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Abstract— We study the TCP flow arrival process, starting from
the aggregated measurement at the TCP flow level taken from our
campus network. In particular, we analyze the statistical properties of
the TCP flow arrival process. We define different traffic aggregates by
splitting the original trace, such that i) each of them is constituted by
all the TCP flows belonging to the same traffic relation, i.e., with the
same source/destination IP addresses and ii) each traffic aggregate has,
bytewise, the same amount of traffic. To induce a divisions of TCP-
elephants and TCP-mice into different traffic aggregates, the used algo-
rithm packs the largest traffic relations in the first traffic aggregates, so
that subsequently generated aggregates are constituted by an increasing
number of smaller traffic relations. The Long Range Dependency (LRD)
characteristics are presented, showing as possible causes of the LRD of
TCP flow arrival process i) the heavy tailed distribution of the number of
flows in a traffic aggregate, and ii) the presence of TCP-elephants within
them.

I. INTRODUCTION

Since the pioneering work of Danzig [1], [2], and Pax-
ons [3], [4] the interest in data collection, measurement and
analysis to characterize either the network or the users behav-
ior increased steadily, also because it was clear from the very
beginning that “measuring” the Internet was not an easy job.
The lack of simple, yet satisfactory model like the traditional
Erlang teletraffic theory for the circuit-switched networks,
still pose this research field as a central topic of the current
research community. Moreover, the well known Long Range
Dependency (LRD) behavior shown by the Internet traffic
makes traffic measuring and modeling even more interesting.
Indeed, after the two seminal papers [4], [5], in which authors
showed that traffic traces captured on both LANs and WANs
exhibit LRD properties, many works focused on studying
the behavior of data traffic in packet networks. This, with
the intent of both trying to find a physical explanation of
the properties displayed by the traffic, and to find accurate
stochastic processes that can be used for the traffic description
in analytical models.

Considering the design of the Internet, it is possible to
devise three different layers at which study Internet traffic: Ap-
plication, Transport and Network layer, to which user sessions,
TCP or UDP flows, and IP packets respectively correspond.
In this paper, we only concentrate our attention to the flow
level, and to the TCP flow level in particular, given that the
majority of the traffic is today transported using the TCP
protocol. The motivation behind this choice is that while it was
shown (e.g., [4], [6]) that arrival processes of both packets and
flows exhibit LRD properties, a lot of researchers concentrated
their attention to the packet level, while the flow level traffic
characteristics are relatively less studied. Moreover, even if
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the packet level is of great interest to support router design,
e.g., for buffer dimensioning, the study of the TCP flow level
is becoming more and more important, since the flow arrival
process is of direct role in the dimensioning processes of web
servers proxies and performance of flow aware algorithms;
Going back at the packet level, the prevailing justification to
the LRD presence at this layer is supposed to be the heavy
tailed distribution of files size [7]: the presence of long-lived
flows, called in the literature “elephants”, induces correlation
to the packet level traffic, even if the majority of the traffic
is build by short-lived flows, or “mice”. The question we try
to answer in this paper is whether the presence of mice and
elephants has an influence to the LRD characteristics at the
flow level as well. To face this topic, we collected several days
of live traffic from our campus network at the Politecnico di
Torino, which consist of more than 7000 hosts, the majority of
which are clients. Instead of considering the packet level trace,
we performed a live collection of data directly at the TCP flow
level, using Tstat [8], a tool able to keep track of single
TCP flows by looking at both the data and acknowledgment
segments. The flow level trace was then post-processed by
DiaNa [9], a novel tool which allowed to easily derive several
simple as well as very complex measurement indexes in a very
efficient way. Both tools are under development and made
available to the research community as open source.

To gauge the impact of elephants and mice on the TCP
flow arrival process, we follow an approach similar to [10],
[11], that creates a number of artificial scenarios, deriving each
of them from the original trace into a number of sub-traces.
We then study the statistical properties of different sub-traces,
showing that the LRD tends to vanish on traffic aggregates
composed mostly of TCP-mice.

II. PROBLEM DEFINITION

A. Preliminary Definitions

When performing trace analysis, it is possible to focus
the attention on different aggregation levels. To mimic the
splitting/aggregation process that data experience following
different paths in the network, we define four level of aggrega-
tion, sketched in Fig. 1-a: IP packets, TCP/UDP flows, Traffic
Relations (TR), and Traffic Aggregates (TA). Being interested
into the Flow arrival process, we will neglect the packet level,
and also the UDP traffic, because of its connectionless nature,
and because it consists of a small portion of the current Internet
traffic. Let us define:
TCP Flow: A single TCP connection1 is constituted by several
packets exchanged between the same client � (i.e., the host that

1In this paper we use the term “flow” and “connection” interchangeably.
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Fig. 1. (a) Aggregation Level from IP to TA Level and (b) Flow Size and
Arrival Times for Different TAs

performed the active open) and same server � (i.e., the host that
performed the passive open), having besides the same (source,
destination) TCP port pair. We will consider only TCP flows
whose three-way-handshake was successful, in which case the
flow arrival time correspond to the first client

�����
segment

observed. ���
	 ���
�� denotes the bytewise size of the � -th flow,
which considers the amount of bytes flowing from the server
� toward the client � , i.e., the usually most relevant part of
data.
Traffic Relation: A Traffic Relation (TR) ��	 ���
�� aggregates
all TCP flows having � as client and � as server; ����	 ����������� ���! #" $&%&��('*) ���
	 ������ denotes its size, expressed in bytes. The
intuition behind this aggregation criterion is that all the packets
within TCP flows belonging to the same TR (usually) follow
the same path(s) in the network, yielding then the same
statistical properties on links along the path(s).
Traffic Aggregate: We define a higher level of aggregation,
which we call Traffic Aggregate (TA). The + -th TA is stated
by ,�- and its bytewise size is �/.0	&+�1� � �! #" $2%4365#7#8�9:� � 	 ���
�� ;
TAs will be artificially created such that, at a given aggregation
level, they all have (almost) the same size. In the following,
rather than using the bytewise size of flows, TRs and TAs,
we will refer to their weight, i.e., their size normalized
over the total amount of bytes observed in the whole trace; � � � � �! #" $2%4�*�
	 ���
�� ; thus <= �#	 ���
��>�?���#	 ���
��#@ ; � <=  2$ �
�A��	 ���
��#@ ; � <= - �B� . 	2+�
@ ; will be the flow, TR, TA
weight respectively.

B. Input Data

The analysis was conduced over different traces collected
in several days over our Institution ISP link during October
2002. Our campus network is built upon a large 100 Mbps
Ethernet LAN, connected to the Internet by a single router,
whose WAN link has a capacity of 28 Mbps2. We used Tstat
to perform the live analysis of the incoming and outgoing
packets sniffed on the router WAN link, splitting the flow-level
trace into several 24 hours blocks, each of which has been
separately analyzed. We eliminated the non-stationary time-
interval (i.e., night/day effect) from each block and considered
then the busy-period from 8:00 to 18:00. It is worth to point
out that, even though backbone traffic is stationary over a
few hours only, our edge traffic can be considered stationary
over a longer window. Besides, we considered only the flows
originated by clients internal to our LAN, since they represent
the vast majority of hosts.

2The data-link level is based on an AAL-5 ATM virtual circuit at 34 Mbps
(OC1).

TABLE I

TRACE SUMMARY

Internal Clients 2,380 Flows Number C�DFE�GIHJELK�M
External Servers 35,988 Packets Number N�EJD NJO�H�ELK M
Traffic Relations 172,574 Total Trace Size 79.9 GB

Given that the qualitative results observed on several traces
do not change, in this paper we present results derived from
a single trace, whose properties are briefly reported in Tab. I.
In the considered mixture of traffic, TCP protocol represents
94% of the total packets, which allows us to neglect the
influence of the other protocols; considering the application
services, TCP connections are mainly constituted by HTTP
flows, representing 86% of the total services and more than
half of the totally exchanged bytes. Notice that Peer-to-peer
traffic is blocked by a firewall. Considering the different traffic
aggregation levels previously defined, Fig. 1-b shows examples
of the flow arrival time sequence. Each vertical line represents
a single TCP flow, which started at the corresponding time
instant of the x-axis, and whose weight <= �#	 ���
�� is reported
on the y-axis. The upper plot shows trace ,�. , whose <= .P�RQ ,
and represents the largest possible TA, built considering all
connections among all the possible source-destination pairs.
Trace sub-portions ,JS and ,JT , while being constituted by a
rather different number of TRs ( U ,�SVUW�YX�ZW[]\ and U ,JT1UW�^X]Z ),
have indeed the same weight <= S �_<= T �`Q�@�X�a . Observing
Fig. 1-b, it can be gathered that , S aggregates a larger number
of flows than , T ; furthermore, weight of , S flows is smaller
(i.e., TCP flows tend to be “mice”), while , T is build by a
much smaller number of heavier (i.e., “elephants”) TCP flows.
This intuition will be confirmed by the data analysis presented
in Sec. III. Finally, TCP flows shown in ,�b constitute a unique
traffic relation; this TR is built by a small number of TCP
flows, whose weight is very large, so that they amount to 1/16
of the total traffic.
To give the reader more details on the statistical properties of
the different TRs, Fig. 2-a shows the cumulative distribution
of <=  2$ for all the TRs (using a log/log plot). It can be
noticed that the distribution can be approximated by a heavy
tailed distribution. Given that we are interested into the TCP
flow arrival process, the distribution of the TCP-flows number
per TR is more interesting. It is shown in Fig. 2-b using a
log/log plot, which exhibits a clearly heavy tailed distribution.
It is tempting to conjecture that this could be one of the
possible causes of the LRD properties in the TCP-flow arrival
process: this is analogous with respect to the heavy-tailed
pdf of the flow-size, which induces LRD properties to the
packet level, i.e., the also known cd@�e�@Wf effect, and service
time distribution with infinite variance, e.g., Pareto distributed
service times.

C. Properties of the Aggregation Criterion

The aggregation criterion has been designed in order to
satisfy some properties that help the analysis and interpretation
of results. We consider TR aggregation a natural choice, since
it preserves the characteristics of packet within TCP flows
following the same network path, having therefore similar
properties. But several TRs can share the same link along their
path, thus forming an higher level of aggregate, i.e, a TA.
Obviously, different criterion can be defined when forming
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Fig. 2. (a) Traffic Relation Size and (b) Flow Number Distributions

TA; among those, we impose that the original trace is split
into � different TA, such that each TA has, bytewise, the
same amount of traffic, i.e., the � -th portion of the total
traffic. Being possible to find more than one solution to the
previous problem, the splitting algorithm we implemented
packs the largest TRs in the first TAs; besides, in virtue of the
bytewise traffic constraint, subsequently generated aggregates
are constituted by an increasing number of smaller TRs. To
formalize the problem, and to introduce the notation that will
be used also to present the results, let us define:� Class K: the number of TA in which we split the trace;� Slot J: a specific TA of class K, namely , - 	�� L�/+��� Q]����� ;� Weight <= -�		�  : the weight of slot J of class K;� Target Weight <= 		�  � Q�@
� : the ideal portion of the

traffic that should be present in each TA at class � .

Fig. 3 sketches the splitting procedure. When considering class� � Q we have a single TA of weight <= 	�� �� Q , derived
by aggregating all TRs. It corresponds to the original trace.
Considering � ��� , we have two TAs, namely , ) 	��W and
,�W	��] ; the former is build by TRs (only 242 in the considered
trace), which account to <= 	��  � Q�@�� of relative traffic, while
the latter contains all the remaining TRs. This procedure can
be repeated for increasing values of � , until the weight of a
single traffic relation becomes larger than the target weight.
Being impossible to split a single TR into smaller aggregates,
we are forced to consider TAs having a weight <=��- 		�P��
<= 		�P . The weight <= 	��  has therefore to be interpreted as an

ideal target, in the sense that it is possible that one (or more)
TRs will have a weight <= - 	�� ��_<= 	��  , as the number of
slots grows. In such cases, there will be a number of fixed
slots (stated by

� 		�P ), i.e., TAs constituted by a single TR,
of weight <=��- 	�� �� = 		�P ; the remaining weight will be
distributed over the ��� � 		�P non-fixed slots; therefore the
definition of <= -/		�P is:

<= -/		�P �
��� �� <=��- 		�P�� Q� � �! -#"%$ �'&�%
Q(��) $ �'&�%�!'*) <= �� 		� ��� � 	��  * Q� � $ �'&�%  -+" &

In the dataset considered in this paper, for example, the TR
, b shown in Fig. 1 is the largest of the whole trace, having
<= b � a-, aW\.�/� Q�@ QJ\ . Therefore, from class � � Q�\ on,

the slot J=1 will be always occupied by this aggregate, i.e.,
, ) 	��  �d, b �102�43 QJ\ , as evidenced in Fig. 3.
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D. Trace Partitioning Model and Algorithm

More formally, the problem can be conduced to a well
known optimization problem 576�8(9;:=< of job scheduling over
identical parallel machines [12], which is known to be strongly
NP-hard. Traffic relations TR are the jobs that have to be
scheduled on a fixed number � of machines (i.e., TA) min-
imizing the maximum completion time (i.e., the TA weight).
The previously introduced ideal target <= & � Q�@�� is the
optimum solution in the case of preemptive scheduling. Since
we preserve the TR identities, preemption is not allowed;
however, it is straightforward that minimizing the maximum
deviation of the completion time from = 	��  is equivalent to
the objective function that minimize the maximum completion
time. We define > as the Q@? U ,�)�	 Q� U vector of the jobs length
(i.e., TR weights <= � 	 ������ ) and A as the QB?C� vector of the
machine completion times (i.e., TA weights <= - ). Denoting the
mapping matrix as c (i.e., c �ED �?Q means that the i-th job
is assigned to the j-th machine), and stating with c � its i-th
column, we have:F �HGJIIC3LK � �M0A�N� � Q]�O�C�QPLR

s.t.

�� � ) D c �ED � QW�M0 �K � 3 c �2S > �TA � �M0 �K � 3LA � � c �2S > �M0 �
The greedy adopted solution, which has the advantage over,
e.g., an LPT[12] solution of the clustering properties earlier
discussed, implies the preliminary bytewise sorting of the
traffic relations, and three simple rules:� allow a machine load to exceed Q�@
� if the machine has

no previously scheduled job;� keep scheduling the biggest unscheduled job into the
same machine while the load is still below Q�@
� ;� remove the scheduled job from the unscheduled jobs list
as soon as job has been scheduled.

III. RESULTS

To help the presentation and discussion of the measurement
results, we first propose a visual representation of the dataset
in which data is plotted as a function of the class � and
slot + indexes, using besides different gray-scale intensities
to represent the measured quantity we are interested in. As a
first example, Fig. 4-a depicts the number U , - 	�� JU of the traffic
relations mapped into each traffic aggregate ,�-�		�  . Looking
at the plot and choosing a particular class � , every point of
the vertical line represents therefore the number of TRs within
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each of the � possible TA. Given the partitioning algorithm
used, it is straight-forward to understand the reason why the
larger + is, the larger is the number of TRs within the same TA,
as the gray gradient clearly shows. Contour lines are shown
for U , - 		�P UN� � Q]�JQJa �JQJaWa � Q�a]aWa � Q�a�a]a]a � as reference values;
it can be gathered that the bottom white-colored zone of the
plot is constituted by fixed slots (i.e., U ,�U � Q ), whereas the
highest slot ( + � � ) has always U , & 		� JU+�^QJa]a �#aWa]a ��0 � .

A. Traffic Aggregate Bytewise Properties

The number of TRs within TAs spread smoothly; let us see
how this is reflected on the number of TCP flows withing each
TA

� �! #" $&%43]7 8 �'&�%:U ��	 ������ U , shown in Fig. 4-b. Quite surpris-
ingly, we observe that also the number of TCP connections
within TA shows an almost similar spreading behavior: the
larger number of TRs within a TA, the larger number of TCP
flows within the same TA. Indeed, the smoothed upper part
of the plot (i.e., roughly, slots + � � @�� ) is represented by
TAs with a number of flows larger than 5,000; instead, TAs
composed by few TRs contain a much smaller number of
TCP connections. Indeed, it must be pointed out that there
are exception to this trend, as shown by the “darker” diagonal
lines (e.g., those ending in slot + � �]X or + � X�� , considering
class � � QJaWa ). Probably, within these TAs there is one (or
possibly more) TR which is built by a large number of short
TCP flows. Coupling this result with the bytewise constraint
imposed on TAs within the same class, we can state that the
bottom region is constituted by a small number of long flows,
while top region is constituted by a huge number of short
flows.
While this might be surprising at first, the intuition behind
this clustering is that the largest TRs are built by heavier
TCP-connections than the smaller TRs, i.e., TCP-elephants
play a big role also in defining the TR weight. Therefore
the splitting algorithm, by packing together larger TRs, tends
also to pack together TCP-elephants. This approach is also
useful in practice if we consider the fact that the “Pareto
effect” is visible at different network layers and characterizes
heavily the properties of the traffic. This induces to study
separately traffic made of TA-elephants and TA-mice and the
described procedure, based on traffic volume, is also able to do
so. However, the gained result do not exclude the presence
of TCP-mice in the bottom TAs, nor the presence of TCP-
elephants in the top TAs; therefore, to further ensure that the
clustering property of TCP-elephants in the first slots holds, we
investigated how the TCP flow size distributions change in the
different aggregates. Fig. 5-a plot the empirical flow size dis-
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tribution for each TAs, considering class � ��� . As expected,
i) TCP-elephants are evidently concentrated in lower slots, as
shown by the heavier tail of the distribution; ii) the TCP-
elephants presence decreases as the slot increases, i.e., when
moving toward higher slots. The complementary cumulative
distribution function 5 ��� ��� � , shown in the inset, confirms
this trend. Therefore the adopted aggregation criterion induces
a division of TCP-elephants and TCP-mice into different TAs.
In the following, we will use for convenience the terms TA-
mice and TA-elephants to indicate TA constituted (mostly) by
TCP-mice and TCP-elephants flows respectively.

B. Inspecting TCP Interarrival Time Properties within TAs

The result shown in previous section has clearly important
consequences when studying the TCP flow arrival process of
different aggregates.

Let us first consider the mean interarrival time of TCP
flows within each TA, shown in Fig. 5-b. Intuitively, TA-
mice have a large number of both TR and TCP flows, and
therefore TCP flow mean interarrival time is fairly small (less
than 100ms). This is no longer true for TA-elephants, since
a smaller number of flows has to carry the same amount of
data over the same temporal window. Therefore, the mean
interarrival time is much larger (up to hours). We recognize
that a possible problem might arise, affecting the statistical
quality of the results: the high interarrival time may be due
to non-stationarity in the TA-elephants traffic, where TCP
flows may be separated by long silence gap. This effect
becomes more visible for large values of � . We will try to
underline whether the presented results are affected by this
problem in the remaining part of the analysis. Let us now
consider the Hurst parameter �*	2+ �O�  measured considering
the interarrival time of TCP flows within TAs. For each TA,
we performed the calculation of �*	2+ ���P using the wavelet-
based approach developed in [13] and usually referred to as the
AV estimator, which has emerged as one of the best estimators.
The results are shown in Fig. 6-a, which shows that the
Hurst parameter tends to decrease for increasing slot, i.e., the
TA-mice show ��	&+ ���  smaller than TA-elephants. Whenever
either the confidence interval is too large or the series is not
stationary, the corresponding �*	2+ �O�  are not reported in the
plot. Still, the increase in the Hurst parameter is visible for
TA-elephants.

To better show this property, Fig. 6-b presents detailed plots
of �*	2+ ���P for �4� � Q�a �
X]a �JQJa]a � . It can be observed that the
Hurst parameter always tends to decrease when considering
the TA-mice slots, while it becomes unreliable for TA with



TCP Flow Interarrival Times      
Hurst Parameter within Slot J    
for Different Classes K          

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  5  10

K=10

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  25  50

K=50

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  50  100

K=100

 0.55

 0.6

 0.65

 0.7

 0.8  0.85  0.9  0.95  1

Normalized Slot J/K

K=100
K=50
K=10

(a) (b)
Fig. 6. (a) Interarrival Time Hurst Parameter of TCP Flows within all TAs
and (b) for Selected Classes ���������	��
��	��������

few TRs, as testified by the larger confidence intervals. This
is particularly visible when considering the � � QJa]a class.
In the bottom-right plot, finally, we report a detail of the
decaying feature of the ��	&+ ���  value for large + . In the
x-axis, the + @
� value is used, so that to allow a direct
comparison among the three different classes. Notice that the
last class, the one composed by many, small TRs which are
aggregation of small TCP flows, always exhibits the same
Hurst parameter. Therefore, the most important observation,
trustable due to good confidence interval, is that we are
authorized to say that TA-mice behavior is driven by TCP-
mice. Similarly, TA-elephants are driven by TCP-elephants.
Moreover, the interarrival process dynamic in TA-elephants
and TA-mice are completely different in nature because light
TRs tend to contain a relatively small amount of data carried
over many small TCP flows, which do not clearly exhibit LRD
properties. On the contrary, TCP-elephants seem to introduce a
more clear LRD effects in the interarrival time of flows within
TA-elephants.
A possible justification of this effect might reside in the
different behavior the users have when generating connections:
indeed, when considering that TCP-mice are typically of Web
browsing, the correlation generated by Web sessions tends to
vanish when a large number of (small) TRs are aggregated
together. On the other side, the TCP-elephants, which are
rare but not negligible, seem to be generated with a higher
degree of correlation so that i) TRs are larger, ii) when
aggregating them, the number of users is still small (see, for
an example, the ,Jb aggregate in Fig. 1). As a consequence,
the effect on the TCP flow arrival time is similar to a ON-
OFF source behavior, whose ON period is heavy-tailed and
vaguely equal to the file download period, which turns out
to follow an heavy tailed distribution; besides, we do not
care about the OFF period. This could be one of the possible
causes of LRD properties at the flow level. Finally, TAs tends
to aggregate several TRs, separating short term correlated
connections (TA-mice) from low-rate ON-OFF connections
with infinite variance ON time (TA-elephants). This clearly
recall to the well know phenomena described in [7]; that
is, the superposition of ON-OFF sources (as well as “packet
trains”) exhibiting the Noah effect (infinite variance in the
ON or OFF period) produces the so called “Joseph effect”:
the resulting aggregated process exhibits self-similarity and in
particular LRD properties. Besides, consider again the heavy-
tailed distribution of the TCP flow number within TRs, shown
earlier in Fig. 2. If we further consider TRs as a superset
of web sessions, we gather the same result stated in [14],

that is, the cd@�e�@]f effect with infinite variance service time
distribution.

IV. CONCLUSIONS

In this paper we have studied the TCP flow arrival process,
starting from the aggregated measurement taken from our
campus network; specifically, we performed a live collection
of data directly at the TCP flow level, neglecting therefore
the underlaying IP-packet level. Two layered high-level traffic
entities were defined: i) traffic relations, which are constituted
by all TCP flows with the same destination, and ii) traffic
aggregates of traffic relations. The algorithm used to create
traffic aggregates split the original trace into sub-traces mainly
made of either TCP-elephants or TCP-mice.
This permitted to gain some interesting insights on the TCP
flow arrival process. First, we have observed, as already
known, that long range dependence in the TCP flow arrival
process can be caused from the fact that the number of flows
within a traffic aggregate is heavy-tailed. In addition, the traffic
aggregate properties allowed us to see that TCP-elephant
aggregates behave like ON-OFF sources characterized by
an heavy-tailed activity period, which cause LRD as well.
Besides, we were able to observe that LRD vanishes for TCP-
mice aggregates: this strongly suggests that even ON-OFF
behavior is responsible of the LRD at TCP level.
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