
1

Online anomaly detection leveraging
stream-based clustering and real-time telemetry

Andrian Putina1, Dario Rossi2
1Telecom Paris, 2Huawei Technologies France

andrian.putina@telecom-paris.fr, dario.rossi@huawei.com

Abstract—Recent technology evolution allows network equip-
ment to continuously stream a wealth of “telemetry” information,
which pertains to multiple protocols and layers of the stack, at a
very fine spatial-grain and high-frequency. This deluge of teleme-
try data clearly offers new opportunities for network control
and troubleshooting, but also poses a serious challenge for what
concerns its real-time processing. We tackle this challenge by
applying streaming machine-learning techniques to the continuous
flow of control and data-plane telemetry data, with the purpose
of real-time detection of anomalies. In particular, we implement
an anomaly detection engine that leverages DenStream, an unsu-
pervised clustering technique, and apply it to features collected
from a large-scale testbed comprising tens of routers traversed
up to 3 Terabit/s worth of real application traffic. We contrast
DenStream with offline algorithms such as DBScan and Local
Outlier Factor (LOF), as well as online algorithms such as the
windowed version of DBScan, ExactSTORM, Continuous Outlier
Detection (COD) and Robust Random Cut Forest (RRCF). Our
experimental campaign compares these seven algorithms under
both accuracy and computational complexity viewpoints: results
testify that DenStream (i) achieves detection results on par with
RRCF, the best performing algorithm and (ii) is significantly
faster than other approaches, notably over two orders of mag-
nitude faster than RRCF. In spirit with the recent trend toward
reproducibility of results, we make our code available as open
source to the scientific community.

Index Terms—Anomaly detection algorithms; Stream learning;
Machine learning; Model driven telemetry; Network monitoring
and measurements

I. INTRODUCTION

Nowadays network Operations and Management (OAM)
increasingly relies on the ability to stream and process, in
near real-time, useful “features” from network equipment. An
integral part of the OAM task is, e.g., to ascertain whether the
operational conditions are normal or anomalous and intervene,
when needed, by quickly repairing eventual problems.

Simple Network Management Protocol (SNMP) has long
been the de facto standard to gather fairly coarse informa-
tion from the network management, control and data planes.
Consequently, SNMP has been used for anomaly detection for
long time [1]. In the SNMP paradigm, the server initiates the
data collection from hundreds of devices, with a pull-based
approach, at traditionally low frequency (i.e., in the order of
minutes). More recently, Model-driven telemetry (MDT) [2]–
[5] has emerged as an interesting alternative to SNMP: instead
of having to periodically poll at a low rate (as in SNMP),
under MDT subscribers receive continuous stream of operating
state information in a standard structured format. In addition

to supporting periodic export, MDT further enables to trigger
data publication when specific conditions are met.

Rather typically, a common workflow to several vendors
(such as Cisco [3], Arista [4] and Huawei [5]) is to express
features via Yet Another Next Gen (YANG) [6], [7] data mod-
els, encoded with the Google Protocol Buffer (GPB) format,
that are then transmitted via the Google Remote Procedure
Call (GRPC) protocol. While the use of standard formats
and protocol for their export is very desirable, and while
the abundance of information is desirable for fine-grained
monitoring, it becomes necessary to also process MDT data
as it is streamed – a challenging task at the heart of our work.
First and foremost, under MDT the data must be processed
in real-time, which puts a practical cap on the algorithmic
complexity. Second, as the data is streamed continuously, no
assumption on data distributions or length can be made a
priori. Third, data cannot be stored and algorithms have to
perform a single pass on it, which significantly limits the
algorithmic design space.

Under these requirements, it is crucial to extract, with
as simple operations as possible, as much information as
possible from the incoming measurements, as these have to
be discarded immediately after processing. However, while the
data science community (e.g. IEEE Computational Intelligence
Society or ACM Special Interest Group on Knowledge Discov-
ery and Data Mining1) flourish with stream-based algorithms
(e.g. where models are built and maintained incrementally),
these are seldom used by the network community (e.g., IEEE
Communication Society or ACM Special Interest Group on
Data Communication2). For example, although anomaly de-
tection is surely not a green field, stream-based approaches
are not popular yet: we argue that that streaming network
telemetry is a perfect use case for stream-mode machine
learning.

In this work, we present an anomaly detection engine,
called Online anomaly detection in Data Streams (ODS), that
leverages the DenStream [29] unsupervised clustering algo-
rithm. As example of application, we consider Content Service
Provider (CSP) datacenters that, following recent trends [30],
are designed with Border Gateway Protocol (BGP) as the only
routing protocol and from which the datasets are streamed and
collected as telemetry timeseries (at a fast sampling rate of 5s).
The dataset is gathered from a large scale CSP testbed where

1http://www.ieee-cis.org - https://www.kdd.org
2https://www.comsoc.org - https://www.sigcomm.org/

2

Y = Yes; N = No; CBA = Collected by authors from known sources; MLA = Manually labeled by authors; LOT = Labeled by online tools

Methods

(i) Statistical

(ii)-(iii) ML

(ii) Supervised

(iii) Unsupervised

Offline

Online

Domain Method Dataset Available Labels Reference

Backbone networks PCA Private N MLA Lakhina et al. [8]
BGP anomalies PCA CBA N MLA Huang et al. [9]

GLRT CBA N MLA Deshpande et al. [10]
t-test CBA N MLA Ganiz et al. [11]

Flood attacks Cov. KDD’99 Y Y Yeung et al. [12]
Intrusion detection PCC KDD’99 Y Y Shyu et al. [13]

Wireless sensor networks kNN IBRL/GDI Y/Y MLA/MLA Rajasegarar et al. [14]
Traffic classification K-Means Testbed/CBA N/N MLA Munz et al. [15]

DBScan CBA N LOT Mazel et al. [16]
DBScan KDD’99/CBA/CBA Y/N/N Y/LOT/Y Casas Hernandez et al. [17]
LOF DARPA Y Y Lazarevic et al. [18]

Twitter spam DenStream CBA N Y Miller et al. [19]
Traffic classification iGDCA CBA/CBA N/N N/Y Dromard et al. [20]

DenStream DARPA Y Y Miller et al. [21]

Intrusion detection SVM [22] NSL-KDD Y Y Wang et al. [23]
Neural Network KDD’99 Y Y Subba et al. [24]
Neural network KDD’99 Y Y Poojitha et al. [25]

BGP Anomalies Decision Tree (C4.5) CBA N MLA Li et al. [26]
SVM CBA N MLA de Urbina Cazenave et al. [27]
SVM CBA N MLA Al-Rousan and Trajkovic [28]

Fig. 1. Summary of the State of the Art in Anomaly Detection applied to Computer Networks. Related work is grouped in three branches depending on the
underlying algorithmic family: Statistical, Supervised and Unsupervised (the latter branch, that is closest to this work, further subdivided in Offline vs Online
techniques). For each work we point out the method, the dataset along with its public availability and labeling characteristics.

BGP anomalies (as categorized in [31], direct unintended
BGP anomalies, misconfigurations causing leaks, link failures,
blackouts or cable break) are injected in a controlled fashion.
Collected features are exported via YANG telemetry, which
makes them more easily identifiable and possibly portable
across vendors. The set of hundreds of continuously streamed
features compose the multivariate time-series to which our
proposed online algorithm is applied. Summarizing our main
contributions:

• We devise Online anomaly detection in Data Streams
(ODS), a stream-mode anomaly detection algorithm apt
at operating over telemetry data, offering its open-source
implementation at [32].

• We perform an exhaustive evaluation over the available
datasets, comparing ODS with classic offline (e.g., DB-
Scan [33], Local Outlier Factor [34]) and online ap-
proaches (the windowed variant of DBScan [33], Robust
Random Cut Forest [35], ExactStorm [36] and Contin-
uous Outlier Detection [37]): results show ODS to be
not only, by far, the fastest algorithm, but also to be
among the most reliable ones across multiple information
retrieval metrics.

The rest of this article is organized as follows. We first
survey the related work and provide background material on
the algorithms (Sec. II). We next describe the testbed and
publicly available dataset (Sec. III). We use part of the dataset
to conduct hyperparameter calibration of all the considered
algorithms (Sec. IV), and to avoid overfitting, gather exper-
imental results on the rest of the dataset (Sec. V). Finally,
we summarize our findings and discuss the perspective they
open (Sec. VI–VII): in a nutshell, our results show that stream
mode algorithms such as ODS are able to accurately process
telemetry data in real-time for a very limited computational
cost, making them directly deployable in routers.

II. RELATED WORK

This section overviews related work focused on outlier de-
tection in computer networks. In particular, Sec. II-A presents
a taxonomy of the relevant work, illustrated in Fig.1, from
the network domain viewpoint, whereas Sec. II-B introduces
background material concerning the unsupervised clustering
techniques that are relevant for our work.

A. Outlier detection in computer networks

Hawkins [38], defines an outlier as “an observation, which
deviates so much from other observations as to arouse sus-
picions that it was generated by a different mechanism.”
Generally, anomalies are categorized as point, contextual or
collective outliers: Point outlier is an object that significantly
deviates from all the objects in the dataset; Contextual outlier
is an object that significantly deviates from the objects in a
context (eg. period in a timeseries); Collective outlier is a
subset of objects that significantly deviates from the entire
dataset (i.e., individual objects of the subset might not be out-
liers but all of them, together, constitute a collective outlier).
The events we consider in this work (see Sec. III) belong
to the point and collective outlier classes. In several domains
(fraud/intrusion detection, public health etc.) it is assumed that
the number of anomalous objects is (much) smaller than the
normal objects. For this reason, several methods generate a
normal (baseline) model of the system and label anomalous
all the objects that are significantly different. As illustrated in
Fig.1, these methods fall into three main groups, namely (i)
statistical, (ii) supervised and (iii) unsupervised learning.

(i) Statistical methods use probabilistic models to detect
changes in the data. Principal Component Analysis (PCA) is
used in [8] to detect anomalous traffic volume in backbone
networks by reducing the n-space of variables into a k-
subspace corresponding to the normal behavior and a m-
subspace corresponding to anomalies and noise. The subspace
method is used in [9] to detect BGP anomalies, extracting the

3

amount of update messages from raw BGP updates every 10
minutes and processing the data in batches of 200 samples.
Similarly, [10] and [11] extract features from raw BGP updates
(BGP volume, Autonomous System (AS)-Path, etc.) every 5
minutes and perform anomaly detection using the Generalized
Likelihood Ratio Test (GLRT) and the t-test respectively. Fi-
nally [12] contrasts the covariance matrix of n objects against
a normal precomputed covariance matrix to detect flooding
attacks in the KDD’99 [39] dataset while [13], using the same
dataset, proposes a Principal Component Classifier (PCC)
yielding an anomaly score for both major and minor subspace
components. These methods are interesting but inherently
obscure for the human operator that needs to interpret the
results, as the semantic of the original feature domain is lost
due to the projection transformation – a significant matter of
concern that render the techniques less appealing for practical
purposes [40], [41].

(ii) Supervised methods learn both normal and anomalous
behaviors from labeled data and then classify each new object
normal or anomalous depending on which class fits to. Due
to the lack of data, most of the methods use KDD’99 and
NSL-KDD [42] datasets or have to manually label private
datasets (MLA in Fig.1). Among the most used algorithms
there are Decision Trees (C4.5) [43], Support Vector Machines
(SVM) [22] and Artificial Neural Networks (ANN) [44].
Authors of [23] obtains a 2× SVM training time reduction
using the NSL-KDD dataset augmented and transformed by the
logarithm marginal density transformation while [25] and [24]
use the KDD’99 dataset to evaluate their ANN models which
reduce false positive rate and minimize overall computational
overhead respectively. Regarding BGP events, [26] trains and
tests a decision tree (C4.5) using features extracted every
minute from RouteViews and RIPE NCC archive during
known misconfiguration events, Slammer worms and electric-
ity blackouts. The same source, sampled every 30 seconds, is
used by [27] which compares different algorithms as decision
trees, Naive Bayes and SVM. They process the data using a
sliding window of 10 samples, corresponding to 5 minutes,
which slides of two minutes every time. Their system raise
an alarm if at least 60% of the samples in the window are
labeled anomalous allowing them to detect events as early
as four minutes. The importance of BGP features is studied
in [28] applying both Fisher [45] and mRMR [46] feature
selection techniques, which concludes that 65% of the selected
features are volume-based (i.e. BGP announcements, IGP
packets, EGP packets etc.) and that these are more relevant and
perform better than AS-path features. Supervised approaches
are however of little portability across datasets, where features
and labels differ, and the applicability of such models is
therefore limited to the very specific use-case under study.

(iii) Unsupervised methods could prove particularly useful
to detect outliers as they are able to find unknown patterns
without using labeled data: outliers are identified as items
different from the previously found patterns. Best known
approaches [14]–[21], [47] uses distance (or density) to group
together similar objects and label anomalous those far from
the neighbors, and can be further categorized into offline vs

online methods. Offline algorithms (such as K-Means [48],
DBScan [33], Local Outlier Factor (LOF) [34]), require the ac-
cess to the entire dataset at once (to compute centroids-objects
distances or pairwise distances) and iteratively converge to a
final solution. Online algorithms (such as iGDCA [49] and
DenStream [29]) are instead designed to build, maintain and
update models incrementally at each new sample. The above
classes of work are closer to ours and deserve a deeper look.

Offline unsupervised methods are used in [14]–[18] for
outlier detection. For instance, [14] applies k-NN, a distance-
based method to detect anomalies in wireless sensor networks,
whereas [15] uses K-Means to detect anomalous flows (i.e.
counters of bytes, packets etc.). Several algorithms (i.e. un-
supervised SVM, LOF, k-NN) are instead compared on the
DARPA dataset in [18], asserting that the best performing
one is LOF – which we thus include in the comparison.
Density-based sub-space clustering methods are used in [16],
combining evidence accumulation to identify anomalies. To
reduce the high computational complexity of such offline
methods, [17] utilizes a discrete time-sliding window to extract
and aggregate different flow-resolution levels, in time slots of
fixed length ∆T – a reasonable compromise approach that we
also consider in this work.

Online unsupervised algorithms have been used more rarely
for network anomaly detection [19]–[21], [47]. Authors in [20]
employ a discrete time-sliding window and an incremental
grid clustering algorithm to detect anomaly traffic in the core
network of a Spanish Internet Service Provider (ISP). Closer
to our work are [19], [21] that employ DenStream at the
application and network layers respectively. In particular, [19]
use DenStream to successfully detect Twitter spam using a
(tiny) dataset containing approximately 3000 normal and 200
manually labeled spam entries. Authors in [21] cluster normal
vs anomalous packets in the DARPA dataset operating in the
data plane, and directly leverage packet payload, using the
numerical value of each byte HTTP payloads as input features.
As such, both domains of application in [19], [21] are rather
far from the control-plane telemetry use-case of this paper,
and neither [19] nor [21] carry on a systematic evaluation of
multiple algorithms as we do in this work.

Additionally, from a practical viewpoint [21] requires con-
tinuous hyperparameter tuning and furthermore assuming
prior knowledge of the percentage of anomalous packets –
and cannot thus be readily deployed. In contrast, we make no
assumption on the data and further propose principled and au-
tomated tuning methodology – that are robust to environmental
condition changes.

With respect to our own previous conference work [47], we
(i) ameliorate our methodology by using a dynamic threshold,
as well as (ii) systematically compare ODS against a large
set of algorithms. In particular, concerning (i) our previous
work [47] required either a minimum number KT of sequential
anomalies from the same node, or a contemporary minimum
number of independent detection from KS from several nodes.
Although the two methods greatly suppress false positives,
single-point in time outliers, or anomalies local to a single
node, can go unnoticed as recognized in [47] – which the dy-
namic threshold we propose in this paper successfully avoids

4

(see Sec.IV-C). As for (ii), a systematic and conservative
comparison of performance and complexity results shows ODS
to be among the most reliable algorithms across multiple
information retrieval metrics (Sec.V-B) and, by far, the fastest
algorithm (Sec.V-C) in the batch, which makes it suitable for
deployment.

B. Overview of clustering algorithms

We now provide background information on the clustering
algorithms that we will be using as building blocks for our
system in this paper. A summary of the algorithms compared
in this work, is present in Table I, along with their main
parameters. We point out that the ultimate goals of some of
these algorithms is to perform clustering: so while this section
briefly covers each algorithm, we defer to Sec. IV a more
formal description of our methodology to leverage clustering
output for anomaly detection purposes.

DBScan is a data clustering algorithm proposed by Ester et
al. [33]. It is a density-based clustering algorithm: it computes
the distances between the samples and clusters altogether the
points which are neighbors (i.e. whose distance is less than ε).
By computing the ε neighborhood of each point, it is able to
discover clusters of arbitrary shape. The points falling in low-
density regions (whose nearest neighbors are far) are labeled
as noise. In particular, the algorithm defines the local point
density p by two parameters: ε and MinPts. The first one
is the radius and defines the neighborhood of a point p. The
neighborhood is thus the group of all the points within the
radius ε from the point p:

Nε(p) = {q ∈ D|dist(p, q) ≤ ε} (1)

MinPts instead defines the minimum number of samples in
a given neighborhood. Combining ε and MinPts, the density
of an object p is high when in the Nε(p) there are MinPts or
more and low otherwise. Points with high density are called
core points while low density points in the neighborhood of
a core point are called border points. Finally low density
points are outliers. The clusters are obtained grouping together
density-reachable points where a point p is directly density-
reachable from a point q if p ∈ Nε(q) and |Nε(q)| > MinPts.
The outliers are the points not belonging to any cluster Ci.

The time complexity of the algorithm is O
(
n2
)

[50] re-
ducible, using efficient indexing data structures (i.e. R∗-tree),
to O (n log (n)) [33] on average.

wDBScan is the windowed version of DBScan. Similar to [17],
the algorithm is applied to a batch of samples of length w at a
time. When a new sample is available, the window advances
by one step, removing the oldest sample and adding the newest
one. Thus, in addition to DBScan’s ε and MinPts, it adds the
window size w parameter. The complexity of this approach
then becomes O (w n log (w)).

Local Outlier Factor (LOF) is a data clustering algorithm
proposed by Breunig et al. [34] to detect anomalous data point
by measuring local densities. The algorithm computes the local

TABLE I
ALGORITHMS COMPARED IN THIS WORK

Algorithm Type Parameters

DBScan Offline ε, MinPTS
LOF Offline n neighbors, contamination

wDBScan Windowed ε, MinPTS, w
ExactSTORM Online R, K, w

COD Online R, K, w
RRCF Online t, w, contamination

DenStream Online ε, λ, β, µ

density of a point as the distance of the k-th nearest neighbor.
It is possible in this way to identify regions of similar densities
and the points with low density are considered outliers.

In particular LOF computes, for each sample, the euclidean
k-distance dk to its k-th nearest neighbor. Distances are then
used to compute the reachability distance of two points p and
q as the maximum of their real distance and the k-th distance
of the second point.

reachDistk(p, q) = max(k − dist(q), dist(p, q)) (2)

and the local reachability distance of an point p as the average
reachability distance of p from its neighbors:

lrdk(q) = 1/
[∑

q∈NK (p) reachDistk(p, q)

|Nk(p)|

]
(3)

In the end, the local outlier factor of an object is the average
local reachability distance of the neighbors divided by the
object’s own local reachability density, i.e.:

LOFk(p) =

∑
q∈Nk(p)

lrd(q)
lrd(p)

|Nk(p)|
(4)

Objects with similar density will have a LOF value close to
1, higher density objects (normal) will have LOF lower than
1 while a LOF value higher than 1 will mean an object which
has a lower density than the neighbors and thus an outlier.
The decision function can be properly tuned by observing
the scores of the top-most abnormal samples (contamination)
in the dataset. LOF hyperparameters are n neighbors and
contamination and its time complexity is O (n log (n)) [34].

DenStream is a clustering algorithm proposed by Cao et
al. [29]. It is an algorithm designed for data streams, which
extends the density-based strategy introduced in DBScan
making it viable for online model construction. First of all,
the algorithm uses a damped window model to weight the
samples: older ones become less important than newer ones
via a fading function

f(t) = 2−λt, λ > 0 (5)

where λ is the aging parameter. The main idea of the algorithm
is the introduction of the so called micro-clusters (mc), i.e.,
group of close points pi1 , ..., pin with creation time stamps
Ti1 , ..., Tin . A mc is defined as a (w, c, r) where w is the
weight, c is the center and r is the radius of the mc. The weight

5

w is given by the number of elements in the mc weighed by
their generation time Tij with respect to the current time t:

w =

n∑
j

f(t− Tij) (6)

Similarly,

c =
1

w

n∑
j

f(t− Tij)pij (7)

r =
1

w

n∑
j

f(t− Tij)dist(c, pij) (8)

where dist(c, pij) is the euclidean distance between point pij
and the center c. By breaking clusters into mcs, DenStream
allows to dynamically construct clusters of arbitrary shapes.
The mc weight w plays a key role in the model construction,
as it discriminates between outlier (w < βµ) vs core (w > βµ)
micro-clusters (where β and µ are free parameters).

When a new sample is available, DenStream (i) merges
it to the nearest core mc provided that the radius of the
merged cluster does not exceed a given threshold ε; otherwise,
DenStream (ii) attempts to merge the point to the closest
outlier mc, and (iii) a new outlier mc is finally created by
the point if the merge fails.

Not only mcs are easy to maintain incrementally at each new
data point, but notice that model construction is a continuous
process in DenStream: an outlier mc can indeed become a
core mc when its weight increases as new points are added to
it. Similarly a core mc becomes an outlier mc (and ultimately
vanishes) if no new data points are added for long periods. The
authors show that the minimal time span for a core mc fading
into an outlier one is Tp = 1

λ log(βµ
βµ−1) therefore it is natural

to check them every Tp time periods. Two offline phases can
be found in DenStream: Initialization and Generating Final
Clusters. The authors propose indeed to obtain the initial mc
as the output of DBScan applied to the first InitN points, called
buffer, and then maintain them incrementally. Similarly, they
propose to obtain the final clusters, when requested, applying
again DBScan to the set of core mcs considering them as a
virtual point located at the center of the mc.

ExactSTORM is an online anomaly detection method proposed
by Angiulli et al. [36]. The method uses a sliding window
model and stores the data instances in nodes of a suitable
data structure called Indexed Stream Buffer (ISB). Each node
contains the data instance p, its arrival time p.t, the number
of succeeding neighbors p.count after and the list, of size at
most k, of the preceding neighbors p.nn before. The ISB data
structure supports the range query search, that given an object
p and a real number R > 0, returns the objects in the ISB
whose distance to p is not greater than R. For each incoming
instance p, a range query is performed in ISB which returns
the list of its preceding neighbors Q. For each q ∈ Q, the
number of succeeding neighbors q.count after is increased by
1. Finally, p is inserted into the ISB while the expiring instance
o is removed from the data structure.

All the operations previously described are performed by
the so called Stream Manager which updates the ISB for each

incoming instance. It is subsequently up to the Query Manager
to scan the ISB searching for outliers.

For each instance p in the ISB, the Query Manager discrim-
inates between inliers and outliers by considering the sum of
the succeeding neighbors p.count after with the size of the
preceding neighbors list p.nn before. If the sum is lower than
k, then p is an outlier and inlier otherwise.

Continuous Outlier Detection (COD) is an online anomaly
detection method proposed by Kontaki et al. [37]. Similar
to [36], the method uses a sliding window model and stores
the instances in a data structure that supports range queries ef-
ficiently (e.g. M-Tree). The authors observe that (i) a departing
instance can transform inliers into outliers, (ii) an incoming
instance can transform outliers into inliers and (iii) not all the
instances are affected by the expiring ones. Since only the
neighbors of the expiring instances have to be updated, COD
uses a priority queue (Fibonacci queue) to schedule processing
of affected instances. The method stores for each instance of
the stream p, its arrival time p.time, its expiration time p.exp,
the list of its preceding neighbors p.P and the number of the
succeeding neighbors p.n+.

When a new instance p is available, the algorithm sets
the expiration time to w samples from the current time. It
subsequently performs a query which returns the list of objects
(p.P) lying at distance at most R from p. Comparing the total
number of neighbors against the threshold k, the algorithm
discriminates inliers from outliers. If p is an outlier it is added
to the outlier list; it is added to the inlier list and to the priority
queue otherwise. The key in the priority queue is set according
to the minimum expiration time of all its preceding neighbors
p.P. For each instance q ∈ p.P , the number of succeeding
neighbors q.n+ is incremented by 1. When the total number of
neighbors exceeds k, q is promoted to the inliers list and added
to the priority queue. The key in the priority queue follows
the minimum neighbors expiration time previously described.

When an instance o expires, it is removed from the range
query data structure and from the preceding neighbors lists.
To do so, the priority queue is polled until all the elements set
to be checked in the current time are extracted. Each extracted
element q is either added to the outlier list if its total number
of neighbors falls below k, or its key is updated and q is
reinserted into the queue otherwise.

Robust Random Cut Forest (RRCF) is an online anomaly
detection method proposed by Guha et al. [35]. It is an
ensemble algorithm composed by t different models which
maintains w instances (tree size) in binary trees. Each instance
p ∈ w is isolated in a leaf of the tree while internal nodes act
as splitting nodes. Each internal node, in addition to splitting
criterion (attribute and value) maintains also the dimensions
bounding box (support) of all the instances in the sub-tree.

Given a set of instances S and a tree T(S), when a new
instance p is available, the algorithm tries to insert it from the
root. It first sums together the supports of all the dimensions
contained in the bounding box and extracts a random number
r ∈ [0,

∑
i(x

h
i − xli)] which determines the attribute and the

splitting value. If the split separates the instance p from the

6

remaining tree, the algorithm generates a new splitting node
with a branch containing p and another one containing the
previous tree T(S). If the split does not isolate p, then p follows
the path of the existing tree and the procedure is repeated on
each sub-tree until the instance is isolated. All the bounding
boxes on the path of p are updated.

When an instance o departs, the algorithm removes its
parent and replaces it with the sibling. All the bounding
boxes starting from o upwards are updated. Notice that all the
operations previously described (insertion, deletion, bounding
box updating process, etc.) are repeated for each of the t trees
in the ensemble.

The insertion and removal of each instance in the tree leads
to a modification of the tree structures. The variation in tree
complexity is used to determine the anomaly score. Given
a set of points Z, a point p and a tree T , the depth of p
is f(p, Z, T). Assigning to each left branch of the tree the
bit 0 and the right branches the bit 1, the model complexity
|M(T)| =

∑
p∈Z f(p, Z, T) is the number of bits required

to write down the description of all points p in the tree. The
bit-displacement of an instance x is:

Disp(x, Z) =
∑

T,p∈Z−x
Pr[T] (f(p, Z, T)− f(p, Z − x, T ′))

(9)
the increase in the model complexity of all other points, i.e.,
for a set Z, to capture the externality introduced by x, where
T ′ = T (Z − x). To avoid outlier masking (phenomenon in
which dense outliers mask each other) instead of removing
just x, they propose to remove a set C with x ∈ C and obtain
so the Collusive Displacement CoDisp(x, Z, S)

E
S⊆Z,T

 max
x∈C⊆S

1

|C|
∑

p∈S−C
(f(p, S, T)− f(p, S − C, T ′′))

(10)

Anomalies correspond to large CoDisp values: similarly to
LOF, we properly tune the decision function by observing the
scores of the top-most abnormal samples (contamination) in
the dataset.

III. TESTBED AND DATASETS

We study and compare the proposed method using publicly
available datasets [51], gathered and released for the previous
conference version of this paper [47]. The datasets have been
collected in a state of the art testbed, comprising tens of real
routers, running real protocols and traversed by Tbps traffic
(Sec.III-A). The testbed is used in several experiments where
anomalous events are injected in randomly chosen nodes
in a controlled fashion (Sec.III-B). In turn, these controlled
anomalies affect the stream of telemetry features (Sec.III-C) ,
as we illustrate for the sake of clarity (Sec.III-D).

A. Testbed

The dataset is extracted from a testbed replicating a tra-
ditional clos topology of a CSP datacenter shown in Fig.2.
For redundancy, each leaf is connected to each spine via

TABLE II
EXPERIMENTAL DATASETS AVAILABLE AT [51]

Experiment Traffic No. Duration Used forID Load Anomalies

2 1 Tbps 11 1 h Tuning parameters (Sec. IV)
3 1 Tbps 8 0.55 h Tuning parameters (Sec. IV)
5 1 Tbps 12 2 h Test parameters (Sec. V)
9 2.9 Tbps 5 0.75 h Test parameteres (Sec. V)
10 2 Tbps 5 0.55 h Test parameters (Sec. V)

SPINE 4
SPINE 3
SPINE 2
SPINE 1

LEAF 4LEAF 3LEAF 2LEAF 1 LEAF 5LEAF 6LEAF 7LEAF 8

NCS5508

DR03

N9504

NCS5508

DR01
NCS5508

DR02

N3232 N3232 N3232 N9236N9236 N3232
rswA5 Bell-CA rswA6 rswA2

N3172
rswB1 rswA3 rswA4

--- 4 X 100G ECMP links
--- 2 X 100G ECMP links
--- 2 X 40G ECMP links

Fig. 2. Testbed replicating a traditional clos topology of a CSP datacenter

4×100Gbps fiber links, so that the nodes have 25 interfaces on
average. On the operational level, the datacenter is designed
with BGP as the only routing protocol, following guidelines
in [30].

Though the testbed does not involve real users, it does
use real equipment, protocols and applications typical of
production networks. We thus disregard experiments collected
under no traffic load (mostly useful for testing) and limitedly
consider those where real application mixtures are generated
from servers in the racks connected to the ToR switches (the
Nexus 2/3/5000 and 9000 series) to generate up to 3 Tbps
of aggregated traffic (a mixture of TCP, AMR-WP VoIP
and G.711a calls, Skype-1050P, Blue Ray and 4K YouTube
streaming).

B. Data collection

Multiple experiments, listed in Table II, with different
characteristics and scenarios are performed. While minute-
level telemetry collection is generally practice in the industry,
the dataset we use in this work has been gathered with the
fastest sampling period supported by the products, namely of
∆T=5 seconds. Every ∆T , each of the N nodes stream a
snapshot of its F features to the collector: each experiment is
a point X ∈ RNSF where N is the number of nodes, S is the
number of collected samples during that experiment and F the
number of features. All the available features are described by
YANG models [52] and then extracted, decoded and stored
by Pipeline [53] as compressed CSV files. The dataset was
already made available at [51] as contribution of our previous
conference version of this paper. The repository [51] contains
experiments undergoing different traffic load (from 0 to 3
Tbps), different number of anomalies injected (from 0 to
few 10s) and different anomalies types, such as BGP port
flapping (Link Failure - Point anomalies), BGP leaks and

7

BGP clears (Direct Unintended BGP Anomalies - Collective
Anomalies). An interesting point is how to ensure that the
synthetic anomaly injection process yields to outliers that re-
tain similarities with anomalies found in the real-world. While
a systematic quantitative evaluation of the anomaly injection
process is outside the scope of this paper, it is possible to
provide preliminary qualitative insights on this point. Notice
that these synthetically injected anomalies represent the type
of BGP anomalies that are typically found in real-data [54];
additionally, such anomalies are injected by actioning on
the protocol (e.g., automatically activating/deactivating links
for flapping, purposely misconfiguring tables for leaks, and
resetting tables for clears) as it would happen in case of real
connectivity problem (flapping) or “fat finger” (leaks, clears),
so to trigger real protocol reaction. As such, while the temporal
patterns of the anomalies are likely unrealistic (i.e., since
they are periodical and more frequent that what it can be
expected) by separating anomalies by a long enough time, we
can ensure anomalies are roughly independent, and as such
should independently trigger alarms. Overall, the synthetic
injection process is expected to provide a sufficiently realistic
benchmark.

The working condition of the system is classified in two
categories, i.e., normal vs anomalous. The system works by
default in normal mode, and each experiment starts with
a normal period (lasting at least 40 samples), after which
controlled anomalous events are injected at randomized node
locations. Depending on the dataset, the anomalies are injected
by spacing them by 300 seconds or more and all of them
are tracked in a ground truth database available in the same
repository. The groundtruth file includes the root node in
which the event is injected, the timestamp and the type. We
point out that we do not leverage ground truth information to
build our data-driven models (i.e., as one would to in case of
supervised classification), but rather use ground truth only to
assess the performance of the unsupervised methods.

Whereas the start time of the anomalous event is known, the
event duration is not deterministic: the even injection triggers
the BGP update process, after which BGP converges to a new
stable state. We discuss with product line experts to set an
expected event duration: based on expert knowledge related
to both protocol dynamics (i.e., the convergence process of
BGP), as well as business objectives (i.e., the ability to gather
actionable alarms on a timescale interpretable by humans),
network experts consider an event ended 3 minutes after its
injection time.

Clearly, as any threshold that can be set arbitrarily, its tuning
may impact algorithmic performance evaluation: for instance,
setting a very short event duration (sub-minute) would raise
several events that would be wrongly counted as “false alarms”
(since BGP did not converge yet in practice); conversely,
setting a too long duration (e.g., larger than the interval
between two consecutive injections) could lead to superposed
event. Based on properties of the injection process, and on
our preliminary observations of the timeseries, we concur with
experts that 3 minutes is an advisable event duration for this
datasets also from the viewpoint of machine learning experts.

0

500

1000

1500

Co
nt

ro
l P

la
ne

pa
th

s-
co

un
t

4th event 7th event 10th event

0 50 100 150 200 250 300
Time [Samples]

0

2

4

6

Da
ta

 P
la

ne
by

te
s-

se
nt

1e10

Fig. 3. Dataset at a glance: Top plots depict example of the Multivariate Time
Series as heatmaps for leaf1 and spine1 on E5 (plots on the left) and E10
(plots on the right). Bottom plot reports temporal evolution for sample features
and annotated ground truth for node spine1 on E5: control-plane paths-count
(top), vs data-plane bytes-sent on interface HundredGig0/0/0/0 (bottom).

C. Telemetry features

The streamed KPI (aka features in machine learning terms)
available in the testbed are a subset of the YANG [7] state
of the devices, exported by GRPC to an inbound collector.
In a nutshell, YANG models define a hierarchy (i.e., tree)
of data that can be used for configuration, state sharing and
notifications; in the model, each node has a name, and either
a value or a set of child nodes. At the same time, it is
worth stressing that the YANG hierarchy of devices in the
testbed comprises over 378,000 lines, describing a hierarchy
of over 45,000 features, with nearly 5,000 types pertaining
to the BGP protocol alone. From a machine learning view-
point, it would be counter-productive, due to the curse of
dimensionality, to apply any clustering algorithm to such a
highly dimensional data. Additionally, from a network-expert
viewpoint, collecting and exporting features consumes CPU
and bandwidth resources: as such, it is impossible to collect,
for all nodes and interfaces, the totality of the supported
features – which rules out the possibility to conduct classic
“feature selection” algorithms. Product line experts configured
the testbed to collect the most relevant control and data plane
KPIs according to their domain knowledge, and we therefore
take the resulting set of features (reported in Appendix A for
completeness) as a given. However, it is well known that not
all features are equally important in machine learning terms:
by discarding constant or categorical features from the full set
of available features, we finally extract a subset of 82 non-
trivial features (reported in Appendix B for completeness).

8

D. Dataset at a glance

For the sake of clarity, we illustrate samples of the dataset
in Fig. 3, to exemplify the types of KPI signals and anomalies
present in the dataset from spatial and temporal angles.

1) Spatio-temporal view: We start from a heatmap repre-
sentation of the multivariate data collection in the top of Fig. 3:
x-axis represent the time, y-axis represents different features
whose values are encoded as colors. To portray two different
datasets and nodes, we select leaf1 and spine1 extracted from
experiments E5 and E10. It is easy to observe that in E5, all
the 12 BGP clear events have a noticeable impact on spine1
features, and to a smaller extent, on leaf1. While it is visually
possible to distinguish the first four events in spine1, the same
does not hold for leaf1: this happens since these events are
injected in nodes that are directly connected with spine1 but
are at 2 hops away from leaf1. Thus, leaf1 features are most
noticeably affected when an event is injected in a topologically
nearby node. Heatmaps on the right show that the events
injected in E10 have even a less noticeable impact: link failures
indeed impact only one (out of four) direct links between two
nodes, and consequently only some of the features related to
that particular link are affected, which can be hard to detect.

2) Temporal view: Events are more easily noticeable by
considering a temporal view, on the bottom part of Fig. 3,
that shows an example of CP (paths-counts) and DP (bytes-
sent) features for spine1 in E5. The ground truth is represented
with a vertical red line representing the anomaly injection time
and a shaded window for the anomaly duration, and we depict
only 3 out of the 12 injected events for the sake of readability.
From these few examples, it can be expected that accurately
detecting all events, from all nodes, can be a quite challenging
due to the nature of the events, that can yield to weak signals
for some nodes and anomaly type.

IV. METHODOLOGY

Traditional clustering-based approaches, e.g. DBScan are
mainly designed to produce clusters rather than detecting
outliers or other types of anomalies, which is our ultimate goal.
As such, in this section we first specify how we move from
clustering to outlier detection Sec. IV-A. We next illustrate in
Sec. IV-B/C the careful hyperparameter selection procedure
we followed to ensure fair performance comparison in Sec. V.

A. From clustering to anomaly detection

All the considered methods succeed in making a distinc-
tion between normal samples (belonging to a cluster) and
outliers/noise. We further use these peculiarities to trigger
anomaly detection for each algorithm. In particular, a sample
is considered anomalous

(i) by DBScan, if it cannot be merged to any cluster;
(ii) by wDBScan, if by adding it to the time-sliding

window, it cannot be clustered together with the
previous samples;

(iii) by LOF, ExactSTORM, COD and RRCF, if it is
assigned an anomalous label

(iv) by DenStream, if it is successfully merged to an
outlier-mc, or a new outlier-mc needs to be created
for that sample.

Note that the exact composition and size of clusters is
affected by the algorithms hyperparamers: e.g., the minimum
size of a cluster is either explicitly (e.g., as for DBScan via
MinPTS, cfr. Sec.IV-B) or implicitly specified (e.g., as for
ODS, cfr. Sec.IV-C)

Algorithm 1: DenStream [and ODS]

1: Initialization with DBScan [skipped in ODS]
2: while ns (new sample) do
3: find closest core mc and try to merge ns
4: if rc < ε [< r̄ + krσr] then
5: merge ns to core mc
6: [return label normal, rc]
7: else
8: find closest outlier mc and try to merge ns;
9: if ro < ε [r̄ + krσr] then

10: merge ns to outlier mc
11: if outlier mc weigth > βµ [< β/(1− 2−λ)] then
12: promote outlier mc to core mc
13: end if
14: else
15: generate new outlier mc by ns
16: end if
17: [return label anomalous, rc]
18: end if
19: apply fading function 2−λ·t to all mcs
20: if t mod Tp == 0 then
21: for each core mc do
22: if wp < βµ [< β/(1− 2−λ)] then
23: remove core mc
24: end if
25: end for
26: for each outlier mc do
27: if wo < βµ [< β/(1− 2−λ)] then
28: remove outlier mc
29: end if
30: end for
31: end if
32: DBScan on core mcs [skipped in ODS]
33: end while

For the sake of illustration, we report the pseudo-code
(merging, promotion and pruning phases) of the DenStream
algorithm, together with the proposed changes for label as-
signment in ODS (emphasised and between [square brackets])
in Algorithm. 1. In particular, we propose two major changes
with respect to the original version of DenStream to be found
in the initialization phase and in the offline clustering part.
While, in the initialization phase (line 1), the original version
of DenStream uses DBScan to obtain the micro-clusters and
then start maintaining them incrementally, we cluster together
the first S samples of the stream assuming they are event free
and not contaminated by anomalies. By doing so, we obtain
a cluster of normal samples (normal working condition of the

9

TABLE III
HYPERPARAMETERS: NUMBER AND RANGE OF COMBINATIONS TESTED

FOR EACH METHOD AND FINAL SELECTION

Method Parameter [Range]@step Selected
(num. combinations) Name Value

DBScan ε [1, 20],@1 6
(500) MinPts [2, 50],@2 18
LOF n neighbors [1, 50],@1 24
(1960) contamination [0.001, 0.2],@0.005 0.065
wDBScan ε [1, 20],@1 9
(8000) MinPts [2, 50],@2 3

w [20, 100],@5 80
ExactSTORM R [1, 20],@1 10
(3040) w [10, 100],@5 95

K [2, 10],@1 2
COD R [1, 20],@1 12.5
(3040) w [10, 100],@5 50

K [2, 10],@1 5
RRCF t - 100
(800) w [5, 100,@5 95

contamination [0.001, 0.2],@0.005 0.03
ODS ε dynamic r̄ ± krσr, kr = 3
(135) λ [0.01, 0.45],@0.03 0.125

β [0.1, 1],@0.1 0.4

system). We remove, similarly, the offline part of DenStream
(line 31) in which DBScan is applied to cluster together micro-
clusters. Our goal is to find out if the samples, as soon as
they are available, are normal or anomalous; we need so to
know only if the samples can be merged to existing normal-
mc or not. Instead, we do not need to group together different
micro-clusters, which may represent different normal states,
to obtain a macro cluster of normality. Other changes pertain
to automated tuning, which we detail in Sec. IV-C.

B. Hyperparameter selection (DBScan, LOF, wDBScan, Ex-
actSTORM, COD and RRCF)

For all the methods, we first perform a hyperparameter
selection phase, to select parameters yielding to good perfor-
mance as measured by classic metrics from information re-
trieval (i.e., precision, recall and Fβ scores). Given that anoma-
lies are rare, we use the Fβ = (1 + β2) precision·recall

β2·precision+recall ,
setting β = 0.5 to account for imbalance by non-linearly
interpolating precision and recall. In particular, we use E2
and E3 from Tab. II for parameter selection. Generalization
capabilities of the tuned algorithms will be tested on en-
tirely different datasets in Sec. V. The full set of parameters
explored, along the total number of combination tested per
protocol, and the resulting selection is summarized in Tab. III.

We use classic grid optimization, i.e., an exhaustive search,
to find the parameters that reach the best performance. We
do not perform however a blindly search, as it is of fun-
damental importance the research of the parameters in the
correct intervals and magnitudes, therefore we follow the best
practices suggested by the authors in the determination of grid
boundaries.

1) Grid boundaries: For DBScan ε and MinPTS parame-
ters, we perform a grid search varying ε ∈ [1, 20] with a unit
step and minPTS ∈ [2, 50] with step equal to 2, for a total
of 500 different hyperparameters combination.

wDBscan follows the same principles for what concerns ε ∈
[1, 20] and minPTS ∈ [2, 50]. The window size w is searched
in w ∈ [20, 100] in steps of 5 units, which is equivalent to

10 20 30 40 50
MinPTS

5

10

15

20
DBScan

0.150.200.250.300.350.400.45

0.45

0.50

0.50

0.55

0.55

0.60

0.60

0.65

0.65

0.70

0.70

0.75

0.75

0.80

0.80

0.85

0.85

0.90

0.90

0.95

10 20 30 40
n_neighbors

0.05

0.10

0.15

co
nt

am
in

at
io

n

LOF0.32

0.40

0.48

0.48

0.56 0.56

0.56

0.64

0.64

0.72

0.72

0.80

0.80

0.88

0.88

20 40 60 80
window size w

5

10

15

20
wDBScan

0.08
0.16
0.24
0.32

0.3
2

0.40
0.48

0.
56 0.64 0.72

0.80 0.88

20 40 60 80 100
window size w

5

10

15

20

R

ExactSTORM

0.12 0.18
0.24

0.300.36
0.42
0.48
0.54

0.60
0.66

0.66

0.72

0.72

0.78

0.84

20 40 60 80 100
window size w

5

10

15

20

R

COD

0.09 0.120.150.18
0.21 0.240.270.30
0.330.360.390.420.450.48

0.
51

0.510.54
0.57

0.570.60

0.60

0.63
0.66

0.6
6

0.69

20 40 60 80 100
tree size w

0.05

0.10

0.15

co
nt

am
in

at
io

n

RRCF0.21

0.24

0.2
7

0.3
0

0.33

0.36

0.39

0.42
0.45

0.48 0.51

0.54

0.57

0.57

0.60

0.63

0.66
0.69

0.72
0.750.78

0.81

0.8
4

0.87 0.
90

Fig. 4. Hyperparameter selection: F0.5 heatmap for DBScan (top left),
LOF (top right), wDBScan (middle left), ExactSTORM (middle right), COD
(bottom left) and RRCF (bottom right). Detailed parameters in Tab. III.
Selected hyperparameters at the intersection of the dashed lines.

time windows ranging from 1 minute to 8 minutes (in line
with BGP time spans), obtaining so a total of 8000 different
parameters tested for each node.

The number of neighbors used by LOF is searched in
n neighbors ∈ [1, 50] with unit step, while we explore
contamination ∈ [0.001, 0.2] with a step equal to 0.005,
obtaining a total of 1960 combinations.

For what concerns ExactSTORM and COD, we perform the
grid search varying R ∈ [1, 20] and k ∈ [2, 10] with a unit
step while w ∈ [10, 100] in steps of 5 units obtaining so a
total of 3040 parameters tested for each node.

The number of trees used by RRCF is set to t = 100 as
it is commonly used in ensemble models. We explore the
tree size w ∈ [5, 100] in steps of 5 units while exploring
contamination ∈ [0.001, 0.2] with a step equal to 0.005,
obtaining a total of 800 combinations.

2) Grid search results: Fig. 4 shows a heatmap of the
F0.5 score for DBScan (top left plot), LOF (top right plot),
wDBScan (middle left plot), ExactSTORM (middle right plot),
COD (bottom left plot) and RRCF (bottom right plot). Clearly,
hyperparameter selection is to select the point (or points in a
region) that maximizes the F0.5 score. For each algorithm, we
represent the hyperparameter space of two parameters as a
heatmap, to convey an idea of the algorithm stability to (even
slight) hyperparameter changes (in the region). We highlight
the final hyperparameters choice directly in each plot, i.e., at
intersection of the dashed lines.

We observe that DBScan performs the best for 3 < ε < 8

10

and 10 < MinPTS < 30. We select ε = 6 and
MinPTS = 18. We also notice that F0.5 changes quickly in
ε, and is slowly varying in MinPTS.

From the top right plot, we observe that the region
for which LOF produces the best results are 0.06 <
contamination < 0.07 while 20 < n neighbors < 30. We
select contamination = 0.065 and n neighbors = 24 which
is close to the default parameter (n neighbors = 20).

Heatmaps in middle plots clearly show that the window size
need to be w > 70 for both wDBScan and ExactSTORM. In
the wDBScan case though, we remark that the use of a smaller
time-horizon affects the (MinPTS, ε) heatmap so that the
best selection appears to fall for MinPTS < 6 (much smaller
that in the DBScan case) and ε ≈ 9 (slightly larger than for
DBScan). We select ε = 9, w = 80 and MinPTS = 3. We
select R = 10, w = 95 and k = 2 for ExactSTORM.

Finally bottom plots show that R = 12.5, w = 50 and k = 5
are the best parameters for COD while tree size w = 95 and
contamination = 0.03 are the best ones for RRCF.

C. Hyperparameter selection (ODS)

We point out that, as reported in Tab. III, the total number
of hyperparameter explored is smaller (135) than in the other
cases: this should provide not only a fair, but an expected
conservative performance assessment of ODS performance. At
the same time, since DenStream is less well known and ODS
build on it, we present a more comprehensive explanation of
its hyperparametrization. Particularly, we use ingenuity to:
(i) simplify hyperparameter selection by lumping factors

whenever possible (as for µ+), as well as
(ii) proposing dynamic parameterless settings based on sta-

tistical properties (for ε) and
(iii) resorting to grid search for the remaining ones (λ, β).

1) Maximum weight µ+: The weight parameter µ is used
jointly with the potential factor β to decide when a given
outlier mc becomes a new core mc (particularly, when w >
µβ). Given the exponential fading function f(t) = 2−λt, and
considering a fixed-rate sampling as in our case, the maximum
weight a micro-cluster can reach is µ+ =

∑
j f(j) = 1

1−2−λ
(since |f(t)| < 1 for λ > 0) which solely depends on λ. By
setting µ = µ+ we therefore reduce the parameter cardinality,
obtaining the new minimal time span for a normal cluster
fading into an outlier one Tp = d 1λ log2(1

β)e, obtained by the
equation 2−λTpµ+ = µ+β and the rule for outlier micro-
cluster mc promotion becomes:

w > β/(1− 2−λ) (11)

2) Radius threshold ε: The radius threshold is the most im-
portant parameter of the algorithm as it delimits the anomalous
threshold. On the one hand, one may suggest a fixed selection
of the parameter, that is to compute it as the radius of the
cluster obtained merging together the data of an experiment in
which no anomalies are injected (i.e. E0 and E1 - baselines).
This is the approach we originally followed in [47]. At the
same time, we argue that a fixed selection of the parameter
introduces portability issues: as it is necessary to generate
baselines for each possible combination of topology, traffic

1.0 1.5 2.0 2.5 3.0 3.5
kr

0.0

0.5

1.0
Precision Recall Fscore FPR

Fig. 5. ODS Hyperparameter selection: Impact of kr for dynamic radius
threshold in (12)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.2

0.4

0.6

0.8 0.15
0.18

0.21
0.24
0.27
0.30 0.33

0.36
0.39
0.42 0.450.480.510.540.57

0.60

0.60

0.63

0.63

0.63

0.66

0.66

0.66

0.69

0.69

0.72
0.72

0.75
0.75

0.78
0.78

0.81
0.81

0.84

0.87

Fig. 6. ODS Hyperparameter selection: F0.5 score for increasing fading factor
λ and potential factor β applied on E2 and E3

loads and BGP policies, this making the choice fragile and im-
practical. On the other hand, one could advocate for a dynamic
selection of the parameter, that is automatically computed as
the radius of the cluster obtained merging together the first S
samples at the beginning of the model construction and keep
updating the threshold as new samples are available. We follow
this second path and dynamically set the radius threshold as:

ε(k) = r̄ ± krσr (12)

where r̄ is the incremental estimation of the radius mean while
σr is the incremental estimation [55] of the radius standard
deviation, and kr an arbitrary parameter that allows to control
(more precisely, upper bound) the false alarm rate.

We observe from (7) and (8) that the radius has a gamma
type distribution (as it is the square root of sums of positives
values). Without further assumptions on the radius distribution,
we use Chebyshev’s inequality:

Pr (|X − µ| ≥ kσ) ≤ 1

k2
, where k > 0 (13)

which states that for a random variable with finite expected
value µ and variance σ2, it is possible to compute a lower
bound of the probability that values lie inside the interval
(µ − kσ, µ + kσ). For example, for k = 3, the interval
contains at least 88.89% of the population, upper bounding
false alarm rate to at most 11%. We should stress that the
bound is however not tight: to confirm this, we report in Fig. 5,
the false positive rate (along with precision, recall, and F0.5) as
a function of kr, which is extremely low already for kr > 2. To
conservatively evaluate ODS, in the following we set kr = 3.

3) Fading λ and Potential β factors: Both λ and β have
a physical interpretation and play a key role in the model
construction. λ is a time-related parameter that tunes the
timescales at which old samples should be considered as
totally independent from the current system state. Once λ is

11

fixed, the potential factor β has a geometric interpretation,
as it determines the minimum number of samples needed for
outlier mc promotion to core mc. We point out that a domain
expert could be tempted to select λ and β according to physical
properties of the network, whereas a machine learning expert
would select λ and β as a result of data analysis and a grid
search procedure. We adopt both viewpoints in what follows.

For instance, a network domain expert could decide to
require that an outlier mc should have at least 3 samples
before becoming a normal mc and set λ according to the
expected convergence time of the BGP protocol. For example,
choosing λ such that a sample’s contribution decays 99%
after 5 minutes means 2−λ·60 = 10−2 or λ ≈ 0.111 while
the promotion threshold, requiring at least 3 samples, is
β · µ+ =

∑3−1
i=0 2−λi ≈ 2.78.

We perform a grid search to question these choices, re-
porting in Fig. 6 the F0.5 score for varying λ ∈ [0.01, 0.45]
and β ∈ [0, 1]. Several important takeaways can be gathered
from the figure. First, the performance metrics are smoothly
varying over λ and β with a fairly large region (best F0.5

score obtained for λ ∈ [0.10, 0.16] and β ∈ [0.2, 0.5]
approximately).

Second, performances degrades for both increasing λ and
β. A too high decay factor λ leads to giving too much
importance to the most recent samples while a too high β,
instead, translates in a too high weight threshold. We select
λ = 0.125 and β = 0.4. Notice that with λ = 0.125, µ+ ≈ 12
and for 0.2 < β < 0.5 the weight promotion threshold ranges
from 2.4 < β · µ+ < 6 which translates in clusters whose
weight is composed by at least 3 to 8 samples and which
are in line with the expert domain choices. These findings
confirm that indeed the parameters of the algorithm respect
their physical interpretation and can be set accordingly.

A last remark is worth making: while we have seen that
performance smoothly varies on β and λ, we point out that
their selection is still primarily correlated with the telemetry
sampling rate: as such, for very different sampling timescales
(eg. subsecond or minutes), a new sensitivity analysis is
recommended.

V. PERFORMANCE EVALUATION

We now carefully compare the methods, using the param-
eters selected in the tuning phase on datasets (E2, E3), on
previously unseen datasets (E5, E9, E10). We start by illus-
trating one example of execution of the system in Sec. V-A. We
systematically compare performance of the algorithms in terms
of several information retrieval metrics in Sec. V-B. We finally
contrast algorithms in terms of complexity and execution times
in Sec. V-C.

A. Model evolution over time

To better illustrate intrinsic differences of stream-learning
vs classic algorithms, we portray the evolution of two sample
models. In particular, we select ODS and the windowed
version of DBScan (wDBScan) and depict their anomaly
detection processes with the help of Fig. 7, using the initial
portion of dataset E5 as an example. In particular, we ought to

recall that whereas in the ODS case a single model evolve over
time, in wDBScan each of the different windows yield to a
different model. In other words, in ODS model evolution over
time is smooth by design, whereas in wDBScan the similarity
between outputs of models that are run on consecutive input
windows, merely stem from similarity in the input data, as the
time component is not otherwise explicitly exploited. In spite
of the above difference, it is possible to resort to consistent
visualization of the main inner state of these algorithms, such
as the number of normal vs outlier clusters, their radius size
and center position, etc. that are reported in Fig. 7.

In wDBScan, each time the algorithm is run, a unique
increasing ID is assigned to each cluster, starting every time
from 0: each sample is assigned the ID of the cluster it is
merged to, and the value -1 is reserved for outlier clusters.
In ODS, a unique increasing ID is assigned to each newly
generated normal-mc, and a separate ID space is similarly
used to track outlier-mc clusters. Each sample is then assigned
the ID of the cluster it is merged to, and differently from
wDBScan, ID is not reset across runs.

Plots in the top row of Fig. 7 depict the time evolution
of the number of normal vs outlier clusters present in the
window (wDBScan) or of the number of normal-mc vs outlier-
mc (ODS). We observe that, after the initialization phase, both
the models are composed by a single normal-cluster and no
outlier ones. It is easy to observe that, in correspondence to
the anomaly injection periods, the number of outlier clusters
increase as expected.

The second plots row represents the ID of the clusters the
samples are merged to. We observe that in both the models
most of the samples are assigned a normal ID (generating a
horizontal line). When an event is injected, algorithms flag
samples as anomalous (red dots). In the case of ODS, outlier
clusters may get promoted into normal clusters (which is
visible, e.g., toward the end of the first event), whereas the
old clusters are pruned over time due to the fading function.

The third and fourth rows illustrate the radius and the
weight of the normal clusters respectively. One can easily
observe from these plots the main differences in the model
evolution of the two methods. On the one hand, after the
injection of the first event, wDBScan generates a small cluster
composed of 5 samples but, as soon as BGP convergence is
achieved, returns merging new samples to the original cluster.
The newly generated cluster, together with the anomalous
samples, continue to be part of the model, even if not used for
any purpose: i.e. no new samples are merged to the generated
cluster as evidenced by the label ID (2nd plot), by the constant
radius (3rd) and weight (4th) and also from the constant center
(5th and 6th), which holds until they are excluded from the
window. On the other hand, ODS removes old clusters (see the
steady decrease of the weight of the cluster before pruning)
and updates new ones (see the fast increase of the weight of the
cluster after promotion) much more promptly than wDBScan.

The fifth and sixth rows show the first and second center
components respectively, extracted through simple Principal
Component Analysis (PCA) whose eigenvalues represents
approximately 94% (wDBScan) and 77% (ODS) of the cen-
ter. The two methods clearly behave differently: while ODS

12

firstevent secondevent thirdevent

ODS

0

5

la
be

ls

promoted

0.8
1.6
2.4

ra
di

us

dynamic
threshold

0

50

we
ig

ht N=80
samples

N=73
samples

N=5
samples

Generated cluster
removed only
after window size

promotion
threshold

pruned

promoted

2
0
2
4

1st
 c

. c
en

te
r

initial
working
condition

slowly shifting
towards new
working condition initial

working
condition

50 100 150 200 250 300 3502
1
0
1
2

2nd
 c

. c
en

te
r

50 100 150 200 250 300 350

new
working
condition

0

5
#c

lu
st

er firstevent secondevent thirdevent

wDBScan

normal c1
normal c2
anomalous

Fig. 7. wDBScan (left) vs ODS (right) model evolution over time. The top two rows discriminate normal vs anomalous clusters: the top row reports the
number of normal vs anomalous clusters returned by the models, the second row reports the cluster ID to which each samples is merged to. The third and
fourth rows show the radius and the weight evolution of each normal cluster respectively, while the two bottom ones depict the evolution of the first and
second components extracted from the center of the clusters.

generates a new normal cluster (notice the pruning/promotion
in the fourth row) in the region of the new working condition,
wDBScan slowly drifts towards the latter. This effect depends
on the parameters ε and w whose modification would however
lead to a decrease in wDBScan performance (recall Fig. 4).

B. Detection Performance

For validation, we rely on a set (E5, E9, E10) of experiments
that are independent from those used for tuning (E2, E3),
and are additionally well suited to stress test generalization
capabilities of the studied methods. In particular, E5 is very
similar to the tuning ones both in terms of traffic load (1 Tbps)
as well as anomalies (BGP leaks) so it allows one to test the
performances of the models in scenarios similar to those of
the tuning phase. E5 thus constitutes a good stress test of the
generalization capabilities of the selected hyperparameter.

E9 and E10 instead undergo different traffic loads (2.9 Tbps
and 2 Tbps respectively) as well as different injected anomalies
(Port Flaps caused by interface shutdown from terminal and
link failures caused by fiber pull respectively). The latter ones
allows thus one to test the performance of the models in
scenarios very different from those used in the tuning phase.
Additionally, while the events injected in E5 are severe ones
and affect the operational status of an entire node (i.e. the node
losses all the BGP tables and is no longer able to forward data
on all the interfaces) and all the direct neighbors, the events
in E9 and E10 affect a single interface which results in the

loss of only one out of the four links between two nodes.
We expect a mitigation of the effects produced in the network
by the anomalies injected in E9 and E10 and for this reason
we expect not all the nodes to detect the events. E9 and E10
constitutes a good stress test of generalization capabilities of
the algorithm.

We compare algorithmic performance using several in-
formation retrieval metrics, notably Precision, Recall and
F0.5score in Fig. 8 and Accuracy, Markedness and Informed-
ness in Fig. 9. We report the mean and confidence interval of
each metric for the 7 algorithms tested, explicitly contrasting
tuning (light opacity, background bars) and testing datasest
(full opacity foreground bars). The information is additionally
tabulated in detail in the figure, and an explicit annotation
of the algorithm rank (limited to online algorithms) for each
metrics is additionally reported to ease interpretation of the
results.

From a high-level viewpoint, considering the testing datasets
we observe that RRCF stand out as being ranked 1st on four
metrics (Recall, F0.5, Accuracy and Informedness) – which
makes it a very good choice. ODS instead stand out as the
only algorithm being systematically ranked 2nd or 3rd on all
6 metrics – which makes it a robust choice.

In more details, we observe that the hyperparameters se-
lected in the tuning phase yield to reasonably good perfor-
mance in the test datasets as well, albeit performance diminish
for all methods. This behavior is expected, as we know already

13

Precision Recall Fscore0.00

0.25

0.50

0.75

1.00 1st 2nd 3rd 1st 2nd3rd 1st 2nd3rd

DBScan (offline) LOF (offline)
wDBScan ExactSTORM COD RRCF ODS

Dataset Algorithm Precision Recall F0.5score

Mean
Tuning
(E2/3)

DBScan 0.99±0.02 0.88±0.05 0.96±0.02
LOF 0.99±0.02 0.89±0.05 0.96±0.02
wDBScan 1.00±0.00 1st 0.70±0.07 3rd 0.91±0.03 2nd
ExactSTORM 1.00±0.00 1st 0.70±0.07 0.91±0.02 2nd
COD 0.90±0.06 0.72±0.07 2nd 0.85±0.06
RRCF 0.96±0.05 0.84±0.06 1st 0.93±0.04 1st
ODS 1.00±0.00 1st 0.64±0.08 0.88±0.04

Mean
Test
(E5/9/10)

DBScan 0.91±0.06 0.59±0.08 0.79±0.06
LOF 0.71±0.10 0.78±0.08 0.70±0.09
wDBScan 1.00±0.00 1st 0.35±0.07 0.71±0.08
ExactSTORM 1.00±0.00 1st 0.38±0.08 3rd 0.72±0.05 3rd
COD 0.73±0.09 0.36±0.07 0.58±0.08
RRCF 0.88±0.06 0.76±0.08 1st 0.83±0.06 1st
ODS 0.96±0.03 3rd 0.54±0.08 2nd 0.79±0.05 2nd

Fig. 8. Algorithms Performance Comparison: Precision, Recall and F0.5

score. Figure and table report the average performance on the testing (full
opacity, foreground bars) vs tuning (light opacity, background bars) dataset.
The top-3 among the online algorithm are explicitly annotated.

E9 and E10 contain anomalies which are less disruptive and
concern a single link, and are thus more difficult to detect.
Discrepancy between tuning and testing phase is particularly
visible considering the mean F0.5 score over all datasets,
where the degradation appears more severe for DBScan, wDB-
Scan, LOF, ExactSTORM and COD. Investigating further, we
find that DBScan and LOF performance degradation is due
to low portability of parameter configuration as a function of
the traffic load, which in turn has an impact on the distance
between the samples. wDBScan, ExactSTORM and COD
precision is consistent with that of the tuning phase, however,
as a downside of the tradeoff, they achieve 0.35, 0.38 and 0.36
recall respectively.

In summary, RRCF and ODS appears to be a first and
second choice respectively as for detection performance are
concerned. Additionally, RRCF and ODS both appear to limit
discrepancy with respect to the tuning phase, hinting to the fact
that their parameters hardly fall into overfitting. Interestingly,
RRCF and ODS stand at opposite sides in the recall (RRCF
is top-1) vs precision tradeoff (RRCF is not even in the
top-3), which makes both of them interesting options. For
instance, in the case of ODS, precision could be traded for
recall decreasing kr, however this would increase the number
of false alarms, which is not desirable in operational settings
in our opinion, as otherwise alerts are unreliable and would
thus simply be ignored. To further appreciate the differences
between RRCF and ODS, we additionally contrast further met-
rics such as Precision@K, area under the received operating
characteristics curve (AUC) and average precision (AP) in
Tab.IV. From the comparison it emerges clearly that RRCF
and ODS are practically indistinguishable for (at least) the top-
5 events in each datasets, as shown by the Precision@3 and

Accuracy Markedness Informedness0.00

0.25

0.50

0.75

1.00 1st 2nd3rd 1st 2nd 3rd 1st 2nd3rd

DBScan (offline) LOF (offline)
wDBScan ExactSTORM COD RRCF ODS

Dataset Algorithm Accuracy Markedness Informedness

Mean
Tuning
(E2/3)

DBScan 0.996±0.002 0.981±0.021 0.883±0.049
LOF 0.996±0.002 0.985±0.017 0.891±0.047
wDBScan 0.990±0.003 2nd 0.990±0.003 1st 0.696±0.069 3rd
ExactSTORM 0.990±0.003 0.990±0.003 3rd 0.704±0.068
COD 0.988±0.003 3rd 0.892±0.064 0.712±0.065 2nd
RRCF 0.993±0.003 1st 0.954±0.046 0.835±0.059 1st
ODS 0.988±0.003 3rd 0.987±0.003 2nd 0.635±0.081

Mean
Test
(E5/9/10)

DBScan 0.986±0.003 0.901±0.059 0.590±0.082
LOF 0.979±0.007 0.703±0.105 0.762±0.079
wDBScan 0.982±0.004 0.983±0.003 2nd 0.351±0.070
ExactSTORM 0.983±0.004 3rd 0.984±0.003 1st 0.381±0.078 3rd
COD 0.978±0.004 0.718±0.083 0.356±0.074
RRCF 0.988±0.004 1st 0.871±0.065 0.756±0.079 1st
ODS 0.986±0.003 2nd 0.944±0.031 3rd 0.541±0.078 2nd

Fig. 9. Algorithms Performance Comparison: Accuracy, Markedness and
Informedness. Figure and table reports the average performance on the testing
(full opacity, foreground bars) vs tuning (light opacity, background bars)
dataset. The top-3 among the online algorithm are explicitly annotated.

TABLE IV
DETECTION PEFORMANCE: IN-DEPTH RRCF VS ODS COMPARISON

Metric ODS RRCF
Precision@3 0.899±0.063 0.898±0.021
Precision@5 0.776±0.088 0.786±0.024
Area Under the Curve (AUC) 0.967±0.016 0.989± 0.002
Average Precision (AP) 0.785±0.075 0.850± 0.017

Precision@5 metrics, with RRCF exhibiting a better average
precision over the whole set of anomalies.

C. Computational Complexity

With respect to SNMP polling in periods of 5 minutes,
the 5 second sampling rate in the dataset considered in this
work constitutes a 60× increase in the data velocity. In case
future technological releases will reduce the sampling period
further (to subsecond timescales), a major limiting factor will
be then represented by the processing capabilities of the device
and collectors. Under this angle, it is clear that computational
complexity is of uttermost importance from a deployment
perspective.

Yet, most of the well known methods used today in the
literature are in large part unsuitable to process data fast
enough both because they are computationally complex and
have heavy resources requirements. In this section we exper-
imentally measure the time complexity of online vs offline
algorithms. We replicate E5 100× times, obtaining a stream
composed by approximately 150K samples: by varying the
length of the stream, we study the execution time trend of
each method.

All the experiments are run on a server equipped with
Linux Debian 10, Intel Xeon E5-1620 with 3.60 GHz CPUs
and 32GB RAM. The scripts, available at [32], [56], use

14

10 1

101

103

To
ta

l E
xe

c
Ti

m
e

[s
]

DBScan (offline) LOF (offline)
wDBScan ExactSTORM COD RRCF ODS

103 104 10510 1

100

101

102

103

Ex
ec

 T
im

e/
In

st
an

ce
 [m

s]

Fig. 10. Algorithm complexity: total execution time in seconds (top) and
execution time per instance (bottom) for DBScan, LOF, wDBScan, Exact-
STORM, COD, RRCF and ODS as a function of the dataset size. DBScan
measurements are not complete as it runs out of memory for values greater
than those shown in the plot.

Python 3.8.3 [57], numpy 1.19.1 [58], pandas 1.05 [59] and
scikit-learn 0.23.1 [60]. We use moreover RRCF’s python
implementation 0.4.3 present at [61].

Fig. 10 reports as a function of the stream length, the
total execution time (top) and the average processing time
of a single instance (bottom). ODS is the fastest one due
to its linear complexity followed by ExactSTORM, COD,
wDBScan, LOF and DBScan. DBScan is the one demanding
most resources and reaches the memory limit for streams
longer than 60K samples.

The bottom plot shows the processing time per instance.
While DBScan and LOF show increasing processing time
per instance per increasing stream size, online algorithms
process the data in fixed amount of time per instance. Even by
restricting our attention to online algorithms only, ODS stands
out as being significantly faster than the others, followed
by ExactSTORM (2×slower), COD (10×), wDBScan (13×)
and RRCF (550×). By comparing the processing time and
the sampling rate it is possible to establish an upper bound
of the maximum sampling rate. Observing that the elapsed
time per-sample is roughly 0.20 ms, our released ODS Python
implementation is able to process approximately 5000 samples
per second. Conversely, RRCF execution time requires about
100ms per sample, which caps its processing rate to at most
10 samples per second.

We summarize the complexity vs detection performance
tradeoff in Fig.11 as a scatter plot of the execution time
(in second, on the x-axis) vs the F0.5 score performance (y-
axis). Note that we use xyerrorbars, but the execution times
confidence interval is very tight, and thus not visible due to
the logarithmic x-axis scale. The plot is annotated with semi-
planes (split so to halve the x-axis and y-axis ranges), to
better highlight the desirable corners of the design space: top-
left corner indicates algorithms that are both fast and good
(green shading), whereas top-right corner indicates good but
slow algorithms (yellow shading), bottom-left indicates fast
but poorly performing algorithms (yellow shading) and finally
bottom right indicates slot execution and poor performance

10 4 10 3 10 2 10 1

Exec Time/Instance [s]

0.5

0.6

0.7

0.8

0.9

F 0
.5

sc
or

e

wDBScan exactSTORM COD RRCF ODS

Fig. 11. Execution time per Instance (x-axis) vs Detection performance
F0.5score (y-axis). The plot is annotated with semi-planes to better highlight
the desirable corners of the design space: ODS sits at an interesting operational
point for being significantly faster than all the algorithms tested and second
only to RRCF in terms of information retrieval metrics (F0.5 in this plot).

(red shading). The picture clearly show that ODS sits at an
interesting operational point for being significantly faster than
all algorithms tested, and second (but nevertheless very close
to) only to RRCF in terms of information retrieval metrics (as
per Tab.IV).

VI. DISCUSSION

We have contrasted a number of clustering methods for
anomaly detection in networks. Whereas results testify stream-
based approaches to be of interest, we aim at discussing here
limitations and caveats to avoid pitfalls in their deployment.

Contextual anomalies. First, DenStream and consequently
ODS are based on euclidean distances. We expect ODS to
work on anomalies constituted by points far in the space,
from the normal clusters and under no circumstances we do
expect it to be able to detect contextual anomalies (e.g., such
as absence of a periodic peak in a periodic signal). This
suggests that techniques such as those studied here, should be
complemented by others shall contextual anomalies be relevant
in the deployment scenario.

Curse of dimensionality. The algorithm presented is of course
not immune to the curse of dimensionality. This is likely to
happen in practice whenever one would attempt to build a
single model, aggregating several nodes and features per node.
At the same time, model execution is extremely lightweight,
which would allow to run multiple models in parallel, either at
node-level (reducing communication complexity, but possibly
missing events not detectable from internal measurements) or
at feature-subset level (which would require some amount
of communication between nodes, but possibly exploiting
correlation among features at neighboring nodes).

Hyperparameters tuning. We have observed that hyperpa-
rameter tuning can lead to overfit, making deployment of
unsupervised techniques difficult in practice, especially for
methods whose parameters are closely related to the dataset
(e.g. contamination in LOF or ε neighborhood in DBScan).

Instead, even though DenStream (and thus ODS) relies on
four parameters, we have seen that it is possible to reduce their
number by lumping some (e.g. by setting µ = µ+) and by

15

dynamically setting others (e..g, so that the radius threshold
ε = r̄ + krσr contains the bulk of the radius distribution).

At the same time, the fading factor λ (reduces gradually the
importance of the samples) and the potential factor β (delimits
the size of a normal cluster) must be selected with care. In
particular, they are indeed bounded by w > β/(1− 2−λ) and
therefore must be set taking into account their relationship and
physical interpretation. For example, once λ is set, choosing
a too high β could lead to the degenerate case in which the
weight threshold is too high, and the model fails to build and
maintain normal-mcs.

Autonomicity level ODS is not intended to completely replace
a human network operator, but on the contrary it is a tool
designed to facilitate his job. For instance, while ODS can
update the model over time, it has to be initialized by a
conscious operator, providing anomalous-free samples at at
bootstrap. In turn, while ODS operates in the unmodified
feature domain, there is a further need of explainable attention
focus mechanisms [40] to let the human operator focus on the
important features that triggered an event detection, an aspect
orthogonal to our work.

VII. CONCLUSION

The recent emergence of model-driven telemetry opens new
challenges for anomaly detection, and particularly makes the
use of stream-based unsupervised machine learning tools very
appealing. In this paper we develop, implement and open-
source the ODS anomaly detection engine, based on the online
clustering algorithm DenStream. We thoroughly analyze ODS
on datasets gathered on BGP-only datacenter network loaded
with up to 3 Tbps aggregated traffic, and extensively compare
it with a set of offline (DBScan, LOF), windowed (wDBScan)
and online techniques (ExactSTORM, COD and RRCF).

Our results show that despite ODS is apparently plagued
with several parameters inherited from DenStream, their se-
lection is quite straightforward, and performance are robust to
inner parameter selection. Additionally, ODS is significantly
faster than any of the tested algorithms, and second only to
RRCF (yet very close to it) in terms of detection performance.
Overall, the above results suggest ODS as a particularly
lightweight and suitable algorithm for stream-mode real-time
network anomaly detection.

APPENDIX

A. Available features

The available features are uniquely identified via their full
YANG name, which in turn derives from the concatenation
of an an EncodingPath with a Leaf among the available
ones for that path (Leafset). Tab. V reports the full list
of features used, that can be ascribed to either Data Plane
(DP), for EncodingPaths matching infra-statsd-oper
and fib-common-oper categories, or Control Plane (CP),
for EncodingPaths matching the ip-rib-ipv4-oper and
ipv4-bgp-oper categories. Extracting the full list of fea-
tures per each interface and node yield about 750 data-plane
and 25 control-plane features overall per dataset.

TABLE V
AVAILABLE TELEMETRY FEATURES

(CP) EncodingPath =
Cisco-IOS-XR-ip-rib-ipv4-oper:rib/vrfs/vrf/afs/af/safs/saf/ip-rib-route-table-names/
ip-rib-route-table-name/protocol/bgp/as/information
Leafset = {

active-routes-count
backup-routes-count
deleted-routes-count
paths-count
protocol-route-memory
routes-counts
}

(CP) EncodingPath =
Cisco-IOS-XR-ipv4-bgp-oper:bgp/instances/instance /instance-active/default-vrf/
process-info
Leafset = {

global__established-neighbors-count-total
global__neighbors-count-total
global__nexthop-count
global__restart-count
performance-statistics__global__configuration-items-processed
performance-statistics__global__ipv4rib-server__is-rib-connection-up
performance-statistics__global__ipv4rib-server__rib-connection-up-count
performance-statistics__vrf__inbound-update- messages
vrf__neighbors-count
vrf__network-count
vrf__path-count
vrf__update-messages-received
}

(DP) EncodingPath =
Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/
generic-counters
Leafset = {

bytes-received
bytes-sent
}

B. Selected features

The full set of available features contains (i) redundant and
totally correlated features (e.g. free-memory and occupied-
memory), as well as (ii) categorical features design (e.g.
af-name, as etc.) or (iii) features that are constant in our
experiments (e.g., output-queue-drops). Out of the available
features, we thus discard duplicated, categorical or constant
features. Based on this process, we ultimately retain 64
DP and 18 CP features, for a total of 82 features. No-
tably DP features relate to the generic counters (i.e., whose
EncodingPath match interface/generic-counters),
whereas CP features relate to bgp/as/information and
vrf/process-info EncodingPaths, which have proven
useful for BGP anomaly detection in previous studies [28].

ACKNOWLEDGMENT

This work has been carried out at LINCS
(http://www.lincs.fr), in the frame of a cooperation between
Huawei Technologies France SASU and Telecom Paris.
Any opinion, findings or recommendations expressed in this
material are those of the author(s).

REFERENCES

[1] M. Thottan and C. Ji, “Anomaly detection in ip networks,” IEEE
Transactions on signal processing, vol. 51, no. 8, pp. 2191–2204, 2003.

[2] Q. Wu, J. Strassner, A. Farrel, and L. Zhang, “Network telemetry and
big data analysis,” IETF draft-wu-t2trg-network-telemetry-00, Mar 2016.

[3] https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-
networking-solutions/model-driven-telemetry.html, 2018.

[4] https://www.arista.com/en/solutions/telemetry-analytics, 2018.
[5] http://support.huawei.com/enterprise/en/doc/

EDOC1000173015?section=j006, 2018.
[6] M. Bjorklund, “YANG - A data modeling language for NETCONF,”

RFC 6020, Oct. 2010.
[7] “The yang 1.1 data modeling language,” RFC 7950 , Aug. 2016.
[8] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic

anomalies,” SIGCOMM Comput. Commun. Rev., vol. 34, Aug. 2004.
[9] Y. Huang, N. Feamster, A. Lakhina, and J. J. Xu, “Diagnosing network

disruptions with network-wide analysis,” SIGMETRICS Perform. Eval.
Rev., vol. 35, no. 1, pp. 61–72, Jun. 2007.

16

[10] S. Deshpande, M. Thottan, T. K. Ho, and B. Sikdar, “An online mech-
anism for bgp instability detection and analysis,” IEEE Transactions on
Computers, vol. 58, no. 11, pp. 1470–1484, Nov 2009.

[11] M. C. Ganiz, S. Kanitkar, M. C. Chuah, and W. M. Pottenger, “Detection
of interdomain routing anomalies based on higher-order path analysis,”
in ICDM, 2006.

[12] D. S. Yeung, S. Jin, and X. Wang, “Covariance-matrix modeling and
detecting various flooding attacks,” IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans, vol. 37, no. 2, 2007.

[13] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, “A novel
anomaly detection scheme based on principal component classifier,” in
IEEE Foundations and New Directions of Data Mining, 2003.

[14] S. Rajasegarar, C. Leckie, and M. Palaniswami, “Hyperspherical clus-
ter based distributed anomaly detection in wireless sensor networks,”
Journal of Parallel and Distributed Computing, vol. 74, no. 1, 2014.

[15] G. Münz, S. Li, and G. Carle, “Traffic anomaly detection using kmeans
clustering,” in In GI/ITG Workshop MMBnet, 2007.

[16] J. Mazel, P. Casas, R. Fontugne, K. Fukuda, and P. Owezarski, “Hunting
attacks in the dark: clustering and correlation analysis for unsupervised
anomaly detection,” International Journal of Network Management,
vol. 25, no. 5, pp. 283–305.

[17] P. Casas Hernandez, J. Mazel, and P. Owezarski, “Unsupervised Network
Intruison Detection Systems: Detecting the Unknown without Knowl-
edge,” Computer Communications, vol. 35, no. 7, pp. 772–783, 2012.

[18] A. Lazarevic, L. Ertöz, V. Kumar, A. Ozgur, and J. Srivastava, “A
comparative study of anomaly detection schemes in network intrusion
detection,” in SIAM International Conference on Data Mining, vol. 3,
05 2003.

[19] Z. Miller, B. Dickinson, W. Deitrick, W. Hu, and A. H. Wang, “Twitter
spammer detection using data stream clustering,” Information Sciences,
vol. 260, pp. 64 – 73, 2014.

[20] J. Dromard, G. Roudière, and P. Owezarski, “Online and scalable
unsupervised network anomaly detection method,” IEEE Transactions
on Network and Service Management, vol. 14, no. 1, pp. 34–47, 2017.

[21] Z. Miller, W. Deitrick, and W. Hu, “Anomalous network packet detection
using data stream mining.” J. Information Security, vol. 2, no. 4, 2011.

[22] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, Sep 1995.

[23] H. Wang, J. Gu, and S. Wang, “An effective intrusion detection
framework based on svm with feature augmentation,” Knowledge-Based
Systems, 09 2017.

[24] B. Subba, S. Biswas, and S. Karmakar, “A neural network based
system for intrusion detection and attack classification,” in 22nd National
Conference on Communication (NCC), March 2016, pp. 1–6.

[25] G. Poojitha, K. N. Kumar, and P. J. Reddy, “Intrusion detection
using artificial neural network,” in IEEE Conference on Computing,
Communication and Networking Technologies, July 2010.

[26] J. Li, D. Dou, Z. Wu, S. Kim, and V. Agarwal, “An internet routing
forensics framework for discovering rules of abnormal BGP events,”
ACM SIGCOMM Computer Communication Review, vol. 35, pp. 55–
66, 10 2005.

[27] I. O. de Urbina Cazenave, E. Köşlük, and M. C. Ganiz, “An anomaly
detection framework for BGP,” in International Symposium on Innova-
tions in Intelligent Systems and Applications, June 2011.

[28] N. M. Al-Rousan and L. Trajković, “Machine learning models for
classification of BGP anomalies,” in IEEE HPRS, June 2012.

[29] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering
over an evolving data stream with noise,” in SIAM Conference on Data
Mining, 2006.

[30] P. Lapukhov, A. Premji, J. Mitchell, “Use of BGP for Routing in Large-
Scale Data Centers,” in RFC7938, Aug. 2016.

[31] B. Al-Musawi, P. Branch, and G. Armitage, “Bgp anomaly detection
techniques: A survey,” IEEE Communications Surveys Tutorials, 2017.

[32] https://github.com/anrputina/ods-anomalydetection.
[33] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-

rithm for discovering clusters a density-based algorithm for discovering
clusters in large spatial databases with noise,” in AAAI KDD, 1996.

[34] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying
density-based local outliers,” SIGMOD Rec., vol. 29, no. 2, May 2000.

[35] S. Guha, N. Mishra, G. Roy, and O. Schrijvers, “Robust random
cut forest based anomaly detection on streams,” in ICML, 2016, p.
2712–2721.

[36] F. Angiulli and F. Fassetti, “Detecting distance-based outliers in streams
of data,” in ACM CIKM, 2007, pp. 811–820.

[37] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and
Y. Manolopoulos, “Continuous monitoring of distance-based outliers
over data streams,” in IEEE ICDE, 2011, pp. 135–146.

[38] D. Hawkins, Identification of Outliers. Chapman and Hall, 1980.
[39] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 1999.
[40] https://cloud.google.com/explainable-ai.
[41] J. M. Navarro and D. Rossi, “Hurra: Human-readable router anomaly

detection,” in International Teletraffic Congress (ITC32), 2020.
[42] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed

analysis of the kdd cup 99 data set,” in IEEE CISDA.
[43] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan

Kaufmann, 1993.
[44] H. Wang and B. Raj, “On the origin of deep learning,” 2017.
[45] Y.-W. Chen and C.-J. Lin, Combining SVMs with Various Feature

Selection Strategies. Springer Berlin Heidelberg, 2006, pp. 315–324.
[46] Hanchuan Peng, Fuhui Long, and C. Ding, “Feature selection based

on mutual information criteria of max-dependency, max-relevance, and
min-redundancy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226–1238, Aug 2005.

[47] A. Putina, D. Rossi, A. Bifet, S. Barth, D. Pletcher, C. Precup, and
P. Nivaggioli, “Telemetry-based stream-learning of bgp anomalies,” in
ACM SIGCOMM, Big-DAMA workshop, 2018.

[48] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations.” University of California Press, 1967.

[49] C. Ning, C. An, and L.-X. Zhou, “An incremental grid density-based
clustering algorithm,” vol. 1313, pp. 1–7, 01 2002.

[50] A. Gunawan, “A faster algorithm for dbscan.” in Master’s thesis,
Technische University Eindhoven, March 2013.

[51] 2018. [Online]. Available: https://github.com/cisco-ie/telemetry
[52] (2018) https://github.com/YangModels/yang.
[53] 2018. [Online]. Available: https://blogs.cisco.com/sp/introducing-

pipeline-a-model-driven-telemetry-collection-service
[54] T. Green, A. Lambert, C. Pelsser, and D. Rossi, “Leveraging Inter-

domain Stability for BGP Dynamics Analysis,” in International Con-
ference on Passive and Active Network Measurement (PAM), 2018.

[55] P. Pébay, T. B. Terriberry, H. Kolla, and J. Bennett, “Numerically stable,
scalable formulas for parallel and online computation of higher-order
multivariate central moments with arbitrary weights,” Computational
Statistics, vol. 31, no. 4, pp. 1305–1325, Dec 2016.

[56] https://github.com/anrputina/ODS-2020.
[57] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts

Valley, CA: CreateSpace, 2009.
[58] T. E. Oliphant, A guide to NumPy. Trelgol Publishing USA, 2006.
[59] W. McKinney et al., “Data structures for statistical computing in

python,” in 9th Python in Science Conference, vol. 445, 2010, pp. 51–56.
[60] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[61] M. Bartos, A. Mullapudi, and S. Troutman, “RRCF: Implementation

of the Robust Random Cut Forest algorithm for anomaly detection on
streams,” The Journal of Open Source Software, vol. 4, no. 35, 2019.

Andrian Putina is a PhD candidate at Telecom
Paris. He received his MSc degree in Information
and Communications Technologies for Smart Soci-
eties from Politecnico di Torino, Italy in 2017. His
current research interests are data mining, stream
learning and anomaly detection.

Dario Rossi is Network AI CTO and Director of the
DataCom Lab at Huawei Technologies, France. Be-
fore joining Huawei in 2018, he held Full Professor
positions at Telecom Paris and Ecole Polytechnique
and was holder of Cisco’s Chair NewNet Paris. He
has coauthored 10+ patents and 150+ papers in
leading conferences and journals, that received 10
best paper awards, a Google Faculty Research Award
(2015) and an IRTF Applied Network Research
Prize (2016). He is a Senior Member of IEEE and
ACM.

