Fig. 2-(a), the impact of ASCII

encoding can be appreciated by observing the alternation of

lighter and darker chunks.

Let us now consider the SMTP protocol signature reported

in Fig. 2-(b). Recall that an SMTP client contacts a server

with the typical sequence of commands EHLO, MAIL, RCPT,

DATA. Notice that these commands are 4-characters long

(which correspond to 8-chunks) and, with the exception of

the DATA command, are followed by a space character and

some parameters of variable length. Since several commands

are used during the same session, there is a larger number of

observed symbols, which therefore decrease ω of correspond-

ing chunks. Also in the SMTP protocol case, commands are

encoded using ASCII alphabet, causing a higher ω value for

most significant chunks than for least significant chunks.1 The

highly probable space character at the 5th byte causes the 9th

and 10th chunks to take deterministic values, as the high ω
value observed in such position shows. Chunks corresponding

to characters after the 5th position may contain any symbol

of the ASCII alphabet, (e.g., angle brackets to enclose mail

addresses, etc.) or user data, which then decrease the ω values

of corresponding chunks.

E. Decision process

After SPI signature have been computed for some known

TCP protocols, classification implies to label samples accord-

ing to the most similar signature. We resort to a supervised

machine approach, in which the decision algorithm is first

trained using a set of labeled samples, which are characterized

by the ω̂ features as from Eq. (4). After the training phase,

the decision algorithm is then used to classify samples. In

this paper, we rely on state of the art technique known in the

literature as Support Vector Machines (SVM) [16]. SVM has

only recently been applied to the context of Internet traffic

classification [11]–[13], but it is considered among the most

1The higher variability of the first 8 chunks is also due to other possible
commands (e.g., VRFY), the presence of old clients (e.g., HELO instead of
EHLO), clients using lower case letters, etc.

Fig. 3. Classification Workflow

TABLE I
AMOUNT OF BYTES, PACKETS, FLOWS, TCP ENDPOINTS AND

SPI SIGNATURES IN THE CONSIDERED DATASET.

Protocol Bytes Packets Flows TCP SPI

[·109] [·106] [·103] Endpoints Signatures

HTTP 343.67 507.08 6531.19 177 114222
FTP 0.04 0.65 19.39 21 229
IMAP 0.73 1.34 2.49 10 66
POP 3.40 7.74 156.39 25 3551
Skype 1.95 20.38 145.22 322 2752
SMTP 61.00 126.61 4917.20 56 83677
SSH 8.84 19.47 31.64 141 304
Other 453.83 744.53 13400.98 1512 46773

Total 873.46 1427.80 25204.5 2246 251574

powerful supervised algorithm. Due to lack of space, we refer

the reader to [16] for a good tutorial.

IV. CLASSIFICATION RESULTS

A. Workflow

The overall workflow of SPI classification and validation

is depicted in Fig. 3. As usually done in the literature, SPI

performance is validated against the ground truth provided by

an oracle. The oracle is used to split the packet trace file into

different sub-traces, one for each protocol. For each sub-trace,

we then compute the SPI signatures for each TCP endpoint.

A subset of these signatures, uniformly selected at random, is

used to train the SVM. As a result, SVM produces a “model”

that is used during the classification process.

Signatures that have not been used for training purpose

constitute the validation set: the SVM model is applied to

this set, and SVM decisions are then compared against oracle

labels to evaluate the correctness of the classification results.

Notice that the SVM training phase partitions the signature

space into a number of regions equal to the number of

protocols offered during the training: this implies that a sample

will always be classified as belonging to any of the known

classes. Thus, an additional label is needed for all samples that

do not belong to any of the above protocols: in the following,

we refer to these protocol as the “Other” set, comprising the

applications that we cannot classify or are not interested in

classifying.



B. Dataset

Unfortunately, due to privacy issues, the scientific commu-

nity lacks a common reference dataset used to benchmark

the different proposal [1]–[12] although valuable effort in that

direction is going on [13], [14]. For this reason, we evaluate

the SPI performance using a traffic trace collected during may

2008 at the egress router of Politecnico di Torino network.

The traces correspond to a one week long dataset, in which

about 7000 internal hosts exchange data with more than 3

million different hosts in the Internet. Details concerning the

traffic volume, in terms of the number bytes, packets, flows,

endpoints and signatures, are given in Tab. I. The table reports

the total traffic volume, and the breakdown across the most

common application protocols considered in this work, namely

HTTP, FTP, IMAP, POP, Skype, SMTP, SSH, Other.

In this paper we focus only on internal endpoints, i.e.,

servers whose IP address is internal to our LAN. Recall that

we need to observe several flows involving a single endpoint

to gather a single signature, and thus take a classification

decision. In case of external endpoints, this means that several

of our internal hosts have to contact the same endpoint to

collect enough packets to compute the signature. While this

is not an issue for popular external server and protocols (e.g.,

popular Web sites), however it limits the number of protocols

we could use considering the dataset we use in this paper.

Our dataset includes more than 250000 signatures, that refer

to about 2250 endpoints. As expected, Web service constitutes

the bulk of traffic, while a fairly large amount of incoming

SMTP traffic is present. The protocols we consider account

for about one half of the traffic (in terms of bytes, packets

and flows), yielding to a large fraction of the traffic to be

labeled as “others”, which therefore includes all P2P traffic.

Concerning the number of available signatures, notice that

each internal endpoint has to be contacted by F different hosts

of at least P packets to compute the signature. The number of

signatures per protocol depends on the arrival pattern as well

as on the flow length as well.

C. DPI Oracle

As already pointed out in [2], the definition of a reliable

DPI oracle is a daunting task, that we have to carry on due to

the lack of a labeled dataset. Except for the Skype protocol,

for which we resort to [6], we devise a two-stages DPI oracle,

defined as follows.

• Port filter: The first phase only involves TCP port num-

ber. We consider only those flows whose TCP destination

port correspond to the corresponding service well-known

port, i.e., 80 for HTTP, 22 for SSH, and so on. By doing

so, we forcibly miss some endpoint. For example, HTTP

servers running on port 8080 or on other non-standard

ports end-up in the “other” protocol sub-trace. However,

this choice yields to a conservative evaluation of the

classification performance results.

• Protocol syntax check: The second phase involves ap-

plication protocol check, that is done using the Wireshark

tool. Wireshark is a well-know sniffer which is able to

TABLE II
CLASSIFICATION PERFORMANCE FOR TRAFFIC DIRECTED TO (TOP) OR

ORIGINATED FROM (BOTTOM) THE SERVER-SIDE ENDPOINT.

DST HTTP FTP SMTP IMAP Skype SSH POP Other

HTTP 94.94 0 0.06 2.58 0 0 0 2.39

FTP 0 98.59 0 0 0 0 0.03 0

SMTP 0 0 99.86 0 0 0 0 0

IMAP 0.02 0 0 90.97 0 0 0 0

Skype 0.01 0 0 0 100 0 0 0.05

SSH 0.05 0 0 0 0 100 0 0.03

POP 0.01 1.31 0.02 2.9 0 0 99.94 0

Other 4.97 0.1 0.06 3.55 0 0 0.03 97.53

SRC HTTP FTP SMTP IMAP Skype SSH POP Other

HTTP 91.63 0 0.07 1.54 0 0 0 13.99

FTP 0.35 98.98 0.02 0 0 0 0 1.05

SMTP 0 0.03 99.45 0 0 0 0.03 0.03

IMAP 0 0 0 58.08 0 0 0 0

Skype 0.01 0 0 0 100 0 0 0.03

SSH 0.15 0 0 0 0 100 0 0.05

POP 0 0 0 0 0 0 99.59 0

Other 7.86 0.99 0.46 40.38 0 0 0.38 84.85

parse the headers of known protocols. In case during the

parsing Wireshark fails to identify the protocol, we move

the flow to the sub-trace containing all the other protocols

since it is syntactically wrong.

D. Performance evaluation

Evaluation of classification performance is conducted over

the entire dataset, by comparing the SVM labels to the DPI

oracle labels for each signature.

Results reported in this section refer to a test in which

the training set containing 5000 signatures, proportionally

balanced across protocols. Each test is repeated 10 times, by

randomizing the training set at each execution, and validating

the model on the remaining signatures. Average results over

all 10 iterations are reported in the following.

In particular, 1800 training signature are used to describe

the “other” protocol set, since this set comprises possibly

several protocols and its proper description requires that such

protocols are well represented in the training set. A sensitivity

analysis to the training set size is not reported due to lack

of space. Readers are referred to [15], which shows that, even

considering only 35 signatures per each of the known protocols

the classification results are minimally compromised. This is

a consequence of the discriminative power of SVM, whose

performance are known to be highly robust even in presence

of few learning samples.

Tab. II summarizes the results. A confusion matrix repre-

sentation is used, in which each column corresponds to a sub-

trace filtered by the DPI oracle, which is fed to a trained SVM,

whose output labels are reported on each row. Thus, diagonal

elements of the confusion matrix account for True Positive

classification (i.e., a protocol labeled as X by DPI is also

labeled as X by SVM). Conversely, cells outside the diagonal

refer to misclassified signatures: a protocol labeled as X by

DPI is labeled as Y by SVM; this decision accounts for False

Positive classification of Y and False Negative classification

of X .



Results considering the two different traffic directions are

reported. Top (bottom) portion of the table reports the case

where traffic is destined to (originated from) the internal server

endpoints. Notice that, although classification results are very

good in both cases, best results are obtained when traffic is

destined to the server endpoints. This is visible for HTTP,

IMAP and Other protocols. The intuition behind this is that

the client protocol requests are easier to characterize than the

server replies, which can be more variable. For example, HTTP

requests use limited set of protocol keyword as discussed in

Sec. III-D, while server answers can be much more different.

Focusing on traffic destined to the server, we gather that true

positive rate classification always exceeds 90.97%, with an

average of about 97.62%. Compared to the UDP classification

results presented in [11] which yielded a 98% true positive

rate in the worst case, the classification performance of TCP

traffic decreases. This is somehow expected: in the UDP case,

application protocol headers are present in each segment,

yielding to very reliable SPI signatures; in the TCP case, the

TCP connection oriented service and segmentation algorithms

affect the SPI signatures, that are possibly computed over both

application protocol headers and actual data carried in the first

5 TCP flow segments.

V. DISCUSSION AND CONCLUSIONS

This paper focused on the classification of TCP endpoints

by means of Stochastic Packet Inspection. Even though SPI

achieves remarkably good results, (average and worst case

true positive rate of about 98% and 91% respectively), there

is room for improvement, especially when compared to the

results achieved by SPI for UDP traffic.

Two possible directions could be undertaken to improve SPI

performance. The first implies to find an optimal value for P ,

which clearly depends on the length of the application protocol

keywords. However, it is likely that there is no single value of

P that is optimal for all protocols, as already observed in [8]. A

second direction could be instead of using SPI signatures based

on the Predictive Entropy: in this case, the SPI signatures

would statistically encode an expected sequence (rather than

an expected frequence) of chunks, yielding to more robust

signatures.

Finally, we are currently testing the SPI classifier to include

also other classes of traffic, and P2P traffic in particular.

Preliminary results are very promising, and show that SPI has

excellent performance also for those kinds of traffic.

ACKNOWLEDGMENT

This work has been funded by the Celtic TRANS project.

REFERENCES

[1] S. Sen, O. Spatscheck, D.Wang, “Accurate, Scalable In-Network Iden-
tification of P2P Traffic Using Application Signatures”, In WWW’04,
New York, NY, US, May 2004.

[2] AẆ.Moore, K. Papagiannaki, “Toward the Accurate Identification of
Network Applications”, In PAM’05 Boston, MA, USA, March 2005.

[3] J.Ma, K. Levchenko, C. Kreibich, S. Savage, G.M. Voelker, “Unex-
pected Means of Protocol Inference”, ACM IMC’06, Brazil, Oct. 2006.

[4] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, “Class-of-Service Map-
ping for QoS: a Statistical Signature-based Approach to IP Traffic
Classification”, In ACM IMC’04, Taormina, Italy, October 2004.

[5] A.W. Moore, D. Zuev, “Internet Traffic Classification Using Bayesian
Analysis Techniques”, In ACM SIGMETRICS ’05, Banff, June 2005.

[6] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, P. Tofanelli, “Revealing
Skype Traffic: when Randomness Plays with You”, In ACM SIG-

COMM’07, Kyoto, Japan, August 2007.
[7] L. Bernaille, R. Teixeira, K. Salamatian, “Early Application Identifica-

tion,” In CoNEXT’06, Lisboa, PT, December 2006.
[8] M. Crotti, M. Dusi, F.Gringoli, L. Salgarelli, “Traffic Classification

Through Simple Statistical Fingerprinting”, ACM Computer Communi-
cation Review, Vol. 37, No. 1, pp.5-16, January 2007.

[9] T.Karagiannis, K. Papagiannaki, M. Faloutsos “BLINC: Multilevel Traf-
fic Classification in the Dark”, In ACM SIGCOMM’05, Philadelphia,
PA, August 2005.

[10] K. Xu, Z. Zhang, S. Bhattacharyya, “Profiling Internet Backbone Traffic:
Behavior Models and Applications”, ACM SIGCOMM’05, Philadelphia,
PA, August 2005.

[11] A. Finamore, M. Mellia, M. Meo and D. Rossi, “KISS: Stochastic Packet
Inspection,” In Traffic Measurement and Analysis (TMA), Springer-

Verlag LNCS 5537, May 2009.
[12] S. Valenti, D. Rossi, M. Meo, M.Mellia and P. Bermolen, “Accurate and

Fine-Grained Classification of P2P-TV Applications by Simply Count-
ing Packets”, In Traffic Measurement and Analysis (TMA), Springer-

Verlag LNCS 5537, May 2009.
[13] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, K. Y.

Lee, “Internet Traffic Classification Demystified: Myths, Caveats, and
the Best Practices,” In CoNEXT’08, Madrid, Dec. 2008.

[14] G. Szabo, D. Orincsay, S. Malomsoky, I. Szabo, “On the Validation of
Traffic Classification Algorithms,” In PAM’08, Cleveland, Ohio, USA,
April 2008.

[15] G. La Mantia, “Statistical classification of TCP traffic with Support
Vector Machines”, M.Sc thesis, 2008, available at http://www.infres.enst.
fr/∼drossi/paper/lamantia08mscthesis.pdf

[16] N. Cristianini, J. Shawe-Taylor, “An introduction to Support Vector
Machines and Other Kernel-based Learning Methods”, Cambridge Uni-
versity Press, New York, NY, 1999.


