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Abstract
The increased success of Convolutional Neural
Networks (CNNs) has recently re-sparked interest
towards traffic classification (TC). New literature
shows the potential of reaching perfect classifica-
tion accuracy, yet at the core of those works still
reside the same limitations surfaced in the 1st wave
of TC techniques, started in early 2000s and cul-
minated with the application of Machine Learning
(ML) for “early classification”. To better highlight
and discuss such issues, in this paper we report on
novel insights based on a commercial-grade traffic
classification engine. We aim to perform a criti-
cal review of the state of the art, introducing the
research community to problems arising at a com-
mercial scale (30× the largest number of classes
in academic literature), discussing the pitfalls and
how to avoid them. Leveraging a dataset com-
prising millions of flows and thousands of labels,
we perform a fair comparison of classic Machine
Learning (ML) and novel Deep Learning (DL) ar-
chitectures based on the same inputs. We addition-
ally put emphasis that comparing techniques on the
mere raw performance make no sense unless they
are fairly compared in terms of their computational
requirements, an often forgotten key aspect affect-
ing deployment.

1 Introduction
Classification of Internet traffic is a well investigated sub-
ject, whose research interest started in the early 2000s, to
supplant light packet inspection (i.e., port-based) and deep
packet inspection (i.e., payload based) technologies with sta-
tistical tools able to characterize broad traffic classes, and
the specific applications within each class. Seminal works
such as [Roughan et al.2004], ignited a first wave of classifi-
cation approaches [Moore and Papagiannaki2005, Bernaille
et al.2006, Crotti et al.2007, Bonfiglio et al.2007, Kim et
al.2008, Nguyen and Armitage2008] essentially focused on
extracting features for classifying a relatively small set of
applications, relying on classic Machine Learning (ML) ap-
proaches based on careful –but human intensive– feature en-
gineering processes. This first wave culminated with very

simple yet effective techniques, referred to as “early traffic
classification” [Bernaille et al.2006, Crotti et al.2007] that
readily used time series information (e.g., the size and direc-
tion of the first few packets in a flow) to take classification
decisions.

The tremendous successes of Convolutional Neural Net-
works (CNN) in the image recognition field [Krizhevsky
et al.2012] ignited a second wave of traffic classifica-
tion approaches leveraging Deep Learning (DL) techniques
[Wang2015, Taylor et al.2016, Wang et al.2017b, Wang et
al.2017a, Lopez-Martin et al.2017, Chen et al.2017, Vu et
al.2017,Aceto et al.2018,Shapira and Shavitt2019,Lotfollahi
et al.2020]. DL is becoming particularly appealing in reason
of domain-specific hardware (known as “tensor processing
units”) that started appearing in the last few years, and fea-
turing hardware acceleration making CNN a viable and ap-
pealing option for real-time traffic classification. In reason of
the tremendous push toward encryption in the Post-Snowden
era, this second wave of research is particularly relevant since
industrial players are now actively looking at deploying sta-
tistical classification approaches – that so far mostly remained
an academic exercise, as recently pointed out in [Pacheco et
al.2018].

Yet, there is still a gap between the industrial interests
and the attention of academic research. First and foremost,
whereas commercial DPI tools are able to handle hundreds
to thousands of application classes, statistical techniques de-
veloped in the academic world consider only a few tens of
classes, which is significantly simpler than commercial needs
and is a major blocking points to deployment of classification
techniques [Pacheco et al.2018]. The first contribution of this
work is to share important insights gained from real deploy-
ments, showing not only that classification becomes more dif-
ficult as the number of classes grows, but also illustrating phe-
nomena that only arise in a large number of classes regime.
To do so, we leverage a commercial-grade dataset compris-
ing tens of millions of flows, and thousands of application
labels (about 30× bigger than the state of the art [Taylor et
al.2016]).

Second, the research patterns that happened in the first
wave of academic research (i.e., proposing a specific set of
engineered features to train a ML technique) are repeating in
the second wave too (i.e., proposing a specific set of raw in-
put data to train a DL architecture), with an excessive focus



on raw performance: the net result is a race to beat the former
champion, whereas competing approaches are rarely [Aceto
et al.2018] compared in an independent fashion. Here, rather
than proposing new techniques, our contribution is to con-
trast state of the art ML and DL techniques on exactly the
same input (packets size time series for “early traffic” clas-
sification). We purposely showcase that ML accuracy per-
formance can be made to exceed DL performance, which is
mostly tied to the complexity of the model, and introduce the
notion of weights-per-class (i.e., the total number of DL/ML
model parameters divided by the number of classes): this al-
lows to better quantify the accuracy-vs-complexity tradeoff
that academic research ignores, and that will instead play a
paramount role in the deployability of these research proto-
types.

In this paper, we perform a critical review of the state of the
art (Sec. 2), and leverage a commercial grade dataset (Sec. 3)
and state of the art ML/DL techniques (Sec. 4) to unveil phe-
nomena visible only at a commercial scale and illustrate the
too often ignored complexity-accuracy tradeoff (Sec. 5). We
finally discuss implications of our findings (Sec. 6).

2 Related work
As the first wave of traffic classification (coarse grained, few
classes) and application identification (fine grained, many
classes) research has been well covered by numerous sur-
veys [Nguyen and Armitage2008,Boutaba et al.2018], in this
section we summarize the main lessons learned from this first
phase, and focus our attention to the closest and most recent
work, i.e., those using neural networks for traffic classifica-
tion, summarized in Tab. 1

First ML wave. In the first decade of 2000, a first
wave of traffic-classification (coarse grained) or application-
identification (fine grained) studies leveraged “classic” ML
techniques, initially applying ML to engineered flow features
(FF) as in [Moore and Zuev2005], or packet payload (PP)
as in [Moore and Papagiannaki2005, Bonfiglio et al.2007],
culminating in simple yet effective classification techniques
based on timeseries (TS) data such as the size (S), direction
(±), and seldom interarrival time (∆T ) of the first few pack-
ets of a flow [Bernaille et al.2006, Crotti et al.2007]. The
interest of lightweight TS approaches is that (i) they oper-
ate “early” at the beginning of a flow, as opposite to “post
mortem” as for techniques based on FF that are computed af-
ter a flow ends, and that (ii) they sustain line-rate operation
with minimal additional computational complexity. Indeed,
whereas payload-based techniques are inherently limited in
the amount of memory they need to access/move even when
processing is done on GPUs [Vasiliadis et al.2011], early TS
techniques [Bernaille et al.2006, Crotti et al.2007] have been
amenable to line rate classification in excess of 5 Mfps [del
Rio et al.2012] using only general purpose CPU.

Second DL wave. The second wave of research re-considered
all possible inputs exploited in the first phase —from
PP [Wang2015, Wang et al.2017b, Wang et al.2017a, Lotfol-
lahi et al.2020], to FF [Taylor et al.2016, Chen et al.2017, Vu

et al.2017], to TS [Lopez-Martin et al.2017, Shapira and
Shavitt2019], and hybrid FF+TS [Chen et al.2017]— but has
not been exempt from obvious flaws and pitfalls related to in-
put selection.

For instance, we argue that owing to encryption, most
work exploiting packet payload PP is essentially learning
the content of the TLS Server Name Indication (SNI) ex-
tension [Eastlake and others2011], i.e., binding a flow to
the hostname advertised in clear in the SNI: ultimately, this
means that 1d-CNN approaches1 leaveraging PP are a com-
plex mean to do relatively trivial HTTPS protocol dissection
and pattern matching – which to the best of our knowledge
nobody pointed out clearly so far. Moreover, while DL is
an elegant and automated way to statistically learn SNI “dic-
tionaries”, the real question is whether CNN inference can
be brought to an operational point with lower computational
footprint than traditional techniques – which is never ques-
tioned either.

Similarly, we remark that TS work employs port num-
bers [Lopez-Martin et al.2017, Chen et al.2017]: e.g., as ad-
vertised by authors [Lopez-Martin et al.2017], the accuracy
decreases to 82% when port are not used in the input, and
the fact that the average accuracy is 94% when TS consists
of a single packet2 confirms that the CNN (and LSTM) ar-
chitectures described in those works are ultimately learning
port-based classification that they are supposed to supplant.

More generally, research work of the second phase stud-
ies and proposes different DL architectures (and hyper-
parametrization), sharing the same crucial weakness already
noted in the first wave, i.e., the difficulty of cross compar-
ing in a fair manner these different architectures: indeed,
as it clearly emerges from Tab. 1, every work uses different
datasets, with different sample size (from 20k to 750k sam-
ples), and with different target classes (from 2 to 100), achiev-
ing performance in excess of >99% (under specific condi-
tions), making an apple-to-apple comparison a daunting task
(e.g., even work relying on the same datasets cannot be di-
rectly compared, for which open challenges such as the one
pushed by NetAML conference are welcome).

Fortunately, commendable work such as [Aceto et al.2018]
started appearing, aiming to an independent evaluation of
previously published work. The comparison carried out
in [Aceto et al.2018] (of [Taylor et al.2016,Wang et al.2017b,
Wang et al.2017a, Lopez-Martin et al.2017], and by mean of
datasets different from the one used by original authors) re-
veals a different scenario from the one pictured by the original
publications: (i), the expected performance, in practice, drops
significantly below <90% for any architecture; (ii) there is
no clear winner, although 1d-CNN have consistently better
results among the candidate approaches; (iii) 1d-CNN has a
limited gain over shallow Multi Layer Perceptron (MLP) over

1Similarly happens for 2d-CNN, that additionally artificially
construct “spatial” dependencies in the payload that are make sense
for images of the physical world, but are less motivated for tex-
tual/binary protocols

2As per Fig. 10 in [Lopez-Martin et al.2017]: additionally, the
stricking performance are due to the fact that HTTP, SSL and DNS
(that are amenable to port 80, 443 and 53 respectively), account for
over 80% flows.



Table 1: Related work

1st: ML Input Architecture Samples Classes Performance Notes
[Roughan et al.2004] 2 FF (avg. D, avg S) k-NN vs LDA 5.1M 4 (7) 95% (91%) 100% adding an extra feature related to ∆T
[Moore and Papagiannaki2005] PP 9 DPI heuristics 573M 10 99% macro-classes and manual ground truth creation
[Bernaille et al.2006] TS5 (±S) K-means n.a. 10 ≈90%
[Crotti et al.2007] TS3(±S, ∆T ) 2d gaussian filter 30k 4 ≈90% multi-dimensional statistical fingerprint

2nd: DL Input Architecture Samples Classes Performance Notes
[Wang2015] PP (1000B) 1D CNN 300k 58 90% in top-25 Introduces DL to TC
[Taylor et al.2016] FF (40) RF (non-DL) 131k 110 99% Introduces APP classification
[Wang et al.2017b] PP (784B=28×28) 2D CNN 750k 20 99% payload as image
[Wang et al.2017a] PP (784B) 1D CNN 750k 12 ≈ 90% payload as blob
[Lopez-Martin et al.2017] TS20 (±S,∆T, p) LSTM + 2D-CNN 266k 15 96% (82% w/o p) several models: (CNN+RNN-2a)
[Chen et al.2017] TS10 (±S,∆T, p) + FF (28) CNN 22k 5+(5 real) 99% (88%)
[Vu et al.2017] FF (22) GAN (vs DT and RF) 682k 2 all 99% SSH vs non-SSH
[Aceto et al.2018] PP, FF, TS MLP, SAE LSTM, CNN 138k 49 80-86% DL [Lopez-Martin et al.2017,Wang2015,Wang et

al.2017b, Wang et al.2017a, Lotfollahi et al.2020]
vs RF [Taylor et al.2016]

[Shapira and Shavitt2019] TS→ 2D histo (15002) LeNet-5 like 21k 10 99%
[Lotfollahi et al.2020] Payload 1D CNN and SAE unclear 17 98% dataset is public, but flows are not specified

Input: flow features (FF), packet payload (PP), flow duration (D); time series (TS) of packet size (S), direction (±), interarrival (∆T ) and ports (p).
Architecture: Random Forest (RF); Multi-layer perceptron (MLP); Stacked Autoencoders (SAE), Convolutional neural networks (CNN); Long-short term memory (LSTM);
Generative adversarial networks (GAN)

the same input (+6%) or Random Forest (RF) over FF in-
put (+3%). We underline that such insights are possible only
when broadening the evaluation scope beyond the typical race
to reach 100% classification accuracy.

Despite its merits, [Aceto et al.2018] still partially falls into
an apple-vs-orange comparison. For instance, the classic RF
model inherited from [Taylor et al.2016] is based on engi-
neered flow features (FF), whereas the CNN models are ei-
ther based on packet payload (PP) [Wang et al.2017b, Wang
et al.2017a] or packet time series (TS) [Lopez-Martin et
al.2017]. As such, is is extremely difficult to attribute results
improvement to the learning technique (i.e., ML vs DL) or the
model input (e.g., FF vs TS). To counter this problem, sharing
the same spirit of [Aceto et al.2018] we perform an indepen-
dent evaluation of two state of the art ML/DL techniques, ap-
plied to exactly the same input (TS), on a commercial grade
dataset.

3 Dataset
Our datasets comes from two separate product lines, offer-
ing device and services for the Enterprise campus and Cus-
tomer OLT/ONT market segments respectively. In a nutshell
the datasets comprise of packet-level captures from 4 real
customer deployments, spanning over 1 week each, where
individual flows are annotated with labels provided by a
commercial-grade engine as we describe next.

Collection environments. The datasets are collected from cus-
tomers in China. We underline that traffic encryption in China
is not as pervasive as in the Western world yet. Moreover,
as commonplace in the Enterprise market, branches employs
HTTPS proxy, so that DPI can work unperturbed. This ex-
plains the availability of a very large number of label: overall,
the dataset comprises 3231 application labels, which more
than 30× the largest number of classes considered in the aca-
demic literature [Taylor et al.2016]. The dataset is a private
Huawei asset containing sensitive information and cannot un-
fortunately be shared – as often remarked in the literature, the
lack of common dataset is one of the major limit of this field

Table 2: Commercial-grade dataset description

Classes % Flows % Byte %
10 0.3% 3.4M 32.6% 5.6 TB 53.0%
20 0.6% 4.6M 43.6% 7.2 TB 67.1%
50 1.5% 7.2M 68.3% 8.8 TB 82.7%

100 3.1% 8.7M 82.9% 9.8 TB 91.9%
200 6.2% 9.9M 94.0% 10.3 TB 97.1%
250 7.7% 10.2M 95.5% 10.4 TB 98.2%

1000 30% 10.5M 99.5% 10.6 TB 99.9%
3231 100% 10.5M 100% 10.6 TB 100%

(see discussion in Sec.6).

Traffic imbalance. Clearly, applications have a skewed popu-
larity which induces a rather typical class imbalance, as illus-
trated without loss of generality in Tab.2 for one customer.
For the typical number of classes K in the literature (i.e.,
10 to 50), considering the most popular applications entails
that, while these apps represent a tiny portion of the applica-
tion catalog (i.e., from 0.3% to 1.5%) they nevertheless cor-
respond to a sizeable portion of the traffic flows (e.g., 32.6%
to 68.3%) and bytewise volume (e.g., 53.0% to 82.7%) re-
spectively. However, about 1/3 and 1/5 of the flows and bytes
are not covered even when K = 50, making these effort still
faraway from what would be viable for commercial products.

Additionally, as the classification problems become me-
chanically more difficult as the number of classes increase,
despite academic models work well (generally, in excess of
99%) for 10-50 cherry-picked classes, it is not obvious to
project the results of the same architecture when confronted
to hundreds (if not thousands) of classes – which is the core
of part of our investigation (see Sec.5).

4 Models
Our aim in this section is to introduce state-of-the art models
of the two ML and DL “waves”, applied on the exact same
input, namely packet time-series (TS) data, appealing due
to both good accuracy and simplicity. We seek for models
that are representative of performance lower-bounds, to pro-



vide conservative assessment on commercial grade perspec-
tive, and to avoid falling in the arms race to just provide yet-
another-solution that is better than the previous ones – which,
as we shall see, allows to convey some key observations.

Output. To allow grasping performance differences intrin-
sically related to the output scale of the problem, we con-
struct models apt at a fine grain application identification of
K classes. Recalling Tab.1, DL classifier proposed in the lit-
erature typically consider K<50 classes. Even work con-
sidering a larger set of applications, either reports the accu-
racy of the top classes (top-25 [Wang2015]) or the dataset
used is practically limited to fewer classes (e.g., the top-15
classes represent over 99% of the traffic in [Lopez-Martin
et al.2017]). There are only a few works that actually deal
with K=50 classes [Aceto et al.2018,Taylor et al.2016]. Con-
versely, recalling Tab.2, in our case it is necessary to consider
K ′ = 200 classes to cover 95% (97%) of the flows (bytes).
We thus consider two scenarios with K∈{50, 200} classes,
that are representative of state-of-the art academic evalua-
tion [Aceto et al.2018] vs business needs respectively, and
large enough to allow us to make key observations. We leave
as future work an in-depth evaluation of how to identify all
3231 classes available in the dataset.

Input. Models leverage timeseries input (TS) using 10 (or
100) packets size and direction only for UDP (or TCP). The
timeseries is thus a±S ∈ Z that can be rescaled into [0, 1]⊂R
by normalizing packet size over maximum MTU. This in-
put has been consistently been found to yield to excellent
performance across both ML [Bernaille et al.2006, Crotti et
al.2007] and DL [Lopez-Martin et al.2017, Chen et al.2017]
waves, and as further confirmed by independent validation
studies [Aceto et al.2018]. It is also appealing given the sim-
plicity to collect such metrics.

This simple input could be complemented by further TS
information, such as ∆T interarrival or other useful header
bits (e.g., TCP flags). However, we prefer to avoid lever-
aging additional questionable input (e.g., port based infor-
mation from the packet header) as per the previous discus-
sion. Additionally, we remark that the first wave of literature
found ∆T to be a valid input, yet prone to induce classifica-
tion errors [Bernaille et al.2006, Crotti et al.2007]: from net-
work domain knowledge, whenever ∆T is elapsed between
two consecutive packets of the same flow direction, then it
may correlate with the application behavior; however, when
∆T is measured between a packet and its response from the
other endpoint, then the delay represents the Round Trip Time
(RTT) that correlates more with the distance between the end-
points, than with application behavior.

As such, the one-dimensional ±S timeseries alone stands
out as a reasonable choice. On the one hand, this simple input
yields to a conservative (which is desirable from a scientific
standpoint) performance lower bound, that as such does not
reveal sensitive product-related performance (which is also
desirable from a business standpoint). On the other hand, it
allows an unbiased apple-to-apple comparison of DL and ML
on the same input — which is our main goal.
DL model (1d-CNN). As representative DL model, we use a
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Figure 1: Class cardinality bias: When training the same DL/ML
model for a large number of classes K′ � K accuracy drops also
for the top X ≤ K classes, which is unnoticed in academic litera-
ture.

1d-CNN that is (i) well fit to the TS series data, and that was
found to have superior performance (ii) by authors comparing
2d-CNN and 1d-CNN on PP input [Wang et al.2017b, Wang
et al.2017a], and (iii) further re-confirmed by the indepen-
dent evaluation in [Aceto et al.2018]. We stress that we rule
out recursive networks (and LSTM in particular), in reason
of the additional computational complexity, that is not well
supported by hardware accelerators. We stick to most com-
mon design choices, with the input layer feeding a stack of
convolutional filters having depth 3 and 16(UDP) or 32(TCP)
filters of size 1×3 with ReLU activation and max-pooling lay-
ers, followed by one fully connected layer of size 64(UDP)-
128(TCP) for a total depth of 4 layers before the final Soft-
Max classification (of size K). While detailed hyperparam-
eters differ across each work, this architecture is rather typ-
ical and is exploited (with minor differences) by [Wang et
al.2017b,Wang et al.2017a,Lopez-Martin et al.2017,Chen et
al.2017, Shapira and Shavitt2019]. In reason of space, and to
simplify tractation, we will identify the complexity of each
CNN model tested with space complexity, i.e., the overall
number of model weights W – tied to both training and in-
ference times. 3

ML model (XGBoost). As representative ML model, we
use extreme gradient boosting (XGBoost) [Friedman2001],
a tree-based ensemble technique combining numerous indi-
vidually weak learners, widely acknowledged as the state
of the art in numerous applications domains [Chen and
Guestrin2016]. We consider a fixed number of trees T =
100 and limitedly explore capping the individual tree depth
d ∈ {2, 4, 7} as a mean to control the total number of nodes
W – which we take as proxy of model complexity.

5 Evaluation
We illustrate potential biases related to accuracy evaluation
(Sec.5.1), and dissect models under the generally ignored
complexity angle (Sec.5.2).

5.1 Accuracy
Class cardinality bias. As early introduced, academic models
are trained for no more than K=50 classes, and performance

3We use two models, one for TCP and one for UDP, to better
address the different number of classes they contribute ( 30 for TCP
and 170 for UDP)



Figure 2: Mean accuracy bias. Average per-flow (affected by class
imbalance) or per-application accuracy (each application counted
equally). Notice that the per-application accuracy overestimate per-
formance in the small class regime K < 100, and vice-versa hap-
pens for K > 100.

are generally reported for X≤K classes, with X ∈ {10, 50}.
We contrast the academic evaluation settings with the typi-
cal business case where the same model (i.e., with the same
architecture and hyperparametrization) is instead trained to
recognize K ′ = 200 classes and performance are then re-
ported for X ≤ 200 classes, considering for the time be-
ing still X ∈ {10, 50}. Results of this experiment are re-
ported in Fig.1, where we purposely select a DL and a ML
model that when K=50, (i) have for the top-X=50 classes
a similar flow-level accuracy to what reported in the litera-
ture (≈99%) and (ii) have approximately the same accuracy
(97.7% vs 98.4%).

To put it simple, when ML/DL models are trained to rec-
ognize at most K=50 classes, Fig.1 shows no noticeable per-
formance degradation in the overall accuracy when the per-
formance results are reported for the top-10 or the whole top-
50. Conversely, when models are trained to recognize a 4×
larger number of K=200 classes we then observe that accu-
racy degradation is already noticeable for top-10, and degra-
dation is sizeable for the top-50 classes. In other words, fo-
cusing on a small number of classes makes the problem trivial
to solve (even without DL) and hides problems arising when
the space becomes sufficiently dense.

Mean accuracy bias. This is further exacerbated by consid-
ering Fig.2, showing for models trained on K ′ = 200 apps,
the mean accuracy of the top-X apps, where ranking is done
either in terms of app popularity (most popular –by means of
number of flows– app first), or in terms of app performance
(best classified app first). The picture clearly shows that,
(i) despite classification accuracy of individual applications
worsen as X increases towards K ′, (ii) the overall number of
correctly classified flows remains satisfactory in reason of the
application popularity skew – otherwise stated, focusing on
the average accuracy, and particularly for a small number of
classes K < K ′, hides performance problems that arise only
when K � 100 may render commercial deployment non vi-
able.

DL bias. Finally, we argue that in the second wave of classi-
fication, the benefits of DL may be exaggerated — which is

Figure 3: Model bias. By tuning model hyperparameters, it is easy
to obtain operational points that show superiority of one class of
approaches (biased to ML in this example).

a well known side effect of the publish or perish arms race,
and has already been documented in computer science [Lip-
ton and Steinhardt2019] as well as other fields [Hutson2020].
Given lack of space, we exemplify this in Fig.3, where we
purposely show that ML accuracy can be made (significantly)
better than DL one by tuning a single ML hyperparameter
(the maximum tree depth in the example) – though we stress
that we could easily have adopted the opposite viewpoint, as
it may inadvertently happen in the rush to publish of new DL
results.

5.2 Complexity
The hidden confounding factor in the above results is the
model complexity. To make the analysis simple, we abstract
each specific DL/ML model instance with the overall num-
ber of parameters W : clearly, while space complexity do
not directly translate into computational complexity (as this
depends on the DL/ML architecture, the specific operations
executed at inference time) or energy expenditures (as this
depends on, e.g., the availability of hardware accelerators),
focusing on space complexity W allows to abstract from spe-
cific implementation (i.e., software, hardware acceleration,
system design choices). Particularly, as models are disparate
in their capabilities, to make a fair comparison across them
it is necessary to not only report the absolute model size W ,
but especially the model size normalized over the number of
output classes W/K.

Fig.4 illustrates the accuracy vs complexity tradeoff for
both our and literature models, where accuracy (complex-
ity) comparison should be interpreted qualitatively (quanti-
tatively). In particular, the scatter plot shows that literature
employs up to millions [Chen et al.2017] of CNN weights
per class, with the most parsimonious approach [Shapira and
Shavitt2019] still employing over 60k weights per class. In
contrast, the CNN models we considered employ between
2.2k (110k/50) and 285 (57k/200) weights per class.

Two observations emerge from the picture. On the one
hand, when the number of classes is large (K ≈ 200), it
becomes necessary to increase models space to maintain ac-
curacy performance. On the other hand when the number
of classes is small (K ≈ 50), it is unreasonable to use an
humongous number of weights to discriminate them, particu-
larly since it is possible to design parsimonious models with
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Figure 4: Complexity. Scatter plot of model space complexity W
vs accuracy for our ML (blue circles) and DL (red circles) mod-
els, where empty circles are used for models of Fig.3. State of the
art references (green stars) are included for qualitative comparison.
Shapes are annotated with models size and class cardinality, with the
shape radius is proportional to the W/K ratio.

just hundreds of weights-per-class achieving same-or-better
performance (low right corner of the scatter plot). As such,
by neglecting model complexity, the risk is to propose solu-
tions that are classic equivalent of shooting a mosquito with
a cannon.

6 Discussion
In this paper, we critically review and compare models of the
first and second wave of classification. We show that whereas
classifying a few classes is a relatively simple task, perfor-
mance of the same architectures degrades if stressed with a
large number of classes. We also show that generally models
are not evaluated from a complexity viewpoint, which possi-
bly yields to models that are unnecessarily complex for rel-
atively simple tasks – endangering the practical relevance of
the research.

Open dataset: pooling efforts. In reason of our results, con-
structing an open corpus with rich class diversity and large
class cardinally K should be a priority goal to allow for
meaningful and fair cross-comparison of research proposals.
While this is within reach for large industrial players, how-
ever legal and business aspects prevent them to share openly
their datasets – this is old news, but unfortunately apply also
to the datasets used in this paper.

While this is a daunting effort for a single academic part-
ner, pooling effort across multiple research groups N in a
coordinated manner can be an effective strategy to achieve
this goal. For instance, asking each partner to gather K/N
classes, and coordinating so that Ki ∩ Kj =, i.e., no overlap
for any two groups. Lots of groups are doing active measure-
ment collections for specific application types (video, games,
etc.) and different goals than traffic classification (congestion
control, QoE, etc.), so that the true burden lies in the coordi-

nation. Yet, this is commonplace in other communities (e.g.,
Imagenet has 15million images in 20k classes) offering a pos-
itive examples that the traffic classification community should
adopt. The NetAML challenge is a good starting point, as it
could federately and systematically grow the data for such a
challenge over time.

Deployability: the elephant in the room. Given that traf-
fic classification is a mature research topic, we believe that
focusing on raw classification performance of a supervised
model, albeit of novel DL models, is no longer justified. To fi-
nally make academic models to step out of academic venues,
it is imperative to tackle other pressing problems impacting
models deployability in the real world [Pacheco et al.2018].

Deployability issues also includes aspects related to model
training, such as for instance continuous (to tackle drift and
zero day applications [Carela-Español et al.2016]), or dis-
tributed (e.g., privacy respectful federated learning [Yang
et al.2020]) learning. Deployability issues especially in-
cludes aspects related to model inference, such as compu-
tational costs (e.g., to ensure the model execution is within
the CPU/energy budget [Gallo et al.2020]) as well as au-
diting/explainability of classification decisions for the non
experts (which has practical relevance since unlike deci-
sion trees, DL models have no direct explanation [Beliard et
al.2020, Meng et al.2020])
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