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From weather to networks, forecasting techniques constitute an interesting challenge:
rather than giving a faithful description of the current reality, as a looking glass would
do, researchers seek crystal-ball models to speculate on the future. This work explores
the use of Support Vector Regression (SVR) for the purpose of link load forecast. SVR works
well in many learning situations, because they generalize to unseen data, and are amenable
to continuous and adaptive online learning - an extremely desirable property in network
environments. Motivated by the encouraging results recently gathered by means of SVR on
other networking applications, our aim is to enlighten whether SVR is also successful for
the prediction of network links load at short time scales. We consider the problem of link
load forecast based only on its past measurements, which is referred to as “embedded pro-
cess” regression in the SVR lingo, and adopt a hands-on approach to evaluate SVR perfor-
mance. In more detail, we perform a sensitivity analysis of the parameters involved, assess
the computational complexity for training and validation, dig into the correlation structure
of the prediction errors and evaluate techniques to extend the forecasting horizon. Our
finding is that accuracy results are close enough to be tempting, but not enough to be con-
vincing. Yet, as SVR exhibit a number of advantages, such as good robustness and flexibility
properties, furthermore at a price of a limited complexity, we then speculate on what
directions can be undertaken to ameliorate its performance in this context.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we question whether such variability can
be efficiently forecasted, and if so, with what level of accu-

It is fairly well accepted that, as a result of network ser-
vices and Internet applications evolution, network traffic is
becoming increasingly complex. On the one hand, trans-
port networks are challenged by the current convergence
trend of voice/video/data services on an all-IP network,
and by the fact that user-mobility will likely translate into
service-mobility as well. On the other hand, the explosion
of Internet telephony, television and gaming applications
implies that we may be forced to re-think what we mean
by “data” traffic. Moreover, the widespread usage of appli-
cation layer overlays directly translates into a much higher
variability of the data traffic injected into the network.
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racy. The supervised prediction technique we selected is
Support Vector Machines (SVM), a set of classification
and regression techniques, introduced in the early nineties
[1], that are grounded in the framework of statistical learn-
ing theory. Basically, Support Vector Regression (SVR) uses
training data to build a forecast model which works well
in many learning situations because it generalizes to un-
seen data and is amenable to continuous and adaptive on-
line learning, an extremely desirable property in network
environments. Initially bound to the optical character rec-
ognition context, the use of SVM rapidly spread to other
fields, including time series prediction [2] and, more re-
cently, networking [3-6]. Motivated by such encouraging
results, we focus on link load forecast based only on past
measurements, following an approach known as “embed-
ded process” [2]. This problem is of great interest in
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networking for both capacity planning and self-manage-
ment application (e.g. bandwidth provisioning, admission
control, trigger of backpressure mechanisms, etc.).

Though the SVM approach fits well to longer time-
scales as well, which are more of a concern for capacity
planning, in this paper we focus on the estimation of load
variation at short time scales: adopting a hands-on ap-
proach to the SVM regression, we evaluate the effective-
ness of SVR for link load forecast by exploring a rather
extensive parameter and design space. Our aim is twofold:
first, we want to evaluate the SVM accuracy and robust-
ness and, second, we want to provide useful insights on
the tuning of the SVM parameters, an aspect not always
clear in previous work. We compare the performance with
those achievable using Moving Average and Auto-Regres-
sive models: our results show that, despite a good accor-
dance with the actual data, the SVR gain achievable over
simple prediction methods is not enough to justify its
deployment for link load prediction at short time scales.
Yet, we have to tribute SVR of a number of extremely posi-
tive aspects: for instance, SVR models are rather robust to
parameter variation, and their computational complexity
is far from being prohibitive, which makes them suitable
for online prediction. Moreover, we experimentally verify
that errors calculated over consecutive samples are inde-
pendent and identically distributed, which allows the eval-
uation of confidence intervals. Finally, we also investigate
methods to extend the forecast horizon using forecasted
values as input for a new prediction: interestingly, this ap-
proach of recursive SVR may significantly extend the
achievable forecast horizon, entailing only a very limited
accuracy degradation.

The remainder of the paper is organized as follows.
After discussing related work in Section 2, we briefly over-
view the Support Vector Regression theory in Section 3. In
Section 4 we specify the methodology we follow in apply-
ing SVR models to link load forecast, as well as describing
the other forecasting techniques that will be used for com-
parison purposes. A complete and extensive sensitivity
analysis of SVR performance is reported in Section 5,
whereas further details on the temporal evolution of the
error, computational complexity considerations and result
of recursive SVR are reported in Section 6. Finally, conclud-
ing remarks and future work are addressed in Section 7.

2. Related work

Most of the work related to network load forecast is
based on the analysis of time series properties. In this con-
text, a number of very different models [7-9] have been
proposed, ranging from very simple to very complex ones.
However, the majority of these approaches relies on spe-
cific assumptions and underlying models for the network
traffic (e.g., they are tailored to capture Long Range Depen-
dence (LRD) [10] at short and long timescales, etc.). A first
drawback is that such models will no longer be applicable
if the assumption no longer holds (e.g., considering other
timescales). A second drawback is that such models usu-
ally rely on the precise estimation of some traffic parame-
ters, whose computation can be a very intensive and

delicate task (e.g., Hurst parameter of the arrival time ser-
ies). Rather, as in [11,12], we prefer to focus on techniques
that, avoid making any assumptions on the phenomenon
under observation, allow for intrinsically more robust
and flexible prediction. A simple local Gaussian predictor
is provided in [11] as a core tool to guide the bandwidth
provisioning in the hose model: interestingly, the model
is able (but not forced) to embed assumptions on the LRD
properties of the traffic, by an appropriate tuning of the
parameters. TCP throughput prediction is the object of
[12], where the authors compare formula-based versus
history-based prediction schemes, showing that even sim-
ple moving-average models are able to yield satisfactory
results (provided that one copes with major error sources).

The forecasting technique that we plan to evaluate in
this paper falls in the class of Support Vector Machines
(SVM) [13]: despite its relatively short existence, the liter-
ature of SVM is already full blown. At the same time, while
the use of SVM for classification is relatively more popular
in networking research, especially in the context of anom-
aly and intrusion detection [5,6], the use of SVM for regres-
sion is largely left unexplored. To the best of our
knowledge, the only work that explores the use of SVR
techniques in the networking field is [3,4]. TCP throughput
prediction on a given path is the object of [3], where the
forecast is based on a combination of path properties (such
as queueing delays and available bandwidth) and on the
performance of prior file transfers as well. Authors show
that when the path properties are precisely known (e.g.,
when they are provided by an “oracle”), SVR is able to pre-
dict TCP throughput within 10% of the actual value in 90%
of the cases - which represents nearly a 3-fold improve-
ment in accuracy over prior history-based methods. Also,
in more realistic scenarios and using less accurate mea-
surements of path properties (e.g., gathered by means of
active probes), the predictions can be made within 10% of
the actual value nearly 50% of the time - which still repre-
sents a 60% improvement, with a furthermore much lower
impact on end-to-end paths.

The authors of [4] focus instead on the prediction of the
latency toward an unknown IP address, based on the la-
tency knowledge toward other previously contacted IP ad-
dresses. Using as input features vectors of IP address bits
(transformed into a 32 dimension input space, where each
bit of the address corresponds to a different dimension),
authors show that the estimation performance is within
the 30% of the true value for approximately three-quarters
of the latency prediction on a large Internet data set. More
in detail, SVM regression on a large randomly collected
data set of 30,000 (IP,latency) couples, yield a mean predic-
tion error of 30 ms (25 ms) using only 6% (20%) of the sam-
ples for training.

In the context of SVM regression [13], the problem of
forecasting future values of a series based only on previous
observation of the same phenomenon is known as an
“embedding process” [2]. However, its application has usu-
ally targeted domains other than the networking context,
and the series that SVR has been fed with up to now are very
much different from those representing the packet arrival
process at a router queue: thus, our aim is to test whether
SVR can prove to be a useful tool also for link load forecast.



P. Bermolen, D. Rossi/Computer Networks 53 (2009) 191-201 193

3. Support vector machines overview

Support Vector Machines (SVM) [1] are a set of classifi-
cation and regression techniques, that are a non-linear
extension of the Generalized Portrait algorithm developed
in Russia in the sixties. As previously outlined, SVM can be
used for either classification or regression, to which we re-
strict our attention for the remainder of this work. In the
following, we briefly overview the theory behind the use
of SVM for function estimation, introducing at the same
time the most relevant notions and parameters, with spe-
cial attention to those parameters whose impact we inves-
tigate later on. In a sense, this overview is thus
instrumental to the understanding of the performance
evaluation section, but for a more thorough coverage of
SVM we refer the reader to the excellent surveys [13-15].

3.1. Support vector regression

Suppose that we are given a training set
{(%1,¥1), -, (Xs,y5)} € R* x R, where R? is the space of the
input features x;, and y; is the phenomenon under investi-
gation. In €-SVR [16] the goal is to find a function f(x)
whose deviation from each target y; is at most € for all
training data, and at the same time, is as “flat” as possible.
For the sake of clarity, we first consider the linear case i.e.
f:RY = R, such that

fx)=(w,x)+b withxecR? beR, (1)

where (-,-) denotes the dot product in R’. Flatness in the
case of (1) can be ensured by minimizing the norm |w|?,
leading to the following convex optimization problem:

S
min} w]* + CZ}(@- +&),
i=

Yi—(wWxi) —b<e+¢, (2)
st —yi+wWx)+b<e+¢,
&, & =0

In the above formulation, slack variables ¢; and & are
included to cope with otherwise infeasible constraint of
the optimization problem, whereas the constant C>0
determines the trade off between the flatness of f and devi-
ations from target greater than €. Notice that this tradeoff
makes SVM rather different from traditional error minimi-
zation problems, and very robust to outliers. The above for-
mulation is equivalent to the use of the e-insensitive loss
function in the theory of error risk minimization with reg-
ularization [16]. Loss function (3) represents the fact that
there is no loss (or cost) for deviations smaller than €
and that larger deviations will be linearly penalized:

0 if [¢] <,
|€] — & otherwise.

Lo - { )

Thus, a first peculiarity of SVR is its root in the risk min-
imization theory [16] - where, given an i.i.d. training set,
the aim is to find a function f that minimizes an empirical
risk based on a loss function. Moreover, we stress that the
SVR problem can be seen as an extension of more traditional
regression techniques: for instance, when L(¢) = || is used

as loss function, then we fall into the case of a minimum
square error regression problem.

3.2. Support vectors

The training problem (2) can be solved more easily in its
dual formulation, obtained by constructing a Lagrange
function from the objective and the constraints: indeed,
the dual formulation yields a quadratic optimization prob-
lem with a unique solution, avoiding the problem of get-
ting stuck in a local minimum. The solution of the dual
problem yields the function f{x), which can be written as
a linear combination of the training data, the Lagrange
multipliers o, o}, and the constant term b, whose computa-
tion stems from the Karush-Kuhn-Tucker (KKT)
conditions:

[
M«

f®) (% — o) (i, X) + b (4)

1

o T

(ot — o) (%i,X) + b. (5)

—_

i=

The Lagrange multipliers verify the constraints:

i <C (6)

s
> (ei—0f)=0 and 0<o;0
i-1

The KKT conditions also imply that if o;, o #C and
If (xi) — y;| < &, then o4, must be zero. Intuitively, as er-
rors lower than € are tolerated, training data lying inside
the so called “e-tube” will not contribute to the problem
solution (nor to its cost). In other words, not all x; are
needed to calculate f{x), but only the Sy < S training points
x; whose «;, o; 0, which are referred to as support vectors.
An important consequence of the above fact is that the
problem complexity is independent of the dimension of
the input space, but rather depends only in the number
of support vectors.

3.3. Kernel trick

The dual formulation also provides the key to the non
linear extension of SVR. This second, very important, pecu-
liarity of SVM is known under the name of “kernel trick”
[17]. The idea is to map the input data into a higher-
dimensional space # by a function ¢ : RY — #. Then, a
linear regression in this new space .# is equivalent to a
non-linear regression in the original space.

Observing that (x,x') = (¢(x), ¢(x’')) and that the solu-
tion of the dual problem only requires the knowledge of
the dot product, it is sufficient to know how to compute
the kernel function k(x,x') = (¢(x), #(x')) rather than know-
ing the mapping function ¢(x) explicitly. This is a desirable
feature, as actually applying the mapping into the higher-
dimensional space may be computationally infeasible.
More formally, a function k(x,x’) is called a kernel if it cor-
responds to a dot product in some feature space # and if it
fulfills the Mercer’s condition [18]. By restating the optimi-
zation problem in terms of the kernel, it follows that f(x)
can be written as



194 P. Bermolen, D. Rossi/Computer Networks 53 (2009) 191-201

Sy
fx) = (04— o5)k(x;, ) + b. (7)
i=1
In this work, we investigate the use a of a radial basis
kernel, to which an infinite dimensional mapping space
corresponds. This choice is motivated by the good perfor-
mance shown in both the time series prediction [19] and
more general network [3] contexts:

k(x,x') = e 71", (8)

4. Forecast techniques

This section details how we apply the SVR framework to
the load forecast problem, as well as introducing other
techniques, such as Moving Average (MA) and Auto-
Regressive (AR) models, whose performance will be com-
pared with SVR’s.

We stress that we deliberately avoid comparison with
other unsupervised predictors such as the Local Gaussian
Predictor (LGP) [11], as we experimentally verified that
in the short timescales considered in this paper it system-
atically overestimates the incoming traffic rate. While in
some applications this is actually a desirable feature (e.g.,
as in VPN bandwidth provisioning, where over-provision-
ing translate in fewer losses and thus in a greater service
QoS), in many other contexts it is not (e.g., when admission
control is performed, over-estimating the incoming load
unjustifiably increases the flow reject ratio): thus we pre-
fer to avoid introducing any a priori bias.

We also point out that, in principle, an option to accom-
modate short timescales variability due to Internet traffic
burstiness, could be to exploit the a priori knowledge of
the scaling relations between rate and variance at different
timescales as in [11]. However, as previously stated, we
prefer to avoid any assumptions on the phenomenon under
observation, and we will thus limit our comparison to MA
and AR models.

4.1. Support vector regression

In the context of time series prediction by means of SVR,
there is no a priori restriction on the type and number of
input features. A known approach, which we adopt in this
paper and explain in the following, is the so called “embed-
ding process” [2]. Let be A(t) the traffic load measured in
the time interval [t — 7, t]. By quantizing the time in multi-
ples of 7, we obtain a time series {x},., Where 2 is the
average traffic load measured in the interval [(k — 1), k7].
The SVR embedding process then uses an arbitrary number
d of past measurement of the above series in order to pre-
dict its future value. Thus, when given a d-dimensional in-
put x, a trained SVR function returns as output y = f(x) a
forecast of the target y, which in our case are:

X= ()vk—(d—l)7 ceey /‘kal ) /‘Lk) and y= )vk+l- (9)

In order to construct all the possible x input tuples, we
use a sliding window of length d over the time series to
construct all possible input/output pairs, obtaining the
set {(xi,¥;)}i.1 14 Where L is the time series length.

A subset of this set will be used as training set, i.e., to
construct the SVR forecast function f{x); then, the model
accuracy will be evaluated over the complement of the
training set, i.e.,, on unknown data. More precisely, the
SVR training set is constructed by randomly selecting a
few out of all the possible x input tuples: in other words,
SVR training can be thought as realized by means of a
jumping window. The impact of the training set selection
will be thoroughly examined later.

In general terms, T can be thought as the observation
timescale, the dimension d as the minimum number of
state variables required to describe the system and their
product dt corresponds to the average system memory
length. The traditional “embedding process” assumes that
the observed time series is the projection of a deterministic
dynamic operating in a high-dimensional state space: in
this case, the parameters d and 7 can be obtained by run-
ning (rather computationally intensive) geometric heuris-
tics on input data. However, we point out that the above
assumptions do not apply directly to our context, as the
network load dynamic is clearly not well represented by
a deterministic process. Moreover, our aim is rather to
build a robust engine for the online estimation of traffic
load on arbitrary timescales: thus, we prefer to avoid con-
straints on the selection of the operation point (d,7) - or at
least on the operation timescale t. Therefore, we prefer to
cross-check the impact of the embedding parameters
choice a posteriori, based on the empirical results of the
regression: as a side effect of this choice, we will extend
the sensitivity analysis of SVR to a wider range of
parameters.

4.2. Moving-average models

Given a time series {4}y, the one-step d-order Mov-
ing Average (d-MA) predictor can be defined as

k

" 1
Tt =4 > (10)

i=k—d+1

As a general remark, if d is too small the predictor can-
not smooth out the noise in the underlying measurements,
whereas a too large value of d makes it slow to adapt to
non-stationarity properties of the data. The predictor (10)
is the simplest among the unsupervised forecast methods;
yet, in a slightly different context, the authors of [12]
showed that, despite its simplicity, d-MA is able to provide
accurate results provided that it copes with the two major
error sources: namely, Level-Shift and Outliers (LSO). We
implement the LSO heuristics as in [12], and denote with
d-LSO the corresponding predictor. Basically, outliers are
just ignored, whereas the detection of level-shift triggers
a filter restart. In more detail, considering a set of measure-
ments {4;,..., A4}, a sample J is said to be an outlier when-
ever it differs from the median of the set by more than a
relative difference 1. Moreover, an increasing (decreasing)
level-shift is detected in correspondence of 4, whenever the
following conditions jointly holds:

e the measurements {/i,...,4_1} are all higher (lower)
than {A,...,24};
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e the median of the first portion {1;,..., 4} is higher
(lower) than the median of the second portion of the
set by more than a relative difference y;

e k+2 < n, to avoid classifying an outlier as a level shift.

When a level shift is detected, all measures prior to 4
are ignored and the predictor is restarted from /. In the
following, we select (1) =(0.3,0.4) as in [12], which cor-
responds to a good parameter choice in our data set as
well.

4.3. Auto-regressive models

The last class of forecast models that we will compare
SVR performance with is the Auto-Regressive (d-AR) one.
d-AR models are similar to d-MA models: the main differ-
ence is that they take into account not only previous obser-
vations, but previous predictions as well:

d
M=) Qidi + €. (11)
i=1

d-AR predictors takes the general form of (11), where ¢;
are parameters of the model and ¢, is a noise factor. In the
embedding process context, a linear prediction function
leads to a class of autoregressive models, and fitting proce-
dures can be used to extract the most appropriate regres-
sion function within the class. Indeed, it has been shown
[19] that the use of a linear kernel yields to an d-AR model
equivalent to the one estimated through other means such
as, e.g., the Yule-Walker equations [7]. At the same time,
the advantage of using SVR to provide d-AR models lies
in its simpler fitting procedure and robustness in the pres-
ence of outliers: thus, in the following we will use a SVR
with linear kernel to evaluate the performance of autore-
gressive models.

5. Sensitivity analysis of SVR performance

Support vector embedded process regression is affected
by many parameters, pertaining to two different areas. A
first set, related to the SVR itself, includes the training size
S and the smoothing factor C of (2), the tolerance € of the
loss function (3), and the parameter ) of the kernel func-
tion (8). The second set is instead related to the embedding
process parameters, i.e., the timescale T and dimension d of
(9). In the following, we provide a very thorough and care-
ful tuning of SVR, with the twofold intent of (i) evaluating
the extent of SVR accuracy for link load prediction, as well
as (ii) assessing the sensitivity of SVR forecast performance
to the above parameter variation. Results reported in this
paper are gathered through JMySVM [20] an open source
SVR implementation distributed along with the Rapidmin-
er [21] software tool.

5.1. Input data

Prior to inspecting the impact of the above parameters
on SVR performance, we need to provide details on the in-
put data, that were collected at the POP of a major Italian
ISP. This dataset is very interesting, since it refers to an

innovative ISP which is providing end users (residential,
SoHo or large companies) with data, voice and video over
IP by means of either an ADSL or a FTTH link (no PSTN link
is offered). Traffic is therefore composed of data transfers
over TCP, VoIP and VideolP traffic over RTP/UDP. Moreover,
as users make extensive use of P2P applications, VPN ser-
vices, etc., the resulting traffic mix is therefore very
heterogeneous.

We sniffed a one-day long trace on Monday the 15th of
May 2007, and consider a single traffic direction, namely
the downlink one. We then extracted several 10,000 sec-
ond long (about 2h45) subsets of the trace: here, we report
results referring to two different subsets, namely a daily-
busy period and nightly-idle one. In the daily subset, aver-
age link load is 121.3 Mbps, whereas in the nightly subset
(N), average load was 66.2 Mbps. For each subset, we con-
sider different timescales 7; = 2' ms with i € [0, 10], and for
the sake of brevity, in the description we approximate
Ti0 = 1024 ms with t=1s.

Further details relative to the mean and standard devi-
ation of the load at different timescales are reported in Ta-
ble 1 for even values of i: it can be seen that, generally, the
lower the timescale, the higher the load variance. Also,
considering the coefficient of variation CoV = o/u, we no-
tice that load variation is more important during the night,
where CoV is roughly double than the daily subset.

For all different timescales, we construct a N = 10,000
long dataset with the partitioning criterion illustrated in
Fig. 1a: the subset for the (i — 1)th timescale corresponds
to the central portion of the ith one.

The daily and nightly datasets present another interest-
ing difference. Fig. 1b depicts the autocorrelation function
of the load at timescale 7 =1 s: the peak of the busy trace
exhibits a periodic fluctuation on the range of 5 s (and mul-
tiples of 5 s) which is absent in the nightly trace. Clearly,
this dependence will affect any 5-lag samples when
T=1s (i.e., 4 and Z;_s) and more generally any two sam-
ples that are 5n seconds apart.

5.2. SVR parameters

To tune the SVR performance, we start by performing a
grid optimization process, which boils down to the selection
of a tuple (C*,e*,y*) of SVR parameters. The best tuple is
chosen as the one that minimizes the Root Mean Square
Error (RSME) of the prediction, a metric which asses the
quality of the estimator in terms of its variation and
unbiasedness. RMSE has the same units as the quantity
being estimated (specifically, Mbps in our case), and is de-
fined as

RMSE = (12)

We point out that while RMSE is more suited than the
Relative Error (RE) to assess the quality of estimation, at
the same time its interpretation is somewhat harder than
that of the RE index. As such, in the following we will
mainly use RMSE to drive the parameter tuning and selec-
tion, but will use both RMSE and RE metrics to quantify the
forecast accuracy.
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Table 1
Input trace: link load at different timescales.
i 0 2 4 6 8 10
t; (ms) 1 4 16 64 256 1024
Day-time 1 (Mbps) 116.4 1183 120.4 119.5 118.9 1213
o (Mbps) 28.9 20.7 16.4 12.7 10.3 7.9
Night-time 1 (Mbps) 60.8 62.4 68.1 69.6 68.2 66.2
o (Mbps) 32.6 21.2 15.4 9.6 6.8 8.7
3 Daily ——
o nghtly ..............
= n 0.8
o e
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Rl 2 G os
j 150 & < Y
= 100 L
—= 50 02}
200 " ol
150 & E
I|
100 © 02

50

Ok 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

1 10 100 1000 10000
Trace Sample, T =1024 ms

Fig. 1. (a) Subset choice at different timescales for the daily dataset and (b) autocorrelation function of the daily and nightly trace datasets.

Fixing for the moment d=5 and 7 =1 s, we construct a
dataset with all possible inputs/outputs by means of a slid-
ing window as described in Section 4. We selected 20% of
the dataset at random to train the SVM, and tested the pre-
diction accuracy over the remaining 80%.

We choose 10 values for each of the SVR parameters, for
a total of 1000 tuples (C,€,7). To select the boundary of the
parameter space to be explored, we apply the following
reasoning. A prescription for the regularization parameter
C follows from (7): if we consider that, |o; — | < C and
|k(xi,x)] <1, we have that |f(x)] <SvC, which yields
C < [f(x)|/Sv. While for |[f(x)] a reasonable choice is
max(|y + 3ayl, [y — 30,|) (to avoid outliers influence), since
the number of support vector cannot be known a priori we
consider the boundary cases where either all training data
are support vectors Sy = S, or only a single data point is a
support vector Sy = 1. Finally, [22] suggest that € should
be proportional to the input noise level: however, as the
definition of link load ‘“noise” is questionable, we are
forced to resort to an empirical choice - and we proceed
similarly for y.

This grid optimization process for the daily trace yields
to a minimum RMSE = 5.9 when (C*, e*,y*) = (30,5,0.05),
to which a relative error RE =3.5% corresponds. Fig. 2
shows the whole (C,¢€,y) parameter set explored, condi-
tioning over each of the three parameters. For the sake of
clarity, let us consider the leftmost plot of Fig. 2, whose
x-axis represents the C parameter values. Each point in
the plot represents a single experiment, and for any value
of the C parameter on the x-axis, 100 points are plotted
that correspond to the 100 combinations of the other two
parameters € and 7. The plot also contains some reference
lines: the vertical thin line refers to the best value C*; the

dotted thick line represents, for any given C, the average
of the RMSE achieved for the 100 possible combination of
€ and 7y and the solid thick line refers instead to the RMSE
achieved as a function of C when the other parameters are
set to their best values (i.e., € and y*). From the Fig. 2, it
can be gathered respectively that (i) as the RMSE is convex
in C, the value of C should be neither too big nor too small,
(ii) the prediction error exhibit a (roughly exponential) in-
crease with y value, and (iii) that the impact of € is less sig-
nificant with respect to C and y. A similar operation on the
nightly trace yielded a different best combination of
parameters, namely (25,0.1,0.001). At the same time, the
daily parameters (C", €*,*) ranked 50th in the night trace,
with an RMSE increase of 4%: thus, even in extremely dif-
ferent load conditions, the SVM prediction is rather robust
to the parameter choice.

5.2.1. Training size impact

Next, we explore the impact of the training set size S on
SVR performance: we build a training set with S randomly
chosen samples and evaluate the prediction accuracy over
the remaining samples. The process is repeated 10 times
for each value of S, changing the training and validation
set every time. RMSE results are reported in the boxplot
Fig. 3 as a function of the training size S (top x-axis) and ra-
tio S/N over the total trace size (bottom x-axis). The boxes
report the lower quartile, median, and upper quartile val-
ues; the lines extending from each end of the boxes repre-
sents the extent of the rest of the data (i.e., the maximum
and minimum values), and outliers are not filtered out.

First, it can be observed that there exists an noticeable
variation in the RMSE performance for a given training
set size, emphasizing the importance of the training set
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Fig. 3. Impact of training size on prediction accuracy.

in the model construction. Then, it can be observed that
whenever the number of samples is small (S/N < 1/16),
the SVM is under-trained and prediction error is large. For
instance, relative error, not shown on the picture, grows
beyond 10when S/N < 1/128.

Afterwards, SVM rapidly learns and both the RMSE and
RE errors quickly drop (specifically, RMSE=5.9 and
RE =3.5% when S/N=1/4), until the SVM is over-trained
(§/N = 1/2) and the error slightly increases (RE =4.2%).
In our situation, in the zone S/N € [1/8,1/4] the RMSE
stays at acceptable values, with a minimum in S/N =1/4,
which validates our choice of S/N = 20%.

5.3. Embedded parameter impact

In this section, we explore the impact of the embedding
parameters d and 7 in the prediction accuracy of SVM ver-
sus d-MA and AR models. As earlier explained in Section 4
AR models are evaluated through a SVR with a linear ker-
nel. In this case, the parameters that must be set are only
C and e: by performing a new grid optimization process,
we obtain that the best choice is keeping the values C
and € already obtained for the radial basis kernel. Fig. 4 re-
ports the RMSE results as a function of the number d of
previous samples, for both nightly (right) and daily (left)
periods at the 7 =1 s timescale. Each point in the plot cor-
respond to the average result over 10 repetitions of the

experiment. As a first remark, results are different, though
quantitatively very close: in other words, SVR does not ap-
pear to offer a significant improvement, especially over d-
AR models.

Nevertheless, let us investigate more closely the daily
period, where the d-MA is heavily affected from the peri-
odical fluctuation: intuitively, the error is minimum when-
ever the forecast is exactly a multiple of the periodical lag
(indeed, for d = 5 samples, two of them, thus 2/5, are corre-
lated, while for d = 6 only 2/6 are correlated, and so on) and
grows in between two multiples. Interestingly, the LSO
heuristic is not helpful in this case (as in this case the peri-
odic fluctuation may be seen as a level shift and thus disre-
garded), while the robustness of SVR models is preserved.
It has to be noted that both SVR and d-AR models are sim-
ilarly affected by variations of d, but that the use of a radial
kernel yields to slightly more accurate results.

Considering the nightly period, it can be seen that the
knowledge of a few elements is useful for the d-MA predic-
tion, as long as the number of previous observation is
small: indeed, when d > 5 the d-MA filter starts averaging
useless information, actually worsening its accuracy. At
the same time, while the d-LSO limits the error for high
values of d, it may actually worsen the accuracy at low val-
ues of d (and is furthermore sensitive to its parameter tun-
ing). Conversely, SVR outperforms d-MA for all values of d,
and is also naturally robust even to unreasonable choices
of d - i.e., increasing the number of features neither ame-
liorate nor degrade the resulting accuracy. When consider-
ing d-AR models, we find out that the performance is very
close to that SVR: this can be expected as in this case, the
very small value of the 7 = 0.001 means that linear kernel is
a good approximation of the radial one. Still, the slightly
better performance achieved by the radial basis kernel
confirms it to be a good choice, other than for throughput
[3] and latency [4] prediction, even for the purpose of link
load forecast.

Finally, setting d =5 (thus, the best case for the d-MA
filter but not for the SVM), we investigate whether SVM
forecasts bring any improvement at short time-scales.
RMSE of the prediction is depicted in Fig. 5 as a function
of 7, where we report only the nightly period to avoid clut-
tering the pictures. Behavior of both predictors is similar,
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with short time scales constituting a stiffer scenario, as can
be expected as a result of the much higher traffic variabil-
ity shown earlier in Table 1. The picture also shows the
RMSE difference of the two forecast techniques, from
which it can be gathered that at very short time-scales
(1 ms), SVM brings about a 10% improvement over d-MA.

6. A closer look at forecast performance
6.1. Temporal evolution

After having performed a sensitivity analysis of SVR, let
us dig deeper into SVR performance, starting by an investi-
gation of the temporal evolution of SVR prediction. Let us
start with an example where, using the SVR parameters
obtained through the grid optimization, we fix =1 and
d =10 and devote the first 2000 sample of the daily dataset
for training and the last 2000 consecutive samples for
testing.

The left portion of Fig. 6 reports the temporal evolution
of real data and SVR forecast (top) as well as the relative
error RE (bottom), from which it can be gathered that
SVR prediction closely follows the real link load evolution,
though the latter exhibits several load “drops”, whose
duration is on the order of a seconds, which SVR is unable
to predict. We stress, however, that from a provider per-

spective it may not be critical to be able to precisely predict
such short load drops, since no specific action needs to be
undertaken as a reaction. This is clearly in stark opposition
with respect to load spikes, which we argue would be more
critical to be able to anticipate, in order to promptly trigger
possible counter-measures.

The impact of load drops on SVR performance is further
highlighted in the right portion of Fig. 6, which depicts a
scatter plot of the real and forecasted load values (top)
and the probability distribution function of the SVR rela-
tive error (bottom): from comparison of these pictures is
clear that the bias toward over-estimation is entailed by
the early noticed load drops, rather than by a systematic
bias introduced by the model.

This asymmetry due to the load drops, slightly bias the
mean relative error toward negative values p = —0.0065. At
the same time, we point out that performing a randomness
test for the sequence of relative errors measured over the
test set, we find that errors are independent and identically
distributed. In particular, results of a Runs Test state that
we could not reject the hypothesis of randomness for this
sequence (with a p-value of 0.3161): this allows us to
calculate a 95% confidence interval for the error
I=[-0.0092,-0.0039].
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This fact has very important consequences in the case of
online predictions, as it could be used in two rather differ-
ent contexts. For instance, when the forecast accuracy
starts to degrade (as many predictions slightly fall outside
the confidence interval), this may imply that a new train-
ing phase should be triggered. Conversely, if errors differ
drastically from the previous ones, this might imply that
something unusual is occurring with the traffic load -
which might find useful applications in the field of anom-
aly detection.

6.2. Computational complexity

The SVR forecast performance can also be described in
terms of their cost. First of all, it is important to observe
that SVR involves two rather different tasks, namely model
training and the actual forecast operation: the former trans-
lates into the solution of an optimization problem, whereas
the latter only involves a limited number of simple opera-
tions. The above decoupling of SVR computational com-
plexity is a very desirable property. Indeed, training and
forecast tasks have to be performed at intrinsically differ-
ent timescales: model training is an offline operation, that
has to be done episodically (or at most periodically) and in
the background, while forecasting need to be performed
constantly and in an online fashion.

Concerning the model training, we need to stress that
there exist very efficient algorithms for the solution of
the SVR problem: for example, in this paper we use an
implementation of a sequential minimal optimization
decomposition technique, whose computationally com-
plexity is linear in the number of support vectors.

The computation of the forecast itself only involves a
number of simple operations as can easily be gathered by
observing the SVR regression function (7). Moreover, an
interesting point is that it is actually possible to upper
bound a priori the number of support vectors returned as
a solution to the problem. This can be done by adopting
a slightly different formulation of the SVR problem, called
v-SVR [13]: as opposite to the &-SVR case, though, we
would no longer be able to tune the ¢-tube, i.e., the margin
€ below which errors are tolerated. Thus, rather than tun-
ing the tolerable error, one could choose to fix the maxi-
mum cost that can be afforded - which could be
extremely useful to limit the amount of CPU resources de-
voted to the online forecast operation.

Still, in the case of &-SVR, the online forecast cost can be
evaluated a posteriori, and as we will show, it clearly does
not constitute a performance bottleneck. The primary com-
plexity indicator for the SVR forecast operation is clearly
the number of support vectors. Fig. 7 reports, for the daily
dataset and radial basis kernel, the number of support vec-
tors generated by the model as a function of the embedded
parameter d. Box-plots report the median, first and third
quartiles, minimum and maximum number of support vec-
tors obtained over 100 different training per value of d; on
the left y-axis, we also report the percentage of support
vector over the training set size (which is again set to
20% of the dataset).

For small values of d, more support vectors are needed
while for values greater than 5, the mean percentage re-
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Fig. 7. Number of support vectors for different values of d.

mains almost constant around 17%, though we can still ob-
serve a variability of the results, which is due to the
random selection of the training set. For the AR models
(evaluated via the use of SVR with linear kernel) results
are similar, with an increase of about 5% on the number
of support vectors - which would thus imply a slightly
higher computational complexity and resource require-
ment in both the offline training and the online forecast
operations.

Finally, we give a very rough but nevertheless useful
feeling of the actual CPU requirement, reporting the typical
execution time performance of our experimental cam-
paign. Experiments, which were run on a Linux PC featur-
ing a 2.0 GHz Intel Core 2 Duo processor equipped with
2 GB of RAM, show that:

¢ the offline training time is about 0.83 seconds per thou-
sand support vectors - which means that the mean
training time of a single SVR model of Fig. 7, averaged
over all d values, is less than a third of second;

o the online forecast rate is above 9000 forecasts per sec-
ond when d=10 - thus much faster than real-time,
which further testifies to the viability of online SVR
forecast.

6.3. Extending the forecast horizon

Finally, an interesting question that we want to assess is
whether it is possible to extend the forecasting horizon by
cascading a series of SVR predictors - in other words
whether recursively using forecasted results as an input
for a new forecast is viable and promising in the case of
link load forecast. We stress that the approach is feasible
and intriguing, as results on computational complexity
show that, when 7 =1s, it would be possible to actually
cascade more than 9000 SVR predictors in a real-time on-
line forecast: thus, we want to assess how fast the predic-
tion accuracy degrades.

More formally, at time t = dt we forecast the load at the
next time step t=(d+ 1)t, feeding the SVR function f{-)
with the last d observation of the series, getting as result
the prediction y,4,1 = f(X4). Always at time t = dt, we then
forecast the load at time step t =(d + 2)t using the last d-
1 observation of the series and the forecasted value y,,4
in the input X4, 1, thus:
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This procedure can be iterated arbitrarily, and we define as
forecast horizon H the number of SVR forecasts that are cas-
caded: notice that when H > d, this means that we are
using only forecasted values as input features. In what fol-
lows, to avoid the influence of the training set, we train and
validate the model over the same dataset: by doing so, we
will be able to isolate the impact of the forecast horizon.

For illustration purpose, the left plot of Fig. 8 gives an
example of recursive forecast for SVR and d-MA models
when d=10 and for an horizon up to H=30s. At time
t =0, we apply the cascading process and plot the y, pre-
diction for a given horizon h: notice that the x-axis repre-
sent the forecast horizon for both SVR and d-MA,
whereas it represents the time (in the future) as far as
the real series is concerned. In the picture, the d = 10 real
load samples immediately preceding time t=0 are also
shown: these points determine the initial load forecast
for time t=1, after which the recursive process starts
(and so SVR and d-MA models start to be fed with their
own forecasts).

From this simple example, it can be seen that SVR is
able to more closely follow the real data with respect to
d-MA, at least for small values of H. Conversely, d-MA pre-
dictor quickly converges to a fixed point, though the pre-
cise value to which an oo-cascaded d-MA filter converges
depends on the actual order of the series.! Aiming at
assessing the average RMSE and RE of the recursive fore-
cast, and in order to gather results that are valid to a more
general extent, we perform an exhaustive set of experi-
ments, repeating the process 10 times for different training
sets. The right portion of Fig. 8 depicts the RMSE error as a
function of the forecast horizon for both SVR and d-MA and
two values of d € {10,20}. RMSE is evaluated as the error
between the cascaded value y4,y = f(X4,4_1) forecasted at
time t = dt and the real value /4, at time t = dt + H. Results

1 For example, it is easy to verify that the d-MA cascading process over
x=(1,2,3) converges to 2 + 1/3, whereas it converges to 2 — 1/3 in case of
x=(3,2,1).

Table 2

Relative error RE between H-horizon and “one-step” SVR forecast.

H 1 2 5 10 15 20
d=10 0% 0.7% 1.1% 1.9% 2.5% 2.8%
d=20 0% 0.8% 1.3% 1.9% 2.4% 2.8%

show that in all cases the RMSE error linearly increases
with the forecast horizon H, but that cascaded SVR perfor-
mance exhibit a lower error. Moreover, it can be gathered
that d = 20 yields better results: this is not surprising, since
in this case we are using more “real values” as input
features.

Finally, we compare the H-horizon cascaded SVR fore-
cast (i.e., the recursive SVR forecast for the series value at
time t + H, performed at time t), with the “one-step” fore-
cast (i.e., a normal SVR forecast). This comparison helps
us in assessing the extent of the degradation in the predic-
tion quality, which can be solely imputed to the cascading
process itself. These results, expressed in terms of RE, are
reported in Table 2 for different values of H: rather surpris-
ingly, results state that the prediction of a cascaded SVR
with a rather large horizon of H=20s is only about 3%
worse than a “one-step” prediction, and that, furthermore,
this holds irrespectively of d. Interestingly, this suggests
that, if good accuracy is obtained for H =1, the recursive
process would not much affect the quality of the
prediction.

7. Discussion and conclusion

This paper explores the use of Support Vector Regres-
sion for the purpose of link load forecast: using a hands-
on approach, we tune the SVR performance and compare
it with those achievable by using Moving Average (MA)
and Auto-Regressive (AR) models. Our results show that,
despite a good accordance with the actual data, the SVR
gain achievable over simple prediction methods such as
MA or AR is not sufficient to justify its deployment for link
load prediction at short time scales. Yet, we have to pay a
tribute to SVR for a number of extremely positive aspects:
for instance, SVR models are (i) rather robust to parameter
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variation, (ii) their computational complexity is far from
being prohibitive, and (iii) the cascading of SVR models
may significantly extend the achievable forecast horizon,
entailing only a very limited accuracy degradation.

It is our belief that this work constitutes a starting point
for further investigation, whose directions are highlighted
in the following. First, in order to gather more robust re-
sults, different traces representative of rather different net-
work scenarios should be used to validate the extent of the
above analysis. Then, the question remains about what can
be done to improve the performance of SVR at short time
scales: preliminary results seem to suggest that a manipu-
lation of the time series (e.g., differentiation, statistical
properties, etc.) may bring a significant benefit in terms
of the forecast accuracy - in which case comparison over
more sophisticated techniques for time series forecast
would be needed. Another open issue is whether the use
of other kernels (e.g., multi-linear or other that can take
into account the characteristics of the time series) possibly
improves the SVR accuracy, which could thus avoid the
burden of costly time-series manipulation. Finally, other
interesting directions for this research could possibly in-
volve the evaluation of different forecast targets with re-
spect to the average link load (such as the peak load, or
the 95th percentile, etc.) as well as the analysis of longer
timescales. Indeed, concerning the latter point, it could
be interesting to investigate whether feeding SVR with fea-
tures such as time-of-day and day-of-week would help in
forecasting periodic load fluctuations (such as lunch breaks
and week-ends).
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