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1 INTRODUCTION

The increased interest towards Deep Learning (DL) tech-
nologies has led to the development of a new generation of
specialized hardware accelerator [4] such as Graphic Process-
ing Unit (GPU) and Tensor Processing Unit (TPU) [1, 2]. The
integration of such components in network routers is how-
ever not trivial. Indeed, routers typically aim to minimize the
overhead of per-packet processing (e.g., Ethernet switching,
IP forwarding, telemetry) and design choices (e.g., power,
memory consumption) to integrate a new accelerator need
to factor in these key requirements. The literature and bench-
marks on DL hardware accelerators have overlooked specific
router constraints (e.g., strict latency) and focused instead
on cloud deployment [3] and image processing. Likewise,
there is limited literature regarding DL application on traffic
processing at line-rate.

Among all hardware accelerators, we are interested in
edge TPUs [1, 2]. Since their design focuses on DL inference,
edge TPUs matches the vision of operators, who consider
running pre-trained DL models in routers with low power
drain. Edge TPUs are expected to limit the amount of com-
putational resources for inference and to yield a higher ratio
of operations per watt footprint than GPUs.

This demo aims to investigate the operational points at
which edge TPUs become a viable option, using traffic classi-
fication as a use case. We sketch the design of a real-time DL
traffic classification system, and compare inference speed
(i.e., number of classifications per second) of a state-of-the-
art Convolutional Neural Network (CNN) model running
on different hardware (Central Processing Unit (CPU), GPU,
TPU). To constrast their performance, we run stress tests
based on synthetic traffic and under different conditions. We
collect the results into a dashboard which enables network
operators and system designers to both explore the stress test
results with regards to their considered operational points,
as well as triggering synthetic live tests on top of Ascend
310 TPUs [1].

2 SYSTEM VIEW

We depict in Fig. 1 a high-level view of in-network DL analyt-
ics in a general purpose server architecture. Traffic captured
by the Network Interface Card (NIC) is handed over to the
CPU. For the sake of clarity, we represent a single NIC and
CPU, but multiple NICs and Non-Uniform Memory Access
(NUMA) nodes could be supported with such architecture.
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Figure 1: High-level system view for real-time traffic
analysis on classic Von Neumann architectures.

Stateful processing (e.g., flow management) needs access
to off-chip memory (DRAM) to prepare input to the DL al-
gorithm, which can be performed by general purpose CPU
or by dedicated GPU/TPU accelerators. Results of the DL
inference may need to alter the packet (e.g., tagging), which
can be done by the CPU using Direct Memory Access (DMA)
before instructing the card to send the packet.

2.1 Prototype Design

In the prototype, DPDK [6] interacts with the NICs for packet
I/O (a), whereas CPU (b) and memory (c) maintain a flow
table with basic per-flow metrics (e.g., number of bytes and
packets) and the features required for inference. We resort to
“early traffic classification” [5] where model input consists
of packet size and direction of the first K packets of a flow:
hence, in terms of memory each flow occupies an array of
size K+1, since the result of the classification occupies one
additional slot. DL inference task can then be either executed
by the CPU or offloaded to either a GPU or a TPU (d).

The implemented DL model is a CNN composed of a stack
of convolutional and max-pooling layers, plus a dense layer
with softmax activation. The CNN model can identify 200+
applications and has been trained with Tensorflow v1.15
on NVidia V100 GPUs, with real traces from enterprise and
residential access networks.

In addition to the flow-table, CPU and memory maintain
a list of flows ready to be analyzed. We leverage batching! to
optimize DL operations and communication via PCI-Express.
After at least B flows are in the queue, the system triggers
model inference for the batch and collects results in the flow
table for tagging subsequent packets of the analyzed flows.

1A batch contains the information of B flows. The design of recent accelera-
tors and DL framework enables fast parallel processing of the B flows.
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Figure 2: Number of classifications per second for dif-
ferent batching configurations.

3 DEMONSTRATION

The prototype runs on a server, equipped with two ConnectX-
5 single port 100Gbps Mellanox NICs and Intel Xeon Plat-
inum 8164 CPUs @ 2.00GHz (L1/L2/L3 caches 32 data+32
instruction)/1024/36608 kB). As DL offload hardware, we use
either an Huawei Atlas 300 TPU (equipped with 4x Ascend
310 chips), or an Nvidia V100 GPU. To provide a fair compari-
son across the CPU and GPU cases, we do not employ the na-
tive Huawei Mind Studio stack and rather cross-compile the
original TensorFlow model for the Huawei Atlas engine. In
the demonstration we focus on DL processing performance
analysis, whereas a deeper analysis of the flow processing
part is reserved as future work.

3.1 Performance comparison

The prototype helps in contrasting the performance of DL
processing with respect to multiple criteria such as latency,
throughput (classifications per second), and power usage. It
also highlights the impact of system parameter settings such
as batch size B.

Throughput. The demonstration highlights the capacity
of DL accelerators to sustain traffic classification at line-rate.
The dashboard includes a visual such as Fig. 2 to report the
maximum throughput achievable across different batching
configurations. During system design phase, operators and
manufacturers can derive from this graph the admissible
throughput in byte per second by adjusting inner traffic and
NIC characteristics (i.e., average flow length, packet size, and
link capacity).

Latency. We estimate the average latency between the time
at which the NIC receives the K™ packet of a flow and the
time it gets the flow label. The demonstration reveals that
large batch size may be impractical due to the latency intro-
duced by batch completion. While a flow waits for the other
B — 1 flows to arrive, new arriving packets remain untagged,

and worse, the flow may be classified post-mortem. System
designers are thus likely to set small batch sizes, at the price

of lower throughput processing.
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Figure 3: Comparing throughput and power budget
across different configurations.

Power Usage. The demonstration also presents the power
consumption of the accelerators depending on the batch size.
This performance criteria also matters for system designers
who decide router architecture. To illustrate this trade-off,
the dashboard includes a visualization like Fig. 3 comparing
power (x-axis) and classification rate (y-axis). We normalized
performance with respect to reference values (offered as
control widget by the dashboard, but not visible in the figure).
The shaded areas further highlight configurations offering
desirable (top-left corner) and to be avoided (bottom-right
corner) operational areas. For instance, only one hardware
configuration (i.e., 2 Ascend 310) with a couple of settings
can meet the requirement of a challenging configuration (90k
class/s and 30W), while the other hardware configurations
fail in at least one dimension (i.e., light red corners).

3.2 Demo workflow

The demo is a Voila dashboard?, using the plotly library and
jupyter widgets for interactions. As shown in the short video
accompanying this submissions, demo users will be able to
observe and interact with system and scenario parameters
to better grasp the impact of each considering both live and
pre-computed results.
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