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Abstract
In recent years, advances in both hardware and software offer to user-space applications

O(10Gbps) worth of traffic. Processing data at such line rate with software running on
Commercial Off-The-Shelf (COTS) hardware requires careful design. In the literature, this
challenge has been extensively studied for Network Intrusion Detection Systems (NIDS), with
several proposals achieving scalability by exploiting GPU and NPU multi-core architectures.
Yet, NIDS are relatively “easy” to parallelize given their core functionality is to match the
input traffic with respect to a large catalog of rules.

In this work, we instead focus on more generic Statistical Traffic Analysis (STA) tools.
Specifically, we target the design of a passive monitoring solution that extracts hundreds of
per-flow metrics collected in different output formats (text logs, RRD database, empirical
distributions, etc.). Differently from NIDS, such metrics normally provide an extensive vision
of specific traffic dynamics (e.g., TCP anomalies, video streaming QoE, HTTP content de-
livery, etc.), resulting in a few analysis engines, but an intrinsically more pipelined workflow.
Parallelisation is then less trivial than for NIDS.

We propose DPDKStat, a high speed STA that combines the Intel DPDK framework with
Tstat, a passive traffic analyzer, to achieve 40Gbps of line rate processing. Beside reporting a
detailed evaluation of the system using real traffic traces, we contribute an in-depth discussion
on the design challenges to achieve scalability, and the lesson learned we believe of common
interests for the traffic monitoring research community.

1 Introduction
The last years have witnessed a growing interest towards multi-core architectures for Internet
traffic processing. Indeed, on the one hand the Moore law scales at a lower pace [3] compared to
the +50% annual bandwidth consumption rate found by recent estimates [1]. On the other hand,
nowadays Internet traffic is overcrowded of services requiring more sophisticated and powerful
tools for their monitoring. In addition to the intrinsic difficulty of parallel programming [26],
multi-core Internet traffic processing is further complicated by the need to acquire, move, and
process packets, while maintaining their logical organization in flows. These are daunting tasks to
tackle at O(10Gbps) line rate.

The advent of open source (e.g., Intel DPDK, PacketShader, netmap, netapi, PFQ, etc.) and
proprietary (e.g, libDNA) advanced software packet acquisition libraries, not to mention ad-hoc
hardware solutions (e.g., Endace DAG, NapaTech, etc.) alleviates the problem of the mere data
acquisition: these solutions enable O(10Gbps) packet access rates in user-space with zero-copy
(i.e., packets are moved via DMA from the NIC to the kernel, enabling visibility of such memory
also to userspace to avoid extra data copy).

To process such deluge of data, software developers have embraced multi-core CPUs, and (pos-
sibly) massively parallel Graphical Processing Units (GPU) or Network Processing Units (NPU)
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architectures. This is testified by seminal [14, 6] and more recent works [34, 16, 18, 25, 20, 24] suc-
cessfully scaling and optimizing multi-core Network Intrusion Detection Systems (NIDS). Notice
however that NIDS tools are intrinsically parallelizable, given that their function is to test a set of
rules on individual packets. Conversely, Statistical Traffic Analysis (STA) tools offers an in-depth
vision on specific traffic classes (e.g., performance for video streaming, HTTP content delivery, or
more basic TCP statistics like RTT, congestion window, etc.) using few (and pipelined) analysis
engines. Hence, are less interesting (and trivial) to parallelize.

In this work, we propose DPDKStat, a system combining the Intel DPDK [12] framework
for packet acquisition, and Tstat [8] a STA that builds, keeps, and updates hundreds of per-flow
statistics. Overall, our work show that it is possible to achieve 40Gbps of traffic processing on a
Commercial Off-The-Shelf (COTS) solution that costs less than 4,000 USD. Yet, we highlight that
the aim of this paper is not to present “yet another fancy traffic monitoring tool”. Conversely, we
focus our attention to derive design principles and test them using real traffic, sharing the most
useful and general lessons learned in crafting our solution. Summarizing, our major contributions
are:

• We propose a periodic packet acquisition policy (leveraging the recent SCHED_DEADLINE
Linux scheduling discipline, never considered in previous works), performing a in-depth
analysis to limit timestamp error and avoid packet reordering and losses.

• We study the system vertical scalability, using real traffic as a benchmark: notably, we
quantify benefits of periodic packet acquisition (gain of 2× over polling), hyper-threading
(+20-30%) and load balancing over multiple CPU nodes (+10%).

• We offer both our DPDKStat as well as our traffic generator, able to respectively analyze
and reply traffic at 40Gbps, as open source software at [33, 2].

In the following, we first provide a broad picture of the related work in the area (Sec. 2) to
better motivate and contrast our work with the current state of the art. We next present the
design principles behind DPDKStat (Sec. 3), followed by details of our benchmark procedure
and testbed setup (Sec.4). We instantiate these principles by calibrating hardware and software
(Sec. 5), on which we perform an extensive experimental evaluation (Sec. 6). Finally, a summary
of lessons learned is discussed along with open points (Sec. 7).

2 10 Years of High Speed Traffic Processing Solutions
The last decade witnessed a flourishing interest for high speed Internet traffic processing. Since
seminal works [14, 6] coping with few hundreds of Mbps line rate, different solutions breaking
the 10Gbps “barrier” have been proposed by both academia [34, 16, 18, 25, 20, 22, 11, 24, 5]
and vendors [28, 27, 13]. The first challenge, namely how to efficiently transfer packets from
the Network Interface Cards (NIC) to the main memory, has been solved by advanced packet
capture libraries (compared and benchmarked in [5, 10]). Processing scalability instead can be
achieved adopting multi-cores technologies such as Non-Uniform Memory Access (NUMA), GPU
and NPU, and Field-Programmable Gate Array (FPGA). Recent proposals further push systems
design envisioning Hadoop-based [19] or stream-based [31] solutions to process raw packets.

All these efforts result in a very tangled and overcrowded landscape of options. To testify such
complexity, Tab. 1 summarizes the characteristics of the most prominent works on the subject
spanning over the last decade. Despite a few works provide in depth analysis of specific aspects
(e.g., benchmarking advanced packet capture libraries [5, 10], load balancing [34, 25, 17, 21], and
energy consumption [21]), given the variety of the adopted hardware, software, and input traffic,
any comparison can merely have qualitative value.

For the sake of illustration, we represent in Fig.1 proposals as circles, centered at (rate, year),
with a radius proportional to the number of cores used to achieve the advertised processing rate.1 A

1Despite proportion are respected, we assign a smaller weight to GPU cores since are less powerful than CPU
core.
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Proposal Rate [Gbps] Software Hardware
Yr Name Ref Real Synth Software #Rules Load bal. Pkt lib CPU GPUSpecifications

N
ID

S

06 Intel [14] 0.1 0.5 Snort n/a SW 4-tuple n/a 4 2x 2-Core Xeon LV
09 ParaSnort [6] 0.8 0.5 Snort 10,000 JSQ? n/a 8 2x 4-core Xeon E5335
11 MIDeA [34] 5.2 7.6 Snort 8,192 RSS+dyn CPU PF_RING 8 480 2x 4-core Xeon E5520 [2x NVIDIA GTX480]
12 Kargus [16] 25.2 19-33 Snort? 3,111 RSS+dyn GPU PSIO 12 1024 2x 6-Core Intel X5680 [2x NVIDIA GTX580]
13 unnamed-A [18] - 7.2-13.5 Suricata 7,571 JSQ Tilera-mPIPE 36 TileraG 36
14 DPI-S [25] 40 - custom 40,000 custom Tilera-mPIPE 144 4x Tilera 36
14 unnamed-B [20] - 15 OpenCL DPI 10,000 n/a custom 8 480 1x 4-Core Intel i7-3770 [1x NVIDIA GTX 480]
15 unnamed-C [24] - 15-79 Suricata+Kargus 2,435 dyn CPU Tilera-mPIPE 72+16 Tilera36 + 2x 8-Core Intel E5-2690

o
th
e
rs 14 nDPI [22] 10 - OpenDPI? 170 DNA PF_RING 2 1x 8-Core Intel i7

14 StreaMon [11] 1.9-6.47 - custom - SW 4-tuple PFQ 6 1x 6-Core Intel Xeon X5650
15 FastClick [5] - 40 Click? - RSS netmap,DPDK 12 1x 6-Core Intel Core i7-4930K (Hyper-threading)
15 DPDKStat - 40 - Tstat Fig. 4 RSS DPDK 16 2x 8-Core Intel Xeon E5-2660

v
e
n
d
o
r 13 HyperScan [13] 160 - custom n/a n/a n/a 16 2x 4-Core Intel Xeon E5-2600 (Hyper-threading)

14 Procera [27] - ≈40 custom n.a. n/a n/a 36 2x 18-Core Intel XeonE5 (Hyper-threading)
15 Sandvine [28] >40 - custom n/a n/a n/a >40 cluster of Tilera-like blades

? = modified version

Table 1: State of the art parallel NIDS and traffic analysis processing (this work highlighed)

straight line (in semilog scale) represent a Moore’s-like exponential increase of raw processing rate,
doubling every year from the initial starting point of O(100Mbps) processing rate [14]. Comparison
with “historical” work such as [14, 6] is only anecdotal: specifically, 2015 processing rate exhibit
a speedup close to 210 (26) with respect to the 2006 [14] (2009 [6]), quite well matching Moore
expectations2.

Notice that most of the works in Tab. 1 investigate NIDS tools performance. Those tools are
designed to trigger alarms when the input traffic matches signatures from a predefined dictionary,
i.e., they report concise information about the input traffic activity. Given the limited need to
handle per-flow state statistics (analysis are operated atomically on per-packet base or using com-
pact state machines) they are “easily” amenable to parallel operation (Suricata is multi-threaded
since the first release, while Snort will be from v3, in alpha release as we write). Pattern matching
is however costly (e.g., Suricata and Snort can cope with only O(100Mbps) per-core [29, 15]):
hence, NIDS scalability is achieved with a large number of GPU [34, 16, 20] or NPU [20, 25] cores
(i.e., the large circles in Fig.1).

To the best of our knowledge, less effort has been devoted in studying scalability issues for
STA. Tab. 1 also include high-speed tools that, despite not being STA, are not pure NIDS either:
namely, StreaMon [11] is a SDN traffic monitoring framework, FastClick [5] is an advanced software
router based on Click, while nDPI [22] is a pure traffic classifier derived from OpenDPI. Other
works discuss scalability addressing very simple operations like counting packets [9]. Yet, these
tools are clearly not fully-fledged STA.

We provide a more in-depth analysis of both NIDS and STA specificities, as well as its im-
plication on system design, in Sec. 3.1. We anticipate that STA comprises a smaller, yet more
varied, set of function intrinsically more difficult to parallelize compared to NIDS: specialized STA
functions indeed share per-flow state, leading to a more pipelined analysis workflow than for NIDS.
Yet, as we see from Tab. 1, the current state of the art is scattered along many directions, so that
is difficult to even qualitatively compare two designs, let alone to learn useful design guidelines
that are not tool-specific, or that go beyond the NIDS perimeter.

These issues raise questions concerning parallel STA software design, which we address in this
work, such as: How to avoid locking? Are NUMA architectures sufficient? Is there any advantage
is using hyper-threading? How to allocate processes/threads on each core?

3 System Design
To design and implement any parallel network traffic processing tool, the type of analysis to
perform cannot be left out of consideration. In this section we try to address this challenge by
comparing the footprint of Tstat, our reference STA implementation, with respect to Bro, Snort
and Suricata (Sec.3.1). We next present the design questions we explore, and principles we follow,
in engineering DPDKStat, warning about pitfalls and illustrating guidelines to achieve lossless
monitoring at 40Gbps (Sec.3.2).

2We intent here Moore in a broad sense [3]
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Figure 1: Synoptic of related work surveyed in Tab.1. Circles are centered on the year and
processing rate. Radius size is a logarithmic scaling of the number of cores employed by the
system.

3.1 NIDS and STA Characteristics
Qualitative comparison. STA and NIDS tools address different traffic monitoring functions.
STAs have the goal of processing, extracting and collecting both per-packet (e.g., anonymiza-
tion of IP addresses via cryptographic functions, counting number of IP/TCP/UDP packets ob-
served, packet length distribution, etc.) information, as well as per-flow statistics (e.g., three-
way-handshake time, amount of data carried in a TCP flow, TCP events such as TimeOut and
FastRetransmit, min/ max/avg RTT, TLS negotiation delay, video streaming QoE and content
properties, etc.). This entails a stateful monitoring, where each TCP, UDP, and possibly layer-7
protocol states need to be tracked. Overall, the number of per-flow statistics can easily be very
large (>100) thus generating quite a large amount of output that need to be saved on disks.
Efficient memory management is a must too, with garbage collection that must be periodically
executed to purge those flows that have become inactive.

Conversely, NIDS tools trigger (typically few) alarms when the observed traffic matches some
rules. Alarms needs to be logged, producing per-event rather than per-flow entries. Both per-
packet and per-flow rules are considered, thus entailing per-flow management as for STA. However,
Deep Packet Inspection (DPI) is the core feature of NIDS and not statistics. As such, NIDS design
is tightly optimized to handle a large amount of rules, i.e., O(104). Since rules can be parallelized,
performance greatly benefits from GPU/NPU support (see Sec. 2).

DPI is commonly used in STA for traffic classification too: however, the number of rules is way
smaller than for NIDS, i.e., O(102). Thus, making GPU/NPU support less appealing. Conversely,
STA tools provide deeper insights for several traffic classes, by extracting a large number of metrics
at multiple layers of the protocol stack: for this reason STA tools normally have fewer analysis
engines, arranged in a more pipelined workflow.

Some NIDS tools can also operate as an Intrusion Prevention System (IPS), i.e., they forward
only legitimate traffic. In such cases, packet forwarding capability is required, whose cost can be
(again) easily parallelized [5]. STA tools instead do not require such a functionality.

To achieve high performance, the preferred programming languages are C (Tstat, Suricata,
Snort) or C++ (Bro), with possibly some CPU intensive parts optimized in assembly. Dedicated
high-level languages instead incur severe performance impairment [32].

Quantitative comparison. To better quantify the different processing requirements, Fig. 2
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Figure 2: STA and NIDS performance comparison (1-core, all tools with default configuration).

compares processing time, maximum memory, I/O rate, and average CPU utilization when running
Tstat, Bro, Snort and Suricata on the same benchmarks. Our intent is not to provide a punctual
comparison among the tools, but to give the reader a high-level quantification of performance
requirements. We run all tools with default settings, with Snort and Suricata sharing the same
rules set (a catalog of 73,012 Emerging-Threat rules). Tests run on the same hardware using
a single CPU core to process about 1TB of traffic read from the local disk (details about the
sut-SMP hardware and Campus trace are reported in Sec. 4).

Tstat is the fastest tool, processing the entire trace in ≈ 20min (≈ 6 Gbps), 4.5x faster than
Bro (the best performing NIDS) and 10x faster than Suricata (the slowest in the benchmark3).
Maximum memory usage is comparable, and limited to less than 2GB. Considering the amount
of output produced, the I/O rate plot shows that Tstat generate 3.5× more data per unit of time
than NIDSs. Indeed, the output formatting, and the per-flow I/O operations are responsible for
the limited average CPU utilization, which is capped at 75% for Tstat, as show in the rightmost
plot.

In summary, STA tools are fairly lighter than NIDS from a mere computation intensive point
of view, with a short per-packet processing pipeline, that questions the adoption of GPU/NPU.
They require to compute a heterogeneous set of metrics, that makes multi-core SMP and NUMA
architectures interesting alternatives.

3.2 Design Principles and Lesson Learned
Several considerations hold in the design of a multi-core enabled tool. Some choices are tool
dependent (e.g., managing output), while other principles are, we believe, novel and general (e.g.,
controlling packet acquisition via OS periodic scheduling). In this section we provide an overall
discussion of design guidelines, that we phrase as a Q & A in the narrative, outlining goals and the
proposal to achieve them. We instead defer details, parameter tuning and performance to Sec. 6.

We assume the STA application runs on a COTS hardware, and has to monitor traffic flowing
on 10Gbps link(s), whose traffic is mirrored using inexpensive optical/electric taps toward the
processing system NICs. Notice that two NICs are required for each single full-duplex link. To
cope with the load, traffic is then split among different processing engines that are bound to
different CPU cores. This calls for resource allocation among different processes or threads. In
Fig. 3, we assume to have n NICs, and c CPU cores at disposal.

Goal: Packet acquisition and per-flow load-balancing. Several solutions have been recently
proposed to provide efficient packet acquisition on COTS hardware, which all solve the problem
of efficiently moving packets from the NICs, and that are contrasted in [5, 10]. However, to

3Suricata execution time is only halved when running with 16 threads, 2 for each core.
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Figure 3: System architecture. Direct RSS access (left) and buffered access (right).

compute per-flow statistics, we need to correlate packets received irrespective of the NIC where
the packets are observed: hence, the packet acquisition library need thus to offer a flow-preserving
load balancing function for correct traffic processing. This offers also the appealing opportunity to
split the traffic to be processed among c CPUs by using multi-process approach, avoiding costly
synchronization primitives [30].
Proposal: Hardware supported load-balancing. We investigated libDNA (now evolved into
the PF_RING ZC library4) that offers the possibility to run custom packet load balancing in
software, via the so called “DNA cluster”. In this case, all packets received from any NIC are
passed to the DNA cluster process, which then (i) timestamps and (ii) forwards them to the
correct processing engine. Unfortunately a libDNA prototype, made by a simple load-balancer
followed by processing engines that just count packets, limitedly achieve 6 Gbps processing rate
in our tests: the software load-balancing process constitutes the main system bottleneck (details
in [4]). However, modern NICs offer (limited) hardware load balancing, e.g., via the Intel Receiver
Side Scaling (RSS) queues supported by the DPDK library. Consistent per-flow load balancing
is possible with specific hashing function [35]. This results in a system where packets arriving
at NICs are hashed to RSS queues, from which they are then extracted and processed by the
STA. This is shown in Fig. 3, where each analysis application extracts packets for the RSS queues
(in this scenario, the number of RSS queues is equal to the number of CPU cores). RSS queues
are however a scarse resource and we provide an in-depth sensitivity analysis of their tuning in
Sec. 5.1.

Goal: absorbing traffic and processing jitters. The per-packet analysis time of STA (and
NIDS) is not constant. If on the one hand traffic processing tools need to be engineered to
minimize the average packet processing time, unexpected (large) processing delays (due to I/O,
periodic operations, critical packet composition, etc.) can lead to losses. Similarly, unexpected
traffic bursts can lead to losses too.

Packet acquisition libraries implements circular buffers to absorb such jitters. Yet, 1MB of
buffers only absorb less than one millisecond worth of traffic at 10Gbps causing thus possible
packet drops. This is a new problem that emerges specifically at very high speed, and was indeed
previously ignored.
Proposal: use a lock-free large packet buffer. Our solution is to introduce to each analysis
module a large buffer, as reported in the right-hand side of Fig. 3. We consider a buffer of 1GB for
each analysis process, i.e., sufficient to store almost one second of 10Gbps traffic. This calls for a
system in which packet acquisition and analysis threads are decoupled: (i) an “acquisition” thread
extracts packets from the RSS queue, timestamps and enqueues them to the tail of the buffer;
(ii) a “processing” thread dequeues packets from the buffer head, and analyses them. Normally

4http://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
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such design choice would lead to expensive resource access synchronization. Furtunately, the Intel
DPDK framework offers lock-free shared buffer data structures using state of the art zero-copy
data acquisition5 that fit our requirements. However, this complicates the CPU sharing design,
since now at least two separate threads are needed for each processing applications.

Goal: efficient sharing of CPU cores. The design results now into a hybrid approach: (i)
different independent processes are attached to (a group of) RSS queues, but (ii) each process has
separate threads managing the packet acquisition and analysis functions. This calls for particular
attention in addressing how frequently the two threads have to be executed. One option is to
fetch data from the RSS queues as soon as they are presented by the NIC, via a polling packet
acquisition thread. This improves performance and timestamping accuracy6, but never let the
thread idle, wasting CPU cycles in a busy-loop. A complementary strategy is instead to enforce
periodic execution, which allows to effectively share CPU resources between both threads. Yet,
this may cause packet reordering (due to packets sitting in the RSS queues for long time before
being fetched) or, worse, losses in case of careless tuning.
Proposal: use non-standard OS scheduling disciplines. We investigate and compare both
packet acquisition strategies: For polling, a CPU core is allocated to the packet acquisition thread,
which keeps looping on its set of RSS queues, extracts all present packets, timestamps and moves
them in the large buffer; the processing thread must then run on a different CPU core. Periodic
scheduling relies instead on a novel process scheduling discipline featured in Linux kernel from
version 3.14, namely SCHED_DEADLINE (SD). Interestingly, SD guarantees the scheduling of a thread
within a configurable deadline, resulting in a quasi-periodic execution compared to the default
Completely Fair Scheduler (CFS) policy, which approximate fair time sharing among threads.
With appropriate dimensioning, the same CPU core can be shared among the two threads, with
packets timestamping accuracy and reordering that are under control, increasing efficiency with
respect to polling at the same time. To the best of our knowledge, we are the first to investigate
SD usage for packet acquisition. We study the benefit of periodic scheduling in Sec. 6.1.

Goal: Flows management and garbage collection. Stateful per-flow management requires
flows that are terminated to be correctly managed. Unfortunately, a flow may terminate without
observing explicit signaling packets, so that we need to implement a timeout policy: if no packets
are observed for a certain amount of time Tout, the flow is considered terminated. We need to
flush those flows to generate statistics, and to limit memory usage via garbage collection. Such
operation is intrinsically periodic: every T , the complete flow data structures with F entries is
scanned to check which flows need to be purged, with F in the order of several millions. To avoid
blocking the packet processing, a natural solution would be to implement a garbage collection
thread. However, this incurs in massive adoption of synchronization primitives that must be
invoked for each packet. Moreover, this would further complicate thread scheduling.
Proposal: split garbage collection. We propose a simple, yet effective, strategy that can
be operated “in line”, i.e., periodically devoting (little) time of the analysis thread for garbage
collection. In a nutshell, assuming there are F flows to check every T . We split the operation
in M steps, each checking F/M flows, and invoking the garbage collection loop every T/M time
intervals: we expect the time devoted to garbage collection to be reduced by a factor M at each
call. We investigate garbage collection strategies, presenting a sensitivity analysis of the important
aspect needed to properly tune M , in Sec. 5.2.

Goal: managing output. STA applications produce quite a sensible amount of output, which
is a possibly slow operation due to I/O access, performed per-flow (e.g, log formatting), or period-
ically (e.g., consolidating samples in Round Robin Databases (RRD), a de-facto standard solution
but also a potential bottleneck7).

5We use DPDK memory pools coupled to a FIFO buffer of pointers that avoid locking via software transactional
memory, http://dpdk.org/doc/api/rte__ring_8h.html

6All packets in the RSS queue are extracted in a single batch. Timestamping is corrected as in [23].
7http://net.doit.wisc.edu/~dwcarder/rrdcache/

7

http://dpdk.org/doc/api/rte__ring_8h.html
http://net.doit.wisc.edu/~dwcarder/rrdcache/


(b) sut-NUMA(a) sut-SMP & traffic generator

Intel Xeon
E3-1270

RAM
32GB
DDR3

S
S

D
 1

S
S

D
 2

S
S

D
 3

S
S

D
 4

R
A

ID

I/O
HUB

12Gbps

PCIXv3

QPI
4 phy

4 logNIC 1

NIC 2

NIC 3

NIC 4

I/O
HUB

PCIXv3

QPI

NIC 1

NIC 2

NIC 3

NIC 4

local
disk

Intel Xeon
E5-2660

Intel Xeon
E5-2660

CPU2

CPU1

RAM
64GB
DDR3

RAM
64GB
DDR3

8 phy

8 log

8 phy

8 log

8 phy

Figure 4: Hardware specs: (left) sut-SMP: 1CPU, 4 physical+4 virtual cores. (left) TG: same as
sut-SMP, with 4 SSD in RAID-0. (right) sut-NUMA: 2 CPUs, 8+8 cores each.

Proposal: keep it simple, stupid. After experimenting with several policies for handling the
different output types, we settled to delegate to a separate low-priority thread only the most
“bursty” functions that are well suited to be performed as background operations (e.g., such as
periodic RRD updates that create or access literally thousands of histogram files). Conversely,
per-flow logging is performed at flow finish time, increasing packet processing time of the last
packet: the presence of the large buffers allows us to absorb this variability without requiring ad
hoc patches.

4 Experimental setup
Testbed configuration. Engineering and calibrating a software testbed capable of 40Gbps
benchmarking is not trivial. The testbed comprises a System Under Test (SUT) whose performance
are under observation, and a Traffic Generator (TG) able to saturate wire speed. The TG is then
connected to the SUT: experiments are run, and the sustainable rate is empirically measured by
looking for the maximum average sending rate that allows the SUT to process traffic without
suffering any packet drop. The TG is able to regulate the average sending rate (by active waiting
with busy loop between packets), so that a dichotomic algorithm is used to find the sustainable
rate, with precision of 100 Mbps (1%).

System Under Test (SUT). In this work, as SUT we consider two COTS systems. sut-SMP
(≈1,500 USD) is a single CPU architecture equipped with an Intel Xeon E3-1270 v3 @3.5GHz,
with 4 physical and 4 virtual cores, launched8 in 2013. It hosts 32GB of DDR3-1333RAM. sut-
NUMA (≈3,500 USD) is a NUMA architecture equipped with 2 Intel Xeon E5-2660 @2.2GHz,
each with 8 physical and 8 virtual cores, launched9 in 2012. Each CPU is equipped with 64GB
DDR3-1333RAM. Each system is equipped with 4 Intel 82599 10Gbps Ethernet NICs, connected
via a PCIx-3.0 with 16 lanes offering 64Gbps raw speed.

Traffic Generator (TG). For the TG, we use an hardware system equivalent to sut-SMP,
equipped with 4 SSD disks in RAID-0 (offering a raw disk read speed of 12Gbps). We develop
a novel DPDK-based tool that replays pcap packet traces stored on disk. However, to achieve

8http://ark.intel.com/products/75056
9http://ark.intel.com/products/64584
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Flows (M) Flows per-class (%) Pktsize
name TCP UDP HTTP HTTPS P2P oth avg
Campus 7.6 5.4 21.3 22.2 11.5 45 811
ISP-full 3.08 7.76 10.8 8.2 46.2 34.7 716
ISP-80 1.50 - 78.0 0.03 0.2 21.7 909
ISP-N80 1.57 7.76 0.1 9.5 53.6 36.8 610

Table 2: Packet traces.

40Gbps several optimizations are necessary. In particular, the traffic generator sent a modified
version of a packet on all interfaces: packets sent to the k-th NIC present source and destination
IP addresses increased by k.10 This generates different flows, that, even if identical, are hashed to
different RSS queues, and thus received and processed by the SUT as different flows. We release
as open source software at [33].

Packet traces. Tab. 2 details the traces used in this study, that we collected from two different
real operational networks: namely, Campus is a 2 hr trace collected in 2015 from Politecnico campus
network, with 10,000 users; ISP-full is 1 hr trace collected in 2014 from a European ISP PoP
serving about 20,000 residential ADSL customers. We see from Tab. 2 that the traffic mixture is
different: we also extract two subsets from ISP-full (namely HTTP vs non-HTTP traffic) to further
exacerbate differences in the mixture (e.g., packets and flows size, percentage of UDP traffic, etc.)
to gather performance sensitivity to the input workload (Sec.6.3).

5 Hardware and Software tuning
We now instantiate and calibrate the principles early illustrated in our prototype. For lack of
space, we focus on two representative aspects concerning hardware and software that are of general
interest, namely NIC settings and packet acquisition policies (Sec.5.1), and idle-flow management
(Sec.5.2).

5.1 Packet acquisition policies
Sizing RSS queues. RSS queues are a useful instrument, that need to be carefully dimensioned
in light of the following tradeoff. On the one hand, large RSS queues are needed to avoid overflow:
as packet loss biases measurement results, it must be imperatively avoided. At the same time, as
packets are not individually timestamped (as in the case of dedicated capture cards with high-
precision clocks): the larger the batch, the larger the imprecision of individual packet timestamps.
At last, processing large batches of traffic could artificially generate packet re-ordering when
moving packets from different RSS queues into the same large buffer.

We argued that is advisable to use a SCHED_DEADLINE (SD) kernel policy to wake up the thread
at quasi periodic times, freeing up CPU resources with respect to polling mode (and quantify gains
in Sec. 6.1). Yet, SD policy induces a non-trivial sampling of the RSS queue size, as it guarantees
that the process will be scheduled once before the deadline, but the scheduling is not strictly
periodic. Fig. 5 reports the empirical Probability Density Function (PDF) of the RSS queue size,
sampled when the packet acquisition thread is waken up by the kernel: we collect 10 million
samples for different deadline values of δ ∈ {0.5, 1, 2, 4}ms when sending 10Gbps traffic (ISP-
80trace) through a single NIC in sut-NUMA. By design, δ = 0.5ms interval should guarantee
sub-millisecond timestamp precision, which is accurate for most cases. The upper x-axis reports
the equivalent time packets of 750B size spend in the queue. For δ = 0.5ms, the bulk of timestamp

10We tested other functions to see if this could introduce any bias. No noticeable impact has been observed.
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Figure 5: Distribution of the RSS queue occupancy for varying SCHED_DEADLINE packet acquisition
intervals δ (sut-NUMA with ISP-80).

errors are indeed sub-millisecond, with only about 1% of samples possibly11 exceeding 128 packets
or ≈ 1ms (see Fig. 6). When large δ values are used, the batch size in the RSS queue grows, thus
introducing larger errors.

Considering packet reordering, the scenario which would results very critical is when packets
of the same flow are processed out-of-sequence. For instance, consider client requests and server
responses observed at NIC-i and NIC-j, respectively. The RSS mechanism exposes them con-
sistently to the same process. But if the packet acquisition thread visits first NIC-j and then
NIC-i, an artificial out-of-sequence could be generated. To avoid this, one must guarantee that
the processing period of RSS queues is shorter than the client-server RTT, so that client packets
are already being removed from NIC-i when server packets are received at NIC-j. With practical
Internet RTT that are higher than 1ms, a deadline of 0.5ms makes this event very unlikely.

Tuning periodic acquisition. RSS occupancy distribution tail is especially important as it
correlates with losses of packets at the monitor. With RSS queues of 4096 packets (the maximum
allowed), we never recorded any loss in our measurements. Yet we can estimate the loss probability.
Rather than modeling the packet arrival process at the RSS queue (complex as it depends on
stochastic properties of the traffic at the monitor, the traffic mixture, the RSS hash function,
etc.), and modeling the acquisition thread service time (complex as it depends on the scheduler
policy which is not strictly periodic, and on external factors such as the presence of other threads
active on that CPU, the kind of processing they perform, etc.), we opt for a macroscopic approach.
We fit the RSS queue size observation with an analytic model. We find a lognormal distribution
having a good agreement with the experimental data: e.g., for δ = 4ms (the most delicate case as
the queue is large and thus where the most precise fit is needed) lognormal parameters µ = 5.85
and σ = 0.40 exhibit asymptotic errors of 0.008% and 0.094% respectively. Fitting results are
reported in Fig. 6.

From the lognormal fit, we can then extrapolate the RSS queue overflow probability, i.e.,
P(Q>4096). For δ = 4ms, this can happen with probability 7.2 · 10−10, i.e., a rare but not
impossible event. By reducing δ to 2ms (or 1ms) the lognormal model estimate a RSS overflow
probability of 7.2·10−12 (7.7·10−16). For δ=0.5ms, arbitrary precision arithmetic would be needed

11Notice that we are measuring queue size in packets and considering a reference average packet size, so that
larger queues can also be due to bursts of small packets, which we have not investigated in this study.
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to even estimate the overflow probability, that for practical purposes can therefore be considered
negligible.

Summarizing, RSS queues of 4096 packets periodically accessed every 0.5ms ensures (i) a sub-
ms timestamping precision, (ii) a negligible packer reordering, (iii) extremely unlikely packet losses
and (iv) free CPU resources with respect to polling.

5.2 Bounding packet processing time
Processing time outliers. Looking at DPDKStat from the perspective of queuing theory, a
strict requirement for system stability is that consumers must be on average faster than producers.
However, lossless traffic monitoring also requires bounding the duration of outliers events. For the
sake of illustration, we report in Fig. 7 a sample of packet processing duration. The picture reports
temporal evolution, corresponding to 106 samples ti, depicting both the t̂i = αti + (1 − α)t̂i−1

exponentially weighted moving average (EWMA), as well as the 103 samples exceeding the 99.9th
quantile.

It can be seen most of the samples exceeding the 99.9th quantile are dispersed in an area just
exceeding the quantile (and generate stochastic noise in the EWMA). Yet, very few (and periodic)
outliers appears, that have execution times several orders of magnitude larger than the average (or
even the 99.9th quantile) and that are clearly visible as EWMA spikes. Going back to the queuing
interpretation, during an anomalous service time of the consumer, the producer still offer packets,
moving them from the RSS queues to the intermediate buffer. As packets pile up unprocessed,
this potentially lead to losses: notice that the arrival rate at the RSS queue not only depends on
the global arrival rate at the node, but as well on the traffic imbalance (consider the unlucky but
realistic case where multiple heavy-hitter flows are hashed to the same RSS queue during such an
outlier event). These outliers have a particularly severe effect since, during such time, packet loss
can happen.

Garbage collection. Periodicity in the outlier signal is tied to a specific function, namely
garbage collection (GC): to avoid locking issues, GC is not implemented as a separate thread, but
a function called from the processPacket() function (whose statistics are reported in Fig. 7).
While it is important to eliminate the occurrence of such ouliers, implementing GC as a separate
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thread would not be a concrete solution. Instead, a simple yet effective way to do this is to
spread the GC effect over multiple packets: specifically, we fire garbage collection periodically
and then process a portion of the full reuse list. Denoting with (period,fraction) the GC settings,
Fig. 8 shows the original Tstat setting (5s,1) that scan the full reuse list every 5 seconds, and two
additional settings where both the period and the fraction are divided by the same factor: namely,
100× in the (50ms,1/100) case and 10000 in the (0.5ms,1/10000) case. The plot reports horizontal
reference lines for 75th, 95th and 99th percentile statistics computed over 106 samples (of which
we visualize just a portion of the samples shown early in Fig. 7).
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Interesting observations hold for Fig. 8: first, notice that the 75th and 95th percentile statistics
are indistinguishable across GC settings, which happens since the bulk of the processed packets do
not sample a GC event. Conversely, notice that packet processing times affected by a GC event are
fairly easily recognizable for the (5s,1) and (50ms,1/100) cases, as they are separate from the bulk
of the packet processing time, so that the distribution exhibit a multi-modal behavior. Comparing
(5s,1) to (50ms,1/100) we see that as expected outliers become more numerous (by a factor of 100)
but their intensity reduces as well (roughly by the same amount). Finally, observe that outliers
disappear for (0.5ms, 1/10000), which happens since the portion of the list to be processed by
each GC event is now small enough. Also, observe that the 99th percentile is larger than for the
other cases, which happens since the number of packets sampling a GC event is large enough to
impact the 99th percentile.

Batching size. It is possible to further reduce the period up to another extreme where the GC
operations are performed at each packet. This is however not advisable, as it goes against the very
same batching principles that circumvented per-packet bottleneck of standard network stacks. In
this case, the per-operation overhead is represented by a function call and context switching, that
is instead factored out when batching.

GC represents a long sequential operation performed in an “atomic” fashion in the (∆T, 1)
strategy (irrespectively of the period ∆T ), so that the lesson learned here applies a greater extent.
Denote with tOP the duration of the monolithic atomic operation (OP), with t the average duration
of the packet processing operations that did not incur in OP, and let α be the fraction of OP that
will be performed at a rate 1/α. By definition, a fraction (1− α) of packets will not sample OP,
whereas a fraction α will incur in OP overhead, however reduced by (assuming a linear dependency
for simplicity) a factor α with respect to the monolithic scenario: hence, the average processing
time will be E[t] = (1− α)t+ α(t+ αtOP ) = t+ α2tOP .

However, as early argued it is not the average processing time, but rather the longest processing
times that lead to lossy scenarios. To select α, a better guidance is to upper bound the ratio
between the processing time t + αtOP of packets incurring OP and the packets avoiding OP to
some factor L, i.e., imposing (t+αtOP )/t ≤ L so that by choosing α ≤ (L−1)t/tOP it is guaranteed
that the fraction α of packets incurring OP will have a processing time at most L times larger
than that of the other packets (1 + α(L− 1) than the average).

Summarizing, it is advisable to break down long and “atomic” sequential tasks into smaller
and more frequent sub-operations, spreading the cost to let the packet processing statistics be as
much mono-modal as possible and to avoid outliers.

6 Experimental Results
We finally examine DPDKStat raw processing rates, first gathering conservative performance on
a single trace, then extending the analysis to all traces. In particular, we investigate system
performance with respect to packets acquisition strategies and hyper-threading (Sec.6.1), multiple
CPUs (Sec.6.2) and traces (Sec.6.3).

6.1 Periodic acquisition and hyper-threading
Let us focus on sut-SMP first. Fig 9 shows the maximum achievable processing rate without losses
when running a variable number of DPDKStat instances. Results compare polling (dashed line)
with periodic (solid line) packets acquisition policies, the latter implemented via SCHED_DEADLINE
(SD). Policies have a direct impact on processes-to-core allocation: as sketched on the top part
of the figure, when using polling the best performance are obtained when packets acquisition (A)
and processing (P) threads run on dedicated cores (either physical or logic), while acquisition and
processing threads can share the same core with SD.

The two policies present similar performance up to 2 instance, with a small advantage for
polling in the single instance case (as 2 physical cores are used). When using more instances, SD
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presents large performance improvement with respect to polling, a trend maintained also at full
capacity. Overall, the system achieves 21Gbps throughput without losses, about twice as much
as system performance under polling. This is even more impressive considering that the system
only has 4 physical cores.

Hyper-threading (HT) possibly yields remarkable performance speed-up: as it can be noted
comparing the 4 vs 8 instances under periodic SD acquisition, running twice as many instances in
the same amount of silicium yields +30% performance speedup. Conversely, HT gains are more
limited under polling: despite hyper-threading yields benefits in the 4 instances scenario, gains
are completely offset in the 8 instance scenario due to increased contention – which confirms that
polling is not the best strategy for packet acquisition.

It could be objected that few simple “tricks” could be adopted to mimic periodic acquisition
directly in the user application, such as introducing controlled usleep() to break the packet
polling loop (at user-application level) and tweaking the process/thread priorities (in the regular
CFP Linux scheduler). Yet, usleep() is knowingly unreliable for sub-millisecond sleeps, and may
result in longer sleeps (due to system activity and the granularity of system timers), yielding to
timestamp imprecisions, reordering and losses. Active sleeps are instead more reliable, but they are
equivalent to polling in terms of CPU occupancy. Finally, altering the process/threads priorities
in the regular CFP scheduler is non advisable as it would require a fair amount of tuning, with
no guarantees. Otherwise stated, and as we previously have observed, whenever a functionality
is offered at a lower-level (e.g., RSS vs software load balancing; hardware lock of DPDK buffers
vs software mutex; kernel-level scheduling discipline vs poor-man usleep()), it is a wise idea to
accept the kind offer.

Overall, it is desirable to avoid packet polling due to the unnecessary resource consumption in
idle loop, and rather take advantage of SCHED_DEADLINE discipline that jointly yields guarantees
on the RSS queue size, as well as free up resources that become available from processing. It is
also adviseable to enable hyper-threading, that yields sizeable gains with SCHED_DEADLINE.

6.2 Combining different CPUs
We now consider sut-NUMA, recalling from Fig. 4 that for this system all NICs are directly
connected to CPU1. In this scenario, we have an additional degree of freedom in terms of core
allocation policies: as schematically represented in top of Fig 10, as we can either (i) preferably use
all cores of CPU1, which is closer to the NICs, or (ii) mirror allocation to balance the load across
CPUs. The dashed (solid) line in the figure corresponds to the scenarios allocating processes on
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the same (different) CPU. In these tests, hyper-threading is disabled and we run all processes on
the 16 physical cores only (the maximum supported by the SUT architecture).

As for the previous analysis, throughput scales logarithmically with the numbers of cores, and
the system successfully reaches 40Gbps with no packet losses. Interestingly, the system is slightly
faster when allocating processes on both CPUs rather than filling CPU1 first (up to +12% in
the 4 instances scenario). Potentially the system could be able to process even more traffic (e.g.,
enabling HT) but unfortunately we cannot test this hypothesis since (i) our line cards are limited
to 40Gbps and since (ii) Intel NICs offer a maximum of 16 RRS queues. We can however assess
HT gains to hold: in particular, when binding all 16 processes to run only on CPU1 with HT
enabled, we achieve 24Gbps, corresponding to a +20% of performance improvement with respect
the 8 instances scenario reported in Fig. 10 (this gain is lower than what obtained from sut-SMP,
possibly due to the different HW specs).

Summarizing, load balancing the packet processing over two CPU nodes, including the one far
from the NICs, exhibit smaller but still sizeable gain. The overall DPDKStat processing rate could
possibly exceed 40Gbps, which we cannot test due to physical limits of our testbed.

6.3 Sensitivity to input workload
We conclude our analysis investigating system performance with respect to different input traffic
mixtures. Fig. 11 shows the achievable throughput for sut-SMP using all traces available. Despite
results are in line with what reported in Fig. 9, as expected the type of input traffic can have
an impact. In particular, the system is more stressed when processing ISP-N80, i.e., the trace
composed mostly by P2P traffic. Indeed, in this condition the system need to manage a humongous
amount of small UDP flows (e.g., BitTorrent DHT) imposing a non marginal overhead on the data
structure and garbage collection. Conversely, it performs the best with Campus (and ISP-80), i.e.,
the traces composed mostly (exclusively) by HTTP traffic (+16% improvement). ISP-full, being a
combination of the traffic types, has performance lying in the middle, testifying that the analysis
in the previous section reported conservative performance results, that are typical of the mixture
nowadays ISPs offering landline access would incur.

Traffic composition has an impact on the overall performance. For instance, mobile networks
traffic is mostly composed of HTTP/HTTPS traffic while fixed access networks present P2P-centric
workload. Even if the proposed system can cope with both traffic mixtures, such differences can be
further considered to provide specific per-setup tuning and optimizations.

7 Aftermath
We design, implement and benchmark a system for scalable traffic analysis, able to process 40Gbps
with common hardware. Our analysis highlights several takeaways. First, periodic packet aqui-
sition policies implemented via the SCHED_DEADLINE (SD) kernel policy is very efficient (about
a factor of 2 improvement over polling). In reason of the deadline guarantee, the SD technique
is also amenable for a precise RSS dimensioning to achieve (stochastically) loss-free operation.
Second, hyper-threading (HT) gain is smaller but sizeable (20%-30%). Third, load balancing of
processes over multiple NUMA nodes bring a non-neglibile payoff (10%). Fourth, applications
must leverage large intermediate buffers to cope with variable processing times, to avoid packet
overwrite in the circular buffers. These variable delays can be due to either (i) long tasks of the
very-same application, in which case it be preferable to break them down into smaller subtasks;
(ii) I/O bottlenecks, in which case a background thread would solve the starvation; (iii) external
applications (including system services), that fall outside the control of the application under test,
and that while are unavoidable, are also well absorbed by a large buffer. This work also opens a
number of interesting points, that we next outline.

Sorting packets. We believe that it would is possible to further increase performance by tweaking
the packet arrival process and reordering packets before handing them over the packet analyzer.
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This would maximize the cache hit ratio related to flows data structure at the cost of more complex
operations for the packets acquisition thread.

To preliminary investigate the magnitude of the potential gain, we pre-sort the traces offline,
so that we gather an upper-bound of the performance gain (as the RSS thread does not have to
perform sorting in this experiments). We further consider different horizon of the sorting up to an
infinite window (i.e., all the trace is sorted, which is of course unpractical and only included for
reference), and report performance gain in Fig. 12. The picture show a non marginal gain, that
already appear at around 50MB (about 10 times the size of our RSS queue) and tops at 1GB (the
size of our intermediate buffer), after which the gain decreases.

Clearly, gains are tied to the amount of statistical flow multiplexing that windows of a given
size can see, so that especially for small window sizes, increasing the window increase the hit ratio.
When the window is instead too big, we observe a counter intuivite price penalty, that is however
easy to understand by considering the limit case of the infinite window: in this case, the packet
analyzer will alternate between (i) periods where data acquisition offers them large elephant flows,
benefiting from many cache hits, to (i) periods with more mice than in the regular traffic (since
the packets from the elephant flows have been batched together) suffering from many cache misses.
These opposite effects also yield to larger variance of the processing rates.

At the same time, notice that to maximize benefits relatively large buffer size need to be
processed, so that ideally sorting should happen at the packet analyzer, dequeuing packets from
the large buffer according to flow affinity. Interestingly, this would equal to a Longest Queue First
(LQF) scheduling policy in the packet analyzer, which is practically implementable and whose
stability properties are also well understood [7].

GPU offloading. We have previously argued that GPU are not cost-effective for the kind of
operation that STA perform, and that they are doomed for STA in reason of a known bottleneck
in moving packet payload [34]. Yet, we have also seen that offloading operations to hardware
whenever possible (e.g., RSS, Hyper-threading and software transactional memory using hardware
locks) or even to lower-layer sofware (e.g., kernel SCHED_DEADLINE vs user usleep()) is useful in
releaving bottlenecks. Hence, when adding more STA functions to the point where CPU becomes a
bottleneck, it could become useful to offload part of the processing to the GPU, with a technique
complementary to the one described above. An example is represented by CryptoPAN12: this
library, currently integrated in DPDKStat, is used to obfuscate IP addresses and only require
moving IP addresses as opposite to full payload. A more systematic analysis would be however
needed to understand which function of the STA pipelined workflow is appealing to offload to
GPUs.

12http://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/
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