
The quest for LEDBAT fairness
Giovanna Carofiglio∗, Luca Muscariello†, Dario Rossi‡ and Silvio Valenti‡
∗ Bell Labs, Alcatel-Lucent, France, giovanna.carofiglio@alcatel-lucent.com

† Orange Labs, France, luca.muscariello@orange-ftgroup.com
‡ Telecom ParisTech, France, firstname.lastname@enst.fr

Abstract—BitTorrent developers have recently introduced a
new application layer congestion control algorithm based on
UDP framing at transport layer and currently under definition
at the IETF LEDBAT Working Group. LEDBAT is a delay-based
protocol which aims at offering a “lower than Best Effort” data
transfer service, with a lower priority with respect to elastic TCP
and interactive traffic (e.g., VoIP, game). However, in its current
specification, LEDBAT is affected by a late-comer advantage:
indeed the last flow arriving at the bottleneck is more aggressive
due to a wrong estimation of the base delay and finally takes
over all resources. In this work, we study several solutions to
the late-comer problem by means of packet level simulations
and simple analysis: in the investigation process, we individuate
the root cause for LEDBAT unfairness and propose effective
countermeasures.

I. I NTRODUCTION

Congestion control algorithms for the transfer of data on the
Internet have long been studied: thus, the issue of congestion
control is definitively not a new topic. However, the fact that
BitTorrent has recently replaced TCP by a new algorithm
for data transfers renews the relevance of the subject – as
BitTorrent is among the most popular P2P applications and
generates a significant amount of Internet traffic.

The initial misunderstanding of the protocol objectives (the
announce caused an unmotivated buzz about the imminent
Internet meltdown [1], soon officially denied [2]), pushed
BitTorrent to co-chair a IETF Working Group for the de-
velopment of the new protocol, named “Low Extra Delay
Background Transfer” (LEDBAT). The LEDBAT protocol [3]
is designed to be effective for P2P file-sharing, efficiently
exploiting available bandwidth but at the same time avoiding
self-congestion at the access. LEDBAT goal is to provide
a “lower than Best Effort” data-transfer service, yieldingto
elastic TCP and interactive traffic like VoIP or gaming. To
this purpose, LEDBAT implements a combined delay and
loss based congestion control: the delay-based component is
inspired by Vegas [4], while reaction to losses is the same
of traditional TCP versions (i.e. multiplicative drop of the
congestion window). In absence of packet losses, and with
the goal of preventing them, LEDBAT basically monitors delay
variation on the forward path. It adjusts its congestion window
trying to keep the queuing delay as close as possible to a
predefinedtarget in order to guarantee an efficient utilization
of the resource.

Yet this implies that, if two flows have a different measure of
the base delay, they may estimate a different queuing delay:
in particular, the flow with a lower base delay will sense a

larger queuing delay, with consequent unfairness in congestion
window update. More precisely, alate-comer advantagearises:
while the first flow arriving at an empty bottleneck correctly
measures the delay, a subsequent flow accounts the queuing
delay of the first one in its base delay measurement, thus
setting a higher target delay. Therefore, the second flow
will aggressively take over the target share of the first one,
eventually entering a possibly persistent unfair state.

In this work, we investigate this problem by means of packet
level simulation, and outline several alternative solutions,
tailored for the LEDBAT protocol. The first group of solutions
only tries toameliorate the base delay measurement. First, as
suggested in the LEDBAT WG [5], we implementrandom
pacingof packets belonging to the same window: this should
allow flows to gather different delay samples and possibly
converge to a similar view of the base delay. Second, we
propose to useTCP’s slow-startat the very beginning of
LEDBAT flows: by filling the buffer, slow-start likely induces
losses on already present flows, which drain the queue empty
and leave a chance for new-comers to gather a correct measure
of the base delay. The second group of solutions instead
addresses the window decrease decisions, which represent a
more fundamental issue. As third solution, we thus suggest
introducing (infrequent)random dropsof LEDBAT sender
window, as a means to break unfair states and to de-correlate
flow decisions. Fourth, we propose to replace the LEDBAT
additive decrease with amultiplicative decrease: we indeed
expect the abrupt reduction of the throughput of flows to empty
the buffer and again allow late-comers to measure the real
base-delay.

To summarize our main results, first we find that random
pacing of packets within a window is ineffective in solving
the fairness issue. Slow-start, instead, represents only apartial
solution: fairness among LEDBAT flows improves, but this
technique also causes problems to the performance of other
kinds of traffic (e.g., TCP, VoIP, game), which LEDBAT strives
against by design. On the other hand, the introduction of
random drops of the LEDBAT sender window and the use
of multiplicative decrease are both valid solutions. Interest-
ingly, a performance tradeoff exists between them: the former
maximizes efficiency metrics, while the latter maximizes the
fairness performance.

Although both solutions have their merits, the latter may be
more appropriate in this context. Indeed, we notice on the one
hand that LEDBAT targets a lower than best-effort solution,
and can thus tolerate a slight efficiency loss. On the other

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
on

ge
st

io
n

w
in

do
w

 [p
kt

s]

Time [s]

Flow 1
Flow 2

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120

Q
ue

ue
 [p

kt
s]

Time [s]

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

C
on

ge
st

io
n

w
in

do
w

 [p
kt

s]

Time [s]

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

Fig. 1. Late-comer advantage: two flow scenario with queue evolution and multiple flow scenarios

hand, we also point out that the fairness property may assist
decisions taken at the P2P overlay level, such as peer selection,
which are crucial to the overall system performance.

II. RELATED WORK

Congestion control studies date back to the 80’s, thereforea
thorough overview of the literature on this topic is out of scope
of the present paper. Here, we simply recall that congestion
control protocols can be divided into two categories according
to the congestion indicator to which the protocol reacts.Loss-
basedprotocols decrease their window when packet losses are
detected, whiledelay-basedprotocols modulate the congestion
window according to the queuing delay measured.

A number of loss and delay-based protocols exist, e.g.
TCP Compound [6] or TCP Illinois [7], whose objectives
are however different than LEDBAT’s: in fact these protocols
target higher efficiency rather than lower priority. Lower than
TCP priority is instead the goal of TCP-LP [8], TCP-NICE [9]
and 4CP [10], with whom LEDBAT shares some design
aspects; the interested reader can find a thorough comparison
of these protocols in [11].

BitTorrent studies have only recently [12], [13] started
digging the LEDBAT issue, as early work focused on other
aspects, such as torrent popularity [14], mechanisms for
proximity aware peer selection [15], robustness of tit-for-
tat mechanism [16] and models for the completion time of
a swarm [17]. In our previous work [12], we investigate
the LEDBAT congestion control by means of experimental
measurement in a controlled test-bed, whereas we conducted
a preliminary analysis of LEDBAT performance by means of
simulation in [13]. As opposite to [12], [13], that exploit dif-
ferent approaches to evaluate the performance of the LEDBAT
protocol “as is”, in this work we instead focus on a specific
weakness of the LEDBAT algorithm, the late-comer issue, and
propose modifications apt at solving it.

III. LEDBAT OVERVIEW AND FAIRNESS ISSUE

In this section, we briefly overview how the LEDBAT con-
gestion control algorithm works and illustrate the conditions
under which the fairness issue arises. For lack of space, we
focus on protocol aspects relevant to the fairness problem,and
refer the reader to [3] for a detailed description of the protocol.

As earlier mentioned, LEDBAT is a delay and loss-based
protocol, designed to provide a low priority transport with
respect to TCP. It decreases its rate when queuing delay
grows up, before congestion arises and packets are eventually
lost. Therefore, it mainly operates as a delay-based protocol
where the congestion window increase/decrease is driven by
the estimated queuing delay. In order to gather a measure of
the delay on the communication path, each packet is time-
stamped by both the source TX and the destination RX. TX
maintains also a minimum over all delay measurements, the
basedelay, which represents an estimation of the propagation
delay. Any further delay is then considered as queuing delay.
Notice that, though TX and RX are not synchronized, since
LEDBAT just considersvariationsof the delay, measurement
errors due to clock offset and skew are canceled out by the
difference.

The evolution of the congestion window,W (t), is driven in
LEDBAT by a linear controller, with a slope that depends on
the difference between the targetτ and the estimated queuing
delayq(t). The controller goal is to introduce a small non-zero
targetqueuing delay,τ , at the bottleneck. In the following, we
select the gain parameter present in the draft as equal to1/τ ,
in order to have at most the same increase slope of standard
TCP Reno. Thus, at each packet arrival,W (t) is adjusted as
follows:

W (t+ 1) =

{

1
2W (t) if packet loss,

W (t) + 1
W (t)

τ−q(t)
τ otherwise

(1)

The queuing delay,q(t) is measured as the difference between
the current delay estimation and the minimum delay observed,
i.e. thebasedelay. From (1) it can be seen that once the target
is reached, the LEDBAT sender persists in this state unless
other traffic (or a packet loss) perturbs the delay measurement.

To illustrate the late-comer unfairness, let us consider Fig. 1,
which depicts an unfair situation for two (a)-(b) or many (c)
LEDBAT flows sharing the same bottleneck of 10 Mb/s. In
Fig. 1-(a) we show the congestion window evolution of two
flows arriving at the bottleneck respectively at timet1 = 0
andt2 = 10 s. Fig. 1-(b) reports the queue size for this simple
scenario. At the beginning the first flow correctly measures
the base delay, sets its target delay toτ and starts increasing
its sending rate until it finally contributes to queuing. The

 0

 20

 40

 60

 80

 0 20 40 60 80 100 120

Time [s]

(a) Random pacing
C

on
ge

st
io

n
w

in
do

w
 [p

kt
s]

 0 20 40 60 80 100 120

Time [s]

(b) Slow-Start

 0 20 40 60 80 100 120

Time [s]

(c) Probabilistic decrease

 0 20 40 60 80 100 120

Time [s]

(d) Multiplicative decrease

Fig. 2. Effect of the solutions proposed in the two flows scenario.

increasing phase stops at aboutt = 5 s, when the amount of
packets in the queue is equal to20 packets, which corresponds
to a delay equal to the targetτ = 25ms.

Afterwards, at timet = 10 s a second LEDBAT flow starts.
Because of the amount of queuing due to the first flow, the
second one measures a base delay equal toτ resulting in a
target twice larger than that of the first flow. So, while the
late-comer flow increases its window to reach the target, the
first one senses a higher queuing delay and slows down its
sending rate. From the queue plot we can see that during this
phase the queue never empties: thus, the second flow is never
able to correct its wrong base delay estimation and settles
after finally reaching its target. At the same time, the first
flow enters a starvation phase, which can last for quite a large
amount of time until a packet loss occurs or new flows arrive.
Moreover, the late-comer issue also extends to multiple flows:
as shown in Fig. 1-(c), where a new LEDBAT flow is started
every 5 seconds, each new-comer sets a higher target and is
always more aggressive than previous flows, which in their
turn decrease their throughput to zero.

In the following, we will present a number of mechanisms
which try to solve this issue. We address the problem of the
wrong estimation of the base delay and investigate the root
causes of unfairness that prevent the system from converging
to a stable and fair regime.

We use simple metrics to evaluate each solution. On
one hand we useefficiency(η), which is the percentage of
available bandwidth actually used, that expresses the abil-
ity of the protocol to effectively exploit resources. On the
other hand, to evaluate the sharing of the resources among
flows we use the Jain’s index of fairness [18] defined as
F = (

∑N
i=1 xi)

2/(N
∑N

i=1 x
2
i) wherexi is the rate of flow

i and N is the number of flows.F is equal to one when
resources are equally shared, while is equal to1/N in the
worst case where one single flows takes over all resources.
In the following we will always refer tolong-term fairness,
considering the share of resource over the whole life of
flows. It is often useful to evaluate theshort-term fairnessas
well, looking at the protocol behavior at smaller time scales:
although we have also evaluated this metric, since the results
are similar to the long-term fairness for all experiments, we
do not report such results for lack of space.

IV. A DDRESSING THE MEASUREMENT ERROR

A. Random pacing

The fairness issue was early identified during the definition
of the LEDBAT protocol [5] and was later confirmed by our
preliminary simulation studies [13]. Still, according to some
of the participants to the draft definition, the randomness
present in real networks would somehow prevent the late-
comer advantage from showing up: They argue that random
delays caused by OSes, routers and background traffic are
enough to avoid the queue becoming so stable and the con-
sequent flow synchronization. However, relying on external
network conditions to ensure that the protocol actually works
is not a good engineering practice. For this reasons, it seemed
much more robust to incorporate some randomness in the
protocol itself, more specifically to add a random jitter to
packet transmission time. In this way the queue is expected
to show a much more varying dynamic, thus allowing flows
to gather different estimates of the queuing delay, eventually
converging to a fair share of the resource.

Since this was officially discussed in the LEDBAT working
group, we analyze it as a first solution. We add to our imple-
mentation a random pacing module, which randomly spaces
the transmission time of packets belonging to a congestion
window in the RTT. Each packet is delayed by a random,
uniformly chosen interval of time, taking care of avoiding
packets reordering.

Fig. 2-(a) shows the same scenario of Fig. 1-(a), but in
this case both flows sharing the bottleneck implement random
pacing. Unfortunately, only some minor modifications of flow
behavior can be observed with respect to the plain LEDBAT
situation. First, the increase phase of the second flow is slightly
longer, as the perturbations of the queuing delay measurements
reflect in the queuing delay and slow down the ramp-up.
Second, the late-comer flow attains a slower value of the
congestion window, because of its smaller target derived byits
different view of the base delay. Nevertheless, random pacing
does not constitute a solution, as we assist to the same unfair
situation, and we thus disregard it in the following.

B. Slow start

In our preliminary study [13], we showed how the intro-
duction of a TCP-like slow-start phase at the beginning of

a LEDBAT connection has the side-effect of de-correlating
flows and allowing them to sense the correct base delay, thus
mitigating the unfairness issue. Standard TCP employs sucha
mechanism in order to converge faster to an optimal utilization
of the available bandwidth. However, from our point of view
the most important aspect is that a new flow will likely force a
loss in the other connections insisting on the same bottleneck.
As a consequence all flows will reduce their rate, the queue
will be drained empty and all flows, the last one included,
will be able to correctly measure the base delay. In Fig. 2-(b)
we report an example case, again with two flows which go
through a slow start phase at the beginning of their life. As
expected the losses due to slow-start of the second flow act
as reset: both flows back-off, sample the correct value of base
delay and thereafter share the bandwidth equally.

Despite its beneficial effects, the introduction of such an
aggressive mechanism in a low priority protocol seems con-
trary to LEDBAT original design goals. In fact slow-start also
disturbs the operation of other protocols sharing the bottleneck,
as they will experience losses as well. Though the real number
of packet losses can be very limited [13], causing only minor
troubles to other services, in the following we try to devise
some less intrusive solutions to the fairness issue, which will
be anyway inspired by the lesson of slow-start.

V. I NTRODUCING MULTIPLICATIVE DECREASE

From the study of the slow-start solution we can derive a
simple intuition: the introduction of a multiplicative decrease
in the window dynamics, which causes a sudden drop of send-
ing rate, can relieve the fairness issue. In fact, multiplicative
window drops clearly accelerate the buffer drain, thus allowing
flows to better estimate the base delay and potentially converge
to a stable and fair regime. In other words, we conjecture
LEDBAT additive decrease component to be the principal
cause of unfairness.

In this section, after analytically demonstrating the intrin-
sic instability and unfairness due to the additive decrease
component, we explore two ways of explicitly introducing
a multiplicative decrease in the LEDBAT protocol: first, we
superpose a probabilistic window drop to the LEDBAT linear
controller (1) in Sec. V-B; then, we directly replace the
additive decrease with a multiplicative one in Sec. V-C.

A. Impact of additive decrease

We argue that the additive decrease, rather than the measure-
ment errors, is the main cause of unfairness in the LEDBAT
protocol: in other words, the late-comer advantage is actually a
fundamental drawback of the additive decrease term, meaning
that the original design is currently misguided.

Without any loss of generality, let us consider the case ofN
LEDBAT flows with the same round trip timeR(t), sharing
the same link of capacityC and finite buffer sizeB. Each
flow i ∈ N , with N = {1, 2, . . . , N}, starts atti ≥ 0, with
t1 ≤ t2 ≤ · · · ≤ tN and with an initial congestion window
Wi. Given the packet-level congestion window dynamics in
(1), we demonstrate the following statement.

Proposition V.1 If N < B
τC , and dmax(tN) ,

maxi,j∈N [W i(tN) − W j(tN)] > 0, then the system is
unfair, i.e.∃t∗ ≥ tN , such that∀t > t∗ dmax(t) > 0.

Proof: Given (1), a simple fluid representation of the
window dynamics of flowi, Wi(t), in continuous time, is:

dWi(t)

dt
=

1

R

τ − q(t)

τ
, (2)

where we supposed for simplicityR(t) ≈ R, which is true
for large propagation delay (the proof can be easily extended
to the case of variable round trip delays). Since the estimated
queuing delay can be different for each flow, depending on
its stored base delay, we replaceq(t) by qi(t), i.e., the queue
occupancy measured by each sender, and simply observe that
qi(t) varies in the interval(q(t) − (N − 1)τ, q(t)). Indeed,
the last flow makes the largest error in the estimation of the
queuing delay, because it measures as base delay the actual
propagation delay increased by(N−1)τ , the sum of the target
delay of all preceding flows. It follows that,∀i, j ∈ N :

W i(t)−W j(t) = W i(tN)−W j(tN) +

∫ t

tN

qj(u)− qi(u)

Rτ
du

(3)

where |qj(t) − qi(t)| is bounded by(N − 1)τ . Hence, if we

chooset∗ equal to tN + W i∗(tN)−W j∗(tN)
(N−1)/R , with (i∗, j∗) =

argmaxi,j∈N W i(tN)−W j(tN), it results:

dmax(t) , max
i,j∈N

W i(t)−W j(t) > 0, ∀t > t∗.

It is worth observing that the additive decrease component
makes the system not only unfair in general, but also unstable
in the Lyapunov sense. This can easily be observed from (3)
by looking at the dependence of the regime (t > t∗) on the
initial condition. Such result has been first shown by Jain
in the late 80s [19], in the simpler case when the additive
increase/decrease factor is constant and equal for all flows.

B. Random window dropping

From the above remarks, we learn that a multiplicative
decrease must be added for the protocol to work properly:
for instance, if LEDBAT flows autonomously slowed down
their rate at regular intervals, we could avoid forcing losses in
the buffer (i.e., slow-start) altogether. A simple way to induce
this behavior is to randomly drop the congestion window:
upon reception of an acknowledgment packet, in addition the
adjustments specified by (1), we also halve the congestion
window with a constant probabilityp. At flow level, this results
in a dropping rate proportional to the current transmissionrate.
The evolution of the congestion window in the simple case of
two flows with a drop probabilityp = 10−4 is reported in
Fig. 2-(c), showing a fair share.

Now we want to identify an optimal range of values for
the drop probabilityp. We preliminary consider the case of
two flows arriving at the bottleneck with a gap of∆T = 10 s
plus a random jitter uniformly distributed in[−1, 1]ms. In

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-05 0.0001 0.001 0.01 0.1 1
 0.5

 0.6

 0.7

 0.8

 0.9

 1
E

ffi
ci

en
cy

F
ai

rn
es

s

Window decrease probability p

Efficiency
Fairness

Fig. 3. Efficiency and fairness as a function ofp

Fig. 3, one can observe the resulting resource allocation in
terms of efficiency (left axis) and fairness index (right axis)
as a function of the chosen drop probabilityp. For each
value of p we represent mean and variance (with vertical
bars) of the considered metric over25 simulations, each one
lasting300 s. As expected, for small values ofp we obtain a
low fairness index (because the drop event is not frequent
enough), but an efficient utilization of the bottleneck. On
the opposite side, whenp becomes high the efficiency is
extremely compromised, while the fairness is restored. Despite
the natural tradeoff between fairness and efficiency, values of
p in the grey-shaded range[10−4, 10−3] seem to allow a fair
and efficient share of resources.

Still, the selection of the random probabilityp strongly
depends also on the number of flows sharing the bottleneck:
the larger the number of flows, the largerp should be in
order to have all flows simultaneously slow down to allow
new-comer flows to measure the right base delay. To confirm
this intuition we report in Fig. 4 the behavior ofη and F
for three values ofp when N ∈ [2, 10]. Mean and variance
over 100 simulations of the considered metrics are plotted
for the case where each flow starts randomly in[0, 60] s. If
the efficiency remains very high, with a good utilization of
link starting from N = 4 for all p settings, the fairness
index shows an improvement over the plain LEDBAT case,
but is however far from the optimum. In fact, when multiple
flows are involved, one should use a much higher probability
to achieve a perfect share of resource, which would in turn
impose a more significant cost in term of link efficiency,
especially for small values ofN .

C. Multiplicative Decrease

The encouraging results of the previous section and the
analysis of Sec.V-A, suggest taking a step further and re-
placing the LEDBAT additive decrease with a multiplicative
one altogether. Therefore, we modify the algorithm so that,
whenever an ack packet carries a delay sample exceeding
the targetτ , the window drops by a factorβ < 1, i.e.,
W (t+1) = βW (t). Notice that the multiplicative decrease is

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

E
ffi

ci
en

cy
 η

p=1/750
p=1/1000
p=1/10000

 0
 0.2
 0.4
 0.6
 0.8

 1

 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s

Number of bottleneck flows

p=1/750
p=1/1000
p=1/10000

Fig. 4. Performance of random drop for different number of flowsN .

rate-dependent, and thus penalizes flows proportionally totheir
sending rate (window). Fig. 2-(d) shows the evolution of the
congestion window for two competing flows withβ = 0.6.
We can observe rate convergence to a stable regime where
each flow gets a fair share of the capacity, once both flows
have correctly estimated the base delay. Moreover, at steady
state flows decrease their windows simultaneously: this is a
desirable property, since newly arriving flows will have the
occasion to correctly measure the propagation delay.

Like in the random drop solution of V-B, a careful choice of
the multiplicative factorβ has to be made. Following the same
approach used before, we first study the case of two flows and
then consider the general case with a greater number of flows.
In Fig. 5 we plot mean and variance over25 simulations of
efficiency and fairness for increasing values ofβ (we actually
report the value1 − β on the x-axis). As before, flows starts
with a gap of∆T = 10 s plus a random jitter. As expected,
values ofβ close to0 (i.e., 1−β close to1) solve the fairness
issue but introduce an efficiency loss. On the contrary values
of β close to 1 are not able to solve the latecomer advantage,
yielding low fairness values. Values belonging to the gray-
shaded part of the graph (β ∈ [0.90, 0.99]) instead guarantee
both fairness and efficiency.

Fig. 6 shows the case ofN > 2 flows: on the one
hand the efficiency of smaller values ofβ improves when
multiple flows are involved; on the other the fairness of
larger values ofβ decreases. In fact, in this case, to prevent
the delay estimation error, the multiplicative decrease factor
has to be smaller to obtain a more significant drop in the
sending rate. However with respect to the previous solution,
the multiplicative decrease achieves better performance both
in terms of efficiency and fairness. In particular the value
β = 0.94 has optimal results for both metrics whenN > 4,
which is the typical scenario of a P2P application.

VI. D ISCUSSION ANDCONCLUSIONS

In this paper we analyzed four alternative solutions to
intra-protocol fairness issues arising in LEDBAT. The first
two solutions, based on random pacing and on an additional
slow start phase, were respectively inspired by the discussions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1
 0.5

 0.6

 0.7

 0.8

 0.9

 1
E

ffi
ci

en
cy

F
ai

rn
es

s

1 - β

Efficiency
Fairness

Fig. 5. Efficiency and fairness for different values ofβ.

within the LEDBAT IETF working group [5] and by previous
work. Their objective is to de-correlate flow dynamics, so to
allow flows to get a correct estimate of the queuing delay.
In both cases, unfairness appears to be only partially or
ineffectively relieved: the random jitter addition shows no real
improvement in terms of fairness, whereas introducing a slow-
start phase goes against LEDBAT low-priority goal.

While investigating the reasons behind the unfairness, an
accurate analysis of window dynamics has highlighted the
limits of the additive decrease component. In fact, as already
observed in a much simpler scenario by Jain in [19], additive
decrease prevents the system from converging to a stable and
fair regime. In the LEDBAT case, the error in the estimation
of the queuing delay further hinders the convergence to a
fair state. Therefore, we devised two possible alternatives to
incorporate a multiplicative decrease term in the LEDBAT
controller: first, by adding a probabilistic drop to the additive
increase/decrease dynamics, then by directly replacing the
additive decrease with a multiplicative one altogether. The
results are promising as they display a region of the parameters
(drop probabilityp or decrease factorβ) where fairness can
be achieved at no or little expense of efficiency.

Although both solutions have their merits, the
multiplicative-decrease one may be more appropriate, given:
(i) better results in terms of efficiency and fairness when
multiple flows are competing on the same link, and (ii) the
solid theoretical foundation of a purely multiplicative window
decrease, already proved in [19], for increase/increase factors
equal for all competing flows. In our future work, we plan
to pursue the design of an additive increase/multiplicative
decrease controller tailored to LEDBAT goals, carefully
addressing the choice of the optimal multiplicative decrease
factor β and also considering a wider range of scenarios.

ACKNOWLEDGMENTS

This work has been funded by the Celtic project TRANS.

REFERENCES

[1] R. Bennett. (2008, Dec) The next Internet meltdown. [Online]. Available:
http://www.theregister.co.uk/2008/12/01/richardbennettutorrent udp/

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

E
ffi

ci
en

cy
 η

1-β=0.1
1-β=0.06
1-β=0.02

 0
 0.2
 0.4
 0.6
 0.8

 1

 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s

Number of bottleneck flows

1-β=0.1
1-β=0.04
1-β=0.02

Fig. 6. Performance of multiplicative decrease for differentnumber of flows

[2] S. Morris. (2008, Dec)µTorrent release 1.9 alpha 13485. [Online]. Avail-
able: http://forum.utorrent.com/viewtopic.php?pid=379206#p379206

[3] S. Shalunov, “Low extra delay background transport (ledbat),” IETF
Draft, Mar 2009.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas:
New techniques for congestion detection and avoidance,” inACM
SIGCOMM’94, London, UK, Aug 1994.

[5] LEDBAT Mailing List Archives. [Online]. Available: http://www.ietf.
org/mail-archive/web/ledbat

[6] Q. Z. Kun Tan, Jingmin Song and M. Sridharan, “A compound tcpap-
proach for high-speed and long distance networks,” inIEEE INFOCOM
’06, April 2006.

[7] S. Liu, T. Başar, and R. Srikant, “Tcp-illinois: a loss and delay-based
congestion control algorithm for high-speed networks,” inProc. of ACM
Performance Evaluation, Jun 2008.

[8] A. Kuzmanovic and E. W. Knightly, “TCP-LP: low-priority service via
end-point congestion control,”IEEE/ACM Trans. Netw., vol. 14, no. 4,
Aug 2006.

[9] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: a mechanism
for background transfers,” inUSENIX OSDI’02, Boston, Dec 2002.

[10] S. Liu, M. Vojnovic, and D. Gunawardena, “Competitive and Consider-
ate Congestion Control for Bulk Data Transfers,” inIWQoS’07, Evaston,
IL, US, Jun 2007.

[11] G. Carofiglio, L. Muscariello, D. Rossi, and C. Testa, “Ahands-on
Assessment of Transport Protocols with Lower than Best Effort Priority,”
in IEEE LCN’10, Denver, CO, USA, Oct 2010.

[12] D. Rossi, C. Testa, and S. Valenti, “Yes, we LEDBAT: Playing with
the new BitTorrent congestion control algorithm,” inPAM 2010, Zurich,
Switzerland, Apr 2010.

[13] D. Rossi, C. Testa, S. Valenti, , and L. Muscariello, “LEDBAT: the new
BitTorrent congestion control protocol,” inProc. of ICCCN ’10, Zurich,
Switzerland, Aug 2010.

[14] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber, Al, and L. Garćes-
Erice, “Dissecting BitTorrent: Five Months in a Torrent’s Lifetime,” in
PAM 2004, Antibes, France, Apr 2004.

[15] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and
A. Zhang, “Improving Traffic Locality in BitTorrent via Biased Neighbor
Selection,” inIEEE ICDCS ’06, Lisboa, Portugal, Jul 2006.

[16] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do Incentives Build Robustness in BitTorrent?” inNSDI’07,
2007.

[17] D. Qiu and R. Srikant, “Modeling and performance analysis of
BitTorrent-like peer-to-peer networks,” inACM SIGCOMM’04, Portland,
Oregon, USA, Aug 2004.

[18] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A QuantitativeMeasure
Of Fairness And Discrimination For Resource Allocation In Shared
Computer Systems,” Tech. Rep. DEC-TR-301, Sep 1984.

[19] R. J. Dah-Ming Chiu, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” inComputer Networks
and ISDN Systems ’89, 1989.

