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Abstract—In this paper we proposea novel methodologyto gen-
erate realistic traffic traces to be usedfor performance evaluation
of switches.Indeed,real Inter net traffic shows long and short range
dependencycharacteristics,difficult to be captured by flexible, yet
simple, synthetic models. One option is to use real traffic traces,
which however are difficult to obtain, asrequiresto capture traffic
in differ ent placeswith synchronization and managementproblems.

Wethereforepresenta methodologyto generateseveral synthetic
traffic tracesfr om a singlereal traceof packets,by carefully group-
ing packetsbelongingto the sameflow to guaranteeto keepthe same
statistical properties of the original trace. After formalizing the
problem,wesolve it and apply the resultsto assessthe performance
of schedulingalgorithms in high performanceswitches,comparing
the resultsto other simpler traffic modelstraditionally adopted in
the switching community. Our resultsshow that realistic traffic de-
grades the performance of the switch by more than one order of
magnitudewith respectto the traditional traffic models.

I . INTRODUCTION

In the last years,many differentstudieshave pointed
out how the Internettraffic behaves,focusingtheir anal-
ysis on the statisticalpropertiesof IP packets and traf-
fic flows. The whole network communityis now more
consciousthat traffic arriving at an IP router is consid-
erably different from the traditional models(Bernoulli,
on/off andmany others).Theseminalpaperof Leland[1]
gave new impulsesin traffic modeling,leadingto a huge
numberof papersdeeplyinvestigatingsuchproblemfrom
differentpointof view. A groupof studiesfocusedonsta-
tistical analysisanddatafit, e.g.[2]. Theseworkshigh-
lightedtraffic propertiessuchasLongRangeDependence
(LRD) at large time scalesandalsomulti-fractalproper-
ties.LRD is probablythemostrelevantcauseof degrada-
tion in systemperformancebecauseit heavily influences
thebuffer performancewhosebehavior, beingcharacter-
ized by a Weibull tail [3], is considerablydifferentfrom
the exponentialtail of conventionalMarkovian models.
However, nocommonlyacceptedmodelof Internettraffic
hasyet emerged,becauseeithertheproposedmodelsare
toosimple(e.g.,Markovianmodels),or verycomplex and
difficult to understandandtune(e.g.,multi-fractal mod-
els).

Therefore,Internettraffic is intrinsicallydifferentfrom
the random processescommonly used in performance
evaluation of networking systems,where trace-driven
simulationsarethemostcommonlyusedapproach.This
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appliesin particular to performanceevaluationof high
speedswitches/routers,since the overall complexity of
switchingsystemscannotbe fully capturedby analytical
models. Hence,all the switch designersusesimulation
to validatetheirarchitecturesby stressingits performance
undercritical situations.

How to generatethetraffic to feedthesimulationmodel
is still an openquestion,because:i) traffic models(like
Bernoulli, on/off, etc.) are indeedflexible and easyto
tune, but they are not good model of real Internettraf-
fic; ii) real traffic tracesare more difficult to tune, and
are not flexible sincethey refer to a particularnetwork
topology/configuration.In thispaper, weproposeanovel
approachto generatesynthetictraffic tracesto be used
for performanceevaluation. It steamsfrom the genera-
tion of synthetictraffic from a real trace,and addsthe
capabilityof building differentscenarios(e.g.,numberof
input/outputportsand traffic pattern),keepingreal traf-
fic characteristicsandproviding synthetictraffic flexibil-
ity. Themainideais to generatethetraffic which follows
thetime correlationof packetsat IP flow level and,at the
sametime, satisfiessomegiven traffic patternrelations.
As interestingexampleof application,theperformanceof
basicswitchingarchitecturesarediscussedandcompared
to thetraditionbenchmarkingmodels.

I I . INTERNET TRAFFIC SYNTHESIS

We considera ����� switch,whereeachswitchport
is associatedto an input/outputlink toward externalnet-
works, asshown in top plot of Fig. 1. Onepossibleap-
proachto feedthisswitchwith realpacket tracesrequires
to samplethetraffic ateachof the � links; unfortunately,
this approachis not easilyviable,sinceit requireseither
to haveareal ����� switchingarchitectureor to manage
andsynchronizeseveraldistributedpacket sniffers.

In a more realistic situation,only one tracereferring
to one link is available: for examplein this work, traf-
fic traceshave beensniffed at Politecnico’s egressrouter,
as shown in bottom part of Fig. 1. Once the trace is
available, a methodologyto createdifferent traffic sce-
nariosis required,for exampleby imposingspecifictraf-
fic relationsamongthe input/outputports. The output
of the methodologywill be a set of � traces, satis-
fying the constraintsimposedby the selectedscenario.
Our approachtries to establishthe bestmappingamong
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Fig. 1. Internettraffic abstractionmodel(on thetop)andmeasuresetup
(on thebottom).

source-destinationIP addresses�
	���
�� and input-output
ports ��������� of theswitch(i.e., 	���� and 
���� ), in order
to generatea total of � synthetictracesthat canbe “re-
played”, i.e. fed to the � input links of theswitchunder
analysis.

Thetraffic relationsaredescribedby atraffic matrix � ,
of size ����� , expressingthenormalizedaverageoffered
loadbetweenany inputandoutputports.

Additional constraintsmust be met in order to keep
the statisticalbehavior of the original traffic trace,e.g.,
to keepthepacket time correlationamongtheIP packets
having thesamesourceanddestinationaddresses.

This problemis intuitively not trivial, given the num-
berof constraintsthatmustbesatisfied.To betterdiscuss
the synthesisproblem, we introducethe notation used
throughouttherestof thepaper, thenformalizetheprob-
lem,andsolve it usingagreedyheuristic.

A. PreliminaryDefinitions

When traffic is routedon a network, it is possibleto
focus the attentionon different level of aggregations–
namelyIP packet, IP Flow, andFlow Aggregate levels.
In particular, wedefine:� IP Flow: An IP flow aggregatesall IP packetshaving
thesameIP sourceaddress	 ��! andIP destinationad-
dress
"�$# . Westateits sizeexpressedin byteswith %'&)( ,
and its normalizedload * &)(,+ % &)(.- /10'2 3.054 % /�3 .
This is a naturalaggregation level which entailsthat IP
packets routedfrom 	 to 
 will follow the sameroute,
closelymimicking Internetbehavior.� Flow Aggregate: We definea flow aggregate 6 28794;:
as the aggregation of all packets having sourceaddress	<�=!?>�@A! anddestinationaddress
B�=#DCE@F# . We
will chooseaddresssetssuchthat

� !?>)� and
� #DC�� arepar-

titionsof ! and# respectively.
Theflow aggregate 6 287G4H: representsthe traffic cross-

ing the switch from input � to output � . Let us denote
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Fig. 2. Internettraffic atdifferentlevelsof aggregation

the address-2-portmappingfunction with A2P�)� ; then,
for any sourceaddresstied to a specificinput � we have
A2P��	I� + �J�
KL	M�=!?> , aswell asfor any destinationad-
dressit holdsA2P��
�� + �I�
K?
E�N#DC for a specificoutput
port � .

Fig.2 reportsanexampleof thepreviousclassification:
at the bottomthereis the original traffic trace,which is
composedby four IP flows (labeledA,B,C,D). Thentwo
flow aggregatesaregenerated,consideringthe union of�
A,B � , and

�
C,D� respectively.

B. Traffic Matrix Generation

The mappingof the IP flows to a given traffic matrix� establishesa binding amongIP addressesandswitch
ports. More formally, this binding can be thoughtas a
generalizationof the OEPRQTSVU�W optimizationproblemof
schedulingjobs over identicalparallelmachines[4],and
its formalizationis provided in Fig. 3, in which element�X�J���Y� of matrix Z is denotedby Z$>�C , the � -th row by ZE>
andthe � -th columnby Z�[C , beingZ�[ thetransposema-
trix of Z .

ThenormalizedIP flows loadmatrix \,�=] ^��5_J`�a 2 acbLa 4 a
is the input of the optimizationproblem,in which each
IP flow representsa job of size * &)( which have to be
scheduledwithout deadline.A fixed number �ed of ma-
chinesareavailable,eachcorrespondingto an input out-
put coupleof theswitch;eachmachineis assigneda tar-
get completiontime, i.e., the target (normalized)traffic
matrix �f�g] ^��5_J`ih�b�h , which canbe exceededwithout
penalty. Matrices jk� � ^��5_I�'h�bLa 2 a and lm� � ^��5_I�.a 4 acb�h
aretheoutputof theproblem,i.e., themappingof jobsto
machines,or, in our case,the mappingof sourceIP ad-
dressesto switchinput portsanddestinationIP addresses
to switchoutputportsrespectively.

The objective is to minimizethe maximumerror com-
mitted in theapproximation,i.e., themaximumdeviance
from the target traffic matrix. The first two systemcon-
straintslower boundthe error nJ>XC with the absolutedif-
ferenceamongtheapproximated�
jY>�\o��l"[C mappingand



p q�rEssEt n�>�C5�uK��J�
� � � _v�)w���x�x�xL���N�
s.t. nJ>�C t �
jY>
\o�
l"[CBy �?>�C5�uK��J�
�nJ>�C t �L>XC y �
jY>
\o�
l"[C �uK��J�
�

C j & C + _v�uKL	
> lz> ("+ _v�{K?


Fig. 3. Theoptimizationproblem

thetarget �L>�C completiontime.
With respectto the classic OEP|QHS}U�W formulation, two

additionalconstraintsarepresent:onceanIP destination
addresshasbeenmappedto a particularswitch output
port,thenall IP flowswith thesamedestinationIP address
mustbe mappedto the sameoutputport, aswe assume
that only one path is usedto route packets. The same
appliesfor IP sourceaddressesand switch input ports.
Therefore,eachflow sourcewill usejust onerow of the
machinegrid andeachflow destinationwill usejust one
column,asenforcedby thelasttwo constraints.

Since the well known OEP|QHS}U�W optimization prob-
lem [4] is known to be strongly NP-hard, its bi-
dimensionalextensioncannothaveapolynomialtimeso-
lution. Moreover, dueto thesizeof ourproblem,we look
for a simpleandfastapproximationof the optimal solu-
tion: amongall thepossiblestrategies,agreedyapproach
hasbeenselecteddueto its extremesimplicity.

C. GreedyPartitioning Algorithm

In this section,we will briefly highlight someof the
main featuresof the greedy adoptedstrategy, whose
pseudo-codeis shown in Fig. 4. Theintuition at thebase
of thealgorithmis to try to maptheheaviest(un-mapped)
IP flow �
	���
�� to the freestport pair �������Y� , andthenforce
all flows having thesameIP sourceaddressto enterfrom
thesameswitch input port, while flows having thesame
destinationaddresswill be force to exits from the same
switchoutputport. This is doneby updatingtheapprox-
imatedtraffic matrix ~ , whoseelementsaccountfor the
sizeof IP flows assignedto thatparticularport pair. This
is repeateduntil all theIP flows have beenmapped.

In the context of a greedysolution, the choiceto ac-
commodateat eachstepthe heaviest remainingIP flow
–which simply yields to processIP flows in a reversed
sortedorder– is quiteintuitive. However, thisnot thecase
for the port pair selection;indeed,we tried several poli-
cies,andtestedtheir performanceunderdifferent traffic
scenarios.For example:� theport pair correspondingto theglobally largestele-
mentin � y ~ , i.e. �X�J���Y�;���.��� p �I�8S�� �����LS�� � y ~�S�� ��� ;� the row-wiselargest element,i.e. the largestelement
of the largest row �}���.��� p �I�8S�� 3 �LS�� 3 y ~�S�� 3 � ,

�����o�"���o�v� �X�
while( �R�.���T� � ) �
// select freer ports and heaviest IP flow�9� �i 5¡�¢¤£J¥§¦©¨V£Jª��� �9« �;�­¬����;�1¡�9® �X¯�¡�¢¤£J¥§¦©¨V£Jª��� � ���
// set address-to-port mapping if unset
if( °'±�²�³.� ®5´ ), ±�²�³.� ®5´ ¢ �
if( °'±�²�³.� ¯ ´ ), ±�²�³I� ¯ ´ ¢¤ 

// update
�

involving already mapped dests
foreach( already mapped µ¯ ) �

if( � ��¶� � � ) && ( �R±�²�³.�Yµ¯ ´ ) ���·¹¸
a2p º ¶�R» �"��·¹¸ a2p º ¶�|»�¼ � � ¶�� � ¶� ���´´

// update
�

involving already mapped sources
foreach( already mapped µ® ) �

if( � ¶���T� � ) && ( �R±�²�³.� µ®�´ ) ��
a2p º ¶�
» ¸ ½ �"� a2p º ¶�
» ¸ ½ ¼ � ¶���� ¶��� ���´´´

Fig. 4. Thegreedyalgorithm

� �¾�.��� p �.�8���X�L>�� � y ~�>�� ��� — or, symmetrically, the
column-wiselargest;� the coupled(row,column)-wiselargestelement,that is
the elementthat lies at the intersectionof the largest
row andcolumn,i.e. �}���.��� p �I�8S�� 3 �?Sz� 3 y ~�S�� 3 � ,� �¾�.��� p �.�8��� 3 � 3 � � y ~ 3 � ��� .

All the former approachesgave similar resultsonly
with uniformtargetmatrix � ; in theothercasestheglobal
approachgavethebestresults,evenwhencomparedto the
coupled(row,column)-wise.Indeed,theglobalapproach
triesto minimizethemaximumerror amongthetarget �
andapproximatedtraffic matrix ~ ata local level, i.e. for a
specificinput/outputpair. Otherstrategiestry to minimize
respectively theerroron eitherthe input ports(row-wise
strategy) or theaverageerror (coupledstrategy), explain-
ing thustherelatively worseperformances.

I I I . PERFORMANCE STUDY

A. Measurementsetup

In orderto collect traffic traces,we observed the data
flow on theInternetaccesslink of our institution,i.e.,we
focus on the dataflow betweenthe edgerouter of our
campusLAN andtheaccessrouterof GARR/B-TEN,the
Italian andEuropeanResearchnetwork. Sinceour uni-
versity hostsmainly act asclients,we recordedonly the
traffic flowsoriginatedby externalserversreachinginter-
nal clients(i.e., thedirectionhighlightedin Fig. 1).

The tracehasbeensampledduring a busy period of
six hours,by collectingdataon28million of packetsand
42400IP flows. Thetime window hasbeenchosensuch



thattheoverall traffic is testedto bestationarybothfor the
first andsecondorderstatistics.Thepropertyof realtraf-
fic thatwe mainly take into accountis thelong rangede-
pendency which is well known to beresponsibleof buffer
performancedegradation. It is not the topic of this pa-
perto provideastatisticalanalysisof thetraffic measured
at our institutionrouterbut it is relevant to highlight that
themeasuredtraffic exhibit LRD [5] propertiesfrom the
scalesof hundredsof millisecondsto theentirelengthof
the datatracewith the Hurst parameterin the rangeof
0.7-0.8[6].

B. Theswitchingarchitecturesunderstudy

An IP switch/routeris averycomplex system[7], com-
posedby severalfunctionalities:herewe focusour atten-
tion only on the performanceof switchingsystems.We
considera simple model of the switching architecture,
basedontheonedescribedin [8]. Theincoming,variable
size,IP packetsarechoppedinto fixedsizecellswhichare
sentto the internalswitch, wherethey aretransferredto
outputport, andthenreassembledinto theoriginal pack-
etsbeforebeingsentacrosstheoutputlink. The internal
switch, which operatesin a time slottedfashion,canbe
inputqueued(IQ), outputqueued(OQ)or acombinedso-
lution, dependingof the available bandwidthinside the
switchingfabric.

IQ switchesareusuallyconsideredscalingbetterthan
OQ switcheswith theline speed,andfor this reasonthey
areconsideredin practicalimplementationsof highspeed
switches.Inputqueuesareorganizedinto thewell known
virtual outputqueue(VOQ) structure,necessaryto max-
imize the throughput. Onedisadvantageof IQ switches
is that they requirea schedulingalgorithmto coordinate
the transferof the packets acrossthe switching fabric;
the performanceof an IQ switch, in termsof delaysand
throughput,is very sensibleto theadoptedschedulingal-
gorithmanddependsalsoonthetraffic matrixconsidered.
Schedulingalgorithmscanwork eitherin cell modeor in
packet mode[8]. In cell mode,cells are transferredin-
dividually. In packet mode,cells belongingto the same
IP packet aretransferredasa train of cells,in subsequent
time slots;hence,theschedulingdecisionis correlatedto
thepacket size.

In the past,the performanceof several schedulingal-
gorithmshave beencompared[8], [9] underBernoulli or
correlatedon/off traffic. Here we comparethe perfor-
manceof maximumweight matching(MWM) [10] and
iSLIP [11] schedulingalgorithmsunderdifferent traffic
models.WeselectedMWM asexampleof theoreticalop-
timal algorithmwhich is toocomplex to beimplemented,
whereasiSLIP waschosenasexampleof practicalimple-
mentationwith suboptimalperformance.

We considera ¿B�À¿ switch, with internalcell format
of 64 bytes. In the IQ switch, buffers are set equal to
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Fig. 5. Meanpacket delayunderPT andP3 scenariosfor cell mode
policies.
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Fig. 6. Meanpacket delayunderPT andP3scenariosfor packet mode
policies.Á ^.^I^ cellsperVOQ, i.e. about320KBytesperVOQ and

aboutw�x Á MBytesper input port – which is a reasonable
amountof high-speedmemoryavailabletodayin aninput
card. In the OQ switch, buffers are set equalto Â.^.^I^.^
cells( + Á ^I^.^E�e¿ ) to comparefairly with theIQ switch.

C. Traffic scenarios

For the sake of space,we presentour resultsonly for
uniform traffic, i.e. �?>�C +ÄÃ�- � , where Ã (between̂�xX_
and ^�x Å ) is theaverageinput load,normalizedto the link
speed.We considertwo scenarios,dependingon thepro-
cessof packet generation.� Packet trace(PT). Packetsaregeneratedaccordingto
the trace,following the methodologyof traffic synthesis
wepresentedin Sec.II-B.� Packet trimodal (P3). Packet generationis modulated
by an on/off process,satisfying the traffic matrix � .
Packet lengthsaregeneratedaccordingto a trimodaldis-
tribution,whichapproximatesthedistributionobservedin
our trace.This canbeconsidereda traditionalgoodsyn-
thetic model, tunedaccordingto the featuresof the real
trace.

D. Simulationresults

Figs.5 and6 plot theaveragedelayasafunctionof the
normalizedload for treeconfigurations:OQ switch, IQ
switch with MWM schedulerandIQ switch with iSLIP
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scheduler. Thefirst graphrefersto cell mode(CM) sched-
ulersfor IQ, thesecondto packet mode(PM) schedulers
for IQ. In all cases,thedelaysexperiencedunderPacket
Tracemodelaremuchlarger thanin thecaseof trimodal
traffic. This holdstruenot only for high load,but alsoat
low loadtheeffectof theLRD traffic causesmuchhigher
delay. Note also that the performanceof CM and PM
arealmostthesamein bothscenarios;this is reasonable,
sincethe estimatedcoefficient of variationof the packet
lengthdistribution is _vx ^ Á and,accordingto theapproxi-
matemodelin [8], CM andPM shouldbehave thesame.

Fig. 7 shows thethroughputachievedin bothscenarios
consideringCM policies(PM behave thesame).Because
of theLRD propertyof the input traffic, thequeueoccu-
pation underPT is much larger than P3 causinghigher
lossprobabilityandreducedthroughput.

Themostsurprisingresultis that the relative behavior
of the threeschedulerschangesfrom P3 to PT. Indeed,
OQ, IQ-MWM anIQ-iSLIP give almostthesameperfor-
mancewith thetraditionaltraffic model,while adegrada-
tion in the throughputcurves is presentconsideringthe
Packet Trace model (up to 10% reduction)and an in-
creasein delays.Moreover, IQ-MWM behavestheworse
consideringthe delaymetric, which dependsmainly on
metric basedon queuelength[8]; iSLIP on the contrary
shows shorterdelaysthanOQ: onepartialexplanationof
this is that, for high loads,iSLIP is experiencinglarger
lossesthanOQ underPT (larger than IQ-MWM for in-
stance),asFig. 7 shows.

Finally, the most important fact is that OQ is penal-
izedin termsof averagedelay:thesharedbuffer atoutput
queueallow much longer queuesto build up, therefore
degradingthedelayperformancebecauseof theWeibull
tail [12]. Theseresultsunderlinethattraffic modelstradi-
tionally adoptedto assessswitchingperformancearenot
capableof showing realworld figures.

IV. CONCLUSION

This work proposeda novel andflexible methodology
to synthesizerealistictraffic tracesto evaluatetheperfor-
manceof switchesand, in general,of controlledqueu-

ing networks. Packetsaregeneratedfrom a singlepacket
tracefrom which differentsynthetictraffic tracesareob-
tainedfulfilling a desiredscenario,e.g.,a traffic matrix.
Additional constraintsareimposedto maintainthe orig-
inal traffic characteristics,mimicking the behavior im-
posedby Internetrouting.

Wecomparedtheperformanceof aswitchadoptingdif-
ferentqueuingandschedulingstrategies,undertwo sce-
narios: the synthetictraffic of our methodologyandtra-
ditional traffic models. We observed that not only abso-
lute valuesof throughputanddelayscanchangeconsid-
erablyfrom onescenarioto the other, but alsotheir rel-
ative behaviors. This fact highlights the importanceof
somedesignaspects(e.g.,thebuffer management)which
are traditionally treatedseparately. Theseresultsshow
new behavioral aspectsof thequeuingandschedulingin
switches,which requiresmoreinsightin thefuture.
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