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Abstract—Automated troubleshooting tools must be based on
solid and principled algorithms to be useful. However, these tools
need to be easily accessible for non-experts, thus requiring to also
be usable. This demo combines both requirements by combining
an anomaly detection engine inspired by Auto-ML principles,
that combines multiple methods to find robust solutions, with
automated ranking of results to provide an intuitive interface that
is remindful of a search engine. The net result is that HURRA!
simplifies as much as possible human operators interaction while
providing them with the most useful results first. In the demo,
we contrast manual labeling of individual features gathered from
human operators from real troubleshooting tickets with results
returned by the engine – showing an empirically good match at
a fraction of the human labor.

I. INTRODUCTION

In the newspapers, Artificial Intelligence (AI) achievements
are highly sensationalized, with projections of massive losses
in the workforce due to increasingly automated operations.
Part of it is surely true, since automation was already suc-
cessful in increasing the amount of objects (e.g., servers,
routers, etc.) that a single human can be responsible of. At
the same time, a more likely outcome is that AI will assist
the human workforce, significantly speeding up their operation
and increasing system efficiency beyond human capabilities.
However, whereas AI algorithms designers have the skills to
understand the systems they create, it is clear that human
operators interacting with such systems will only have a very
loose knowledge of their inner workings, at best. As such, it is
clear that human interaction with AI will become of increasing
importance in the foreseable future [1]: this is true in many
circumstances, from tasks such as autonomous driving, to the
case of network troubleshooting – which is of paramount
importance in current networks [2] and the focus of this demo.

In particular, when the underlying system’s complexity
increases (e.g. nowadays router can expose up to 70K metrics
through YANG telemetry) manual investigation of such time-
series is extremely time consuming and clearly error-prone.
Our aim is to design a system that, while based on sound
algorithmic principles, is also easy to interact with: to do so,
we design the system considering the output from the point
of view of a network expert, who has solid engineering skills
and domain expertise but lacks PhD-level scientific skills and
methodological/algorithmic expertise.

We showcase the system on two types of dataset, including
real troubleshooting tickets from over 30 ISPs as well as
testbed data where the fault injection process is under our
control.

II. SYSTEM DESIGN

Under this angle, it is clear that the most important resource
human operators have is their time-budget: it follows that
reducing the amount of time it takes humans to troubleshoot
the problem, find a solution, file a report and close the
case is the primary metric our system should be aimed at.
Considering the first stage, i.e., troubleshooting , (i) one of
the main challenges is to make algorithmic output immediately
understandable by the operator; (ii) a second desirable goal
is to rank output presenting the most useful information first,
while (iii) keeping interaction as simple as possible.

We implement this vision in a system that, from a very-
high level, can be thought of as offering a search engine
interface for troubles: the system, which is aptly named
HURRA!, makes it extremely easy for operators to quickly
browse through hundreds of features. HURRA! decouples the
temporal vs spatial angles, defining separate algorithms for
the temporal anomaly detection (AD) problem, i.e., which
timeslots to focus on in simple human terms, and for the
spatial feature scoring (FS), i.e., providing a complementary
mechanism that serves both as attention focus mechanism, as
well as an human-readable explanation of anomalous features.

More formally, measuring F -dimensional feature vectors x
over T time-slots, our dataset can be expressed as a F × T
matrix for each node in the network. The application of
multivariate AD methods finds anomalous moments in time
in the dataset, i.e., a set of rows AD ∈ {1, ..., T} which
corresponds to the detected anomalous points of the dataset.
To reduce cluttering, contiguous anomalies are aggregated,
and anomalous events are sorted by decreasing importance
(based on their magnitude). For each anomalous event, FS
methods generate a set {s1, s2, ..., sF } of scores from which
features can be ranked, prioritizing human attention to the most
important feature first. In turn, this reduces the time taken by
the expert, that would otherwise have to manually verify each
features one-by-one (which is typically done nowadays).

Combining these two simple building blocks allows to
focus in the timeslots where anomalies are (sorting them by
relative level of importance when multiple are present), and
presenting features in order of decreasing relative importance,
as a search engine would do. Just like in these, advanced
parameters are hidden but still accessible – so that while most
of the operations are automated, humans can still take control
over the algorithm settings to tackle corner cases (where e.g.,
default hyper-parametrization is failing).



Figure 1: Example output of the single-router datasets (anno-
tated excerpt from the video available at [3].

III. DATASETS

In the demo, the users can test HURRA! on both local
(i.e., single-router telemetry) and global (i.e., network-wide
telemetry) cases, using datasets with two kinds of ground truth.

Single-router telemetry For the local case, we resort to propri-
etary datasets, where we can access real troubleshooting tickets
in over 30 operational networks. In this case, since anomalies
are not injected, their root cause is not known a priori, but
human operators label features according to their importance
in solving the case, as well as the period where the features
are found to be abnormal. This dataset allows us to especially
quantify the level of agreement between human and automated
ranking, which is a rather novel aspect and of special interest
within our goals. Interestingly, these datasets are extremely
diverse in temporal duration (from 211 to almost 11K rows),
spatial diversity (from 6 to 373 features) and type/severity of
anomalies (from punctual outliers affecting few features, to
contextual anomalies that affect several features for a relatively
long duration). A bird’s eye view of this dataset variety is
provided with the scatter plot in Fig. 2. We point out that the
dataset is proprietary: while we plan to let participant interact
with an anonymized version of the dataset during the demo
session, we cannot make this data available in an online demo
accessible from the Web. At submission time, we can only
briefly expose the dataset via the video accompanying this
submission accessible at [3].

Network-wide telemetry. For the global case, we focus on
recently released publicly available dataset [4] where anoma-
lies are purposely injected in a controlled data-center network
testbed. In particular, BGP anomalies were induced by auto-
matically triggering commands every five minutes in different
network locations, so that the cause, location and time of
the anomaly are known (but telemetry features are otherwise
unlabeled). This dataset allows us to assess the validity of
the anomaly detection algorithms, and to some extent, the
relevance of the feature scoring system (since the root cause
is in this case known and tied to the BGP protocol).
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Figure 2: Single-router Datasets diversity at a glance (datasets
are proprietary and are not available in the online demo, but
will be available on site)

Given that this dataset is publicly available, we make the
demo interface accessible online [3] at time of submission.
Clearly, in this case as the labeling only record the start time
of the anomaly, it is not possible to quantify the level of
agreement between human and automated ranking (however
in the online demo it can be seen that features related to BGP
path count are the most relevant, which is coherent with the
way the anomalies were generated).

IV. DEMO WORKFLOW

In particular, users will be able to interact with the HURRA
dashboard to perform from (i) simple and fully automated
tasks, to (ii) more complex and interactive tasks. Simple
automated tasks range from data exploration, to automated
anomaly detection, e.g., where the system attempts at selecting
the most suitable algorithm and hyper-parametrization. The
intended target of this operation mode is clearly a human
operator with extensive network domain expertise and limited
AI skills. More complex interactive tasks include interacting
with the inner AD and FS building blocks of the system.
For instance, users can select the anomaly detection algo-
rithm (such as Isolation Forest [5] for offline detection and
DBStream [6] for online detection) and affect their hyper-
parametrization. Similarly, demo users will be able to alter
the feature scoring policy to, e.g., use only the current data,
vs reuse expert knowledge from previous tickets to affect the
feature ranking output.
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