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Abstract—Roughly speaking, anomaly detection consists of
identifying instances whose features significantly deviate from the
rest of input data. It is one of the most widely studied problems in
unsupervised machine learning, boasting applications in network
intrusion detection, healthcare and many others. Several methods
have been developed in recent years, however, a satisfactory
solution is still missing to the best of our knowledge. We present
Random Histogram Forest an effective approach for unsupervised
anomaly detection. Our approach is probabilistic, which has
been proved to be effective in identifying anomalies. Moreover,
it employs the fourth central moment (aka kurtosis), so as to
identify potential anomalous instances. We conduct an extensive
experimental evaluation on 38 datasets including all benchmarks
for anomaly detection, as well as the most successful algorithms
for unsupervised anomaly detection, to the best of our knowledge.
We evaluate all the approaches in terms of the average precision
of the area under the precision-recall curve (AP). Our evaluation
shows that our approach significantly outperforms all other
approaches in terms of AP while boasting linear running time.

I. INTRODUCTION

Hawkins [1] defines an anomaly (aka outlier) as “an ob-
servation, which deviates so much from other observations
as to arouse suspicions that it was generated by a different
mechanism.” Identifying those anomalies is crucial in many
applications, as it might reveal an unauthorized access in
computer networks or a disease in a patient, for example.

Thus, anomaly detection boasts applications in network
intrusion detection, fraud detection, healthcare, and many
others, while providing a valuable tool in data cleaning.

It is one of the most widely studied problems in both
unsupervised and supervised machine learning. Because of the
difficulties in obtaining large amounts of labeled data, as well
as, in dealing with high class imbalance [2], unsupervised
approaches preserve their appeal. As a result, unsupervised
anomaly detection has received increasing attention in recent
years (e.g. Isolation Forest [3], OCSVM [4], LOF [5]). Among
the supervised approaches we mention random forest [6] and
autoencoders [7].

One of the most effective algorithms for unsupervised
anomaly detection is Isolation Forest (iForest), as confirmed
also by our experimental evaluation. In our work, we present
Random Histogram Forest (RHF) an effective approach for
unsupervised anomaly detection. Similarly to iForest, our
approach is probabilistic while relying on an “ensemble”
of “weak” building blocks (trees) for effectively identifying

anomalies. This has been proved to be effective for a wide
range of tasks (e.g. Random Forest [6], Isolation Forest [3]).

Our approach builds a random forest based on all input
instances, whereas iForest builds a random forest based solely
on some random samples of the data. The latter strategy
has the drawback that some anomalies might be neglected
entirely in the construction of the forest, thereby impairing
the capability of the algorithm of finding those anomalies.
Nevertheless, our algorithm boasts linear running time in the
size of the input. Another key idea of our algorithm is to
employ the fourth central moment (aka kurtosis), so as to guide
the search for anomalous instances. Our algorithm computes
a score for every instance, measuring the likelihood of such
an instance of being an anomaly. Such a score is defined as
the Shannon’s information content of the leaf containing the
corresponding instance.

We conduct an extensive experimental evaluation on 38
datasets including all benchmarks for anomaly detection,
as well as the most successful algorithms for unsupervised
anomaly detection, to the best of our knowledge. We evaluate
all the approaches in terms of the average precision of the
area under the precision-recall curve (AP). We observe that as
suggested in [8], ROC might not reflect the real performances
of the algorithm, in that, anomalies typically represent a small
fraction of the input data.

Our experimental evaluation shows that RHF outperforms
all other approaches in terms of AP. In particular, it outper-
forms iForest in terms of AP by a factor of 10% on average
and up to a factor of 2 in some datasets. Moreover, it shows
that the performances of our algorithm are consistently good
over a wide range of parameter values, which allows for an
effective parameter tuning.

The rest of the paper is organized as follows. We start
by overviewing top performer anomaly detection algorithms
in section II and introduce the Random Histogram Forest
algorithm in section III. We then describe our experimental
evaluation and results in section IV. Finally, we discuss and
summarize our main findings in section V.

II. RELATED WORK

Several unsupervised anomaly detection algorithms have
been developed in recent years. We can classify the related
work as follows: (i) Probabilistic/Linear based methods (e.g.



PPCA, HBOS, OCSVM, etc.); (ii) Proximity/Nearest-Neighbor
based methods (e.g. K-NN, Kth-NN, Local Outlier Factor);
(iii) Ensemble/Isolation based methods (e.g. Isolation Forest).
Among the most recent comparative studies of unsupervised
techniques, [9] compares most of the existing proximity-based
methods on 10 different datasets and conclude that it is of great
importance the initial assumption whether the anomalies in the
datasets are global or local: they recommend to use a global
anomaly detection methods if there is no further knowledge
about the nature of anomalies in the dataset to be analyzed.
[10] compares 14 methods belonging to all the groups previ-
ously described on 15 different datasets (12 publicly available
and 3 private ones). However, their study assesses if the models
are able to generalize to future instances, so they perform a
Monte Carlo cross validation of 5 iterations, using 80% of the
data for the training phase and 20% for the prediction which
indicates a semi-supervised setup to our understanding. While
[9] study does not include the latest methods presented (e.g.
Isolation Forest, thought to be the state-of-art), [10] describes
the models generalization capacity using labels that most of
the time are not available. We compare the methods which
have proven to be the best in previous studies [9], [10] using
default or reasonable parameters and use labels only to assess
their performance in a completely unsupervised environment.

Probabilistic based methods estimate the parameters θ of
the dataset X and assigns to each instance x ∈ X an anomaly
score equal to the likelihood P (X | θ).

Probabilistic Principal Component Analysis (PPCA) [11]:
estimates the principal components of the data and projects
the d-dimensional dataset to a q-dimensional one estimating
the latent variables by iteratively maximizing the likelihood
using an expectation-maximimation algorithm.

Histogram-based Outlier Score (HBOS) [12]: generates a
histogram for each feature assuming they are independent.
Similar to the Naive Bayes approach in which all the inde-
pendent feature probabilities are multiplied, HBOS outputs an
anomaly score given by the multiplication of the inverse height
of the bins of all the features.

One-Class SVM [4]: determines a separating hyperplane
in a higher dimensional space by maximizing the distance
from the hyperplane to the origin. The ν parameter acts as
a regularization parameter as determines an upper bound on
the percentage of data falling outside the boundary and a lower
bound on the number of support vectors.

Proximity/Nearest-Neighbor based methods compute the
neighborhood of all the instances x ∈ X and uses the distances
of each instance x to describe abnormality.

K-NN [13] and Kth-NN [14]: Both K-NN and Kth-NN
compute the distances for each instance x ∈ X to the k-
nearest-neighbors and assign them either the mean distance
(K-NN) or the max one (kth-NN).

Local Outlier Factor (LOF) [5]: introduced first the idea
of local anomalies and detects them by comparing the local

density of each instance against the local density of neighbors.
Ensemble/Isolation based methods isolate anomalies in-

stead of profiling normal instances by recursively splitting the
data through a random tree and generating so isolation forests.

Isolation Forest [3]: builds a forest of randomly generated
trees and assigns to each instance x ∈ X the average path
length from the root to the node containing x as anomaly score.
The authors show empirically that shorter path lengths are
representative of anomalies as they are more easily to isolate
with respect to normal data.

Based on the most recent comparison studies [9], [10], [15],
the algorithms previously described have proven to be among
the best in regards anomaly detection. In general both [10] and
[15] suggest iForest to be, on average, the best one closely
followed [10] by PPCA and OCSVM.

III. RANDOM HISTOGRAM FOREST (RHF)

RHF is an ensemble model apt at splitting the dataset into η
different groups. The algorithm randomly partitions the input
points by means of several splits drawn at random. Intuitively,
points that end up in a relatively large group are less likely to
be anomalies. By iterating such a process multiple times, we
can measure how likely a point is an anomaly.

To put this idea into practice, RHF splits the data into η

different bins by means of a Random Histogram Tree (RHT).
Each RHT is built by recursively splitting the whole dataset:
each splitting decision is done selecting an attribute a to split
according to its kurtosis score and a split value randomly
selected from its support. By setting the parameter max height
h, each RHT produces at most η = 2h leafs corresponding to
η bins in which all the instances are grouped. Finally, the
anomaly score of each instance x ∈ X is the information-
content (aka self-entropy) of its terminating leaf Q aggregated
over all the trees.
Random Histogram Tree: Given a dataset X ∈ Rn×d, where
n is the number of instances and d the number of features or
attributes, a RHT is a binary tree in which a node Qi is either
an internal node with exactly two children or a leaf node with
no children. In the former case, the node splits the dataset
into a left branch XQL and a right one XQR, according to the
kurtosis Split. A RHT contains at most η = 2h leafs, where h
is the maximum height of the tree.
kurtosis Split: a kurtosis split chooses according to which
attribute a ∈ d to split the dataset X by assigning higher
probability to features whose kurtosis scores are higher. Given
a random variable X , the kurtosis score is defined as:

K[X ] = E

[(
X − µ
σ

)4
]
=

E
[
(X − µ)4

]
E
[
(X − µ)2

]2 =
µ4

σ4
, (1)

where µ4 is the fourth central moment and σ the standard
deviation, measures the tailedness of X . Equation (1) denotes
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the standardized data raised to the fourth power. As a re-
sult, instances within the region of the peak have negligible
contribution to the kurtosis score, while instances outside
the region of the peak (e.g. outliers) contribute the most. In
[16], Moors defined it as a measure of dispersion, while he
concluded that high values of K are due to either i) occasional
values far from the mean in a distribution whose probability
mass is concentrated around the mean or ii) probability mass
concentrated in the tails of the distribution. The kurtosis
score measures the heaviness of the tails and it is therefore
an indicator of outliers’ existence in the tail. Consider, for
example, Fig. 1 representing 4 features extracted from datasets
Annthyroid (top) and Mulcross (bottom) depicting both nor-
mal and anomalous probability density functions. It is easily
observable that features with heavier tails and consequently
higher kurtosis score (e.g. X1-top and X2/X3-bottom) are
more likely to contain anomalous instances than the remaining
ones (e.g. X0/X4-top and X0/X1-bottom in which anomalies
are clearly not separable: the probability functions overlap).

We compute the logarithm y = log(x + 1) of the kurtosis
score so as to focus on its order of magnitude, while preventing
our approach from being sensitive to small changes on such
score. Notice that we add 1 to all the scores such that constant
features (kurtosis 0) obtain a transformed score equal to 0 and
thus not selectable as a splitting attribute.
A kurtosis Split therefore:

i computes the kurtosis scores (1) of all the attributes
a ∈ d and defines the kurtosis Sum Ks:

Ks =

d∑
a=0

log [K(Xa) + 1] (2)

ii picks a random value from X ∼ U [0,Ks]:

r = X ∼ U [0,Ks] (3)

iii designates the attribute to split as according to the
choice r in Ks:

as = argmin

(
i|

i∑
a=0

log [K(Xi) + 1] > r

)
(4)

Internal Node: Given an internal node Q, the latter splits the
data in exactly two subsets XQL and XQR (if possible) by
selecting an attribute as ∈ d according to the kurtosis Split
criterion and a splitting value av ∈ (minas

,maxas
) until:

i the maximum height h of the tree is reached.
ii there are |XQ| = 1 instances in Q.
iii there is only one distinct instance in Q. All the

remaining instances are thus duplicates.
Leaf: A leaf is a node with no children which is populated by
at least one instance. Given a leaf Q, we denote with S(Q)

the set of distinct instances associated to Q. We also define
PQ := |S(Q)|

n , which can be seen as the probability that an
instance is associated to the leaf Q. We recall that the total
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Fig. 1. Probability Density Function of 4 features depicting both normal and
anomalous class extracted from datasets Annthyroid and Mulcross respec-
tively. It is easily observable that features with heavier tails and consequently
higher kurtosis score (e.g. X1-top and X2/X3-bottom) are more likely to
contain separable anomalous instances than remaining ones (e.g. X0/X4-top
and X0/X1-bottom in which anomalies are clearly not separable).

number of leaves is bounded by 2h, where h is the maximum
height of the tree (input parameter).
Anomaly Score: Given an instance p ∈ X and a Random
Histogram Tree RHTi ∈ RHF , we define the anomaly score
of p w.r.t. RHTi as:

RHTi(p) = log

[
1

PQj

]
, p ∈ S(Qj), (5)

which can be seen as the Information Content (also called
Shannon’s information [17]) of p in RHTi. The Information
Content measures the level of “surprise” of an event, with rare
events being more surprising than relatively common events.
As a result, the smaller the cardinality of S(Qj) the more
likely p is considered to be an outlier. We adopt the convention
that −log(0) = +∞. The anomaly score of p w.r.t. to RHF is
obtained by summing the scores over all RHTi’s as follows.

RHF (p) =

t∑
i=0

RHTi(p) (6)

The pseudocode of the algorithm to construct a random
histogram forest is provided in Algorithm 1, while Algorithm 2
shows how to compute the anomaly score for a point p.

The running time of Algorithm 1 is O(ntdh), where h

denotes the maximum height, t denotes the number of trees,
n the number of instances while d denotes the number of
dimensions d.

IV. EXPERIMENTAL EVALUATION

A. Settings.

Libraries: Our experimental evaluation is conducted
on a Linux Fedora 31 server equipped with Intel(R)
Xeon(R) CPU E5-2665 @ 2.40GHz - 32 CPUs and 48 GB
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Algorithm 1: RHF(X, nd, h)
Input: dataset X, node depth nd and max height h
Output: RHF

1: if nd ≥ h or |X| == 1 then
2: return Leaf{S(Q)}
3: else
4: let A be the set of attributes
5: select the attribute to split as according to kurtosis

Split described in (2), (3), (4)
6: select a random split value av in the min and max

support of as in X
7: Xl = filter(X| as < av)
8: Xr = filter(X| as ≥ av)
9: return Node {

value = av ,
attribute = as,
left = RHT(Xl, nd+1, h),
right = RHT(Xr, nd+1, h)

}
10: end if

Algorithm 2: Score(x, node)
Input: instance x ∈ X and an RHT node
Output: anomaly score given RHT

1: if node is Leaf then
2: P = node{S(Q)}/|X|
3: return log(1/P )
4: else
5: a = node.attribute
6: v = node.value
7: if xa < v then
8: score(x, node.left)
9: else

10: score(x, node.right)
11: end if
12: end if

RAM. Our code is written in Python 3 [18] while it uses
NumPy == 1.17.4 [19] and Pandas == 0.25.3 [20]
for data preprocessing. The implementations of the
algorithms described in Section II belong to either
PyOD == 0.7.9 [21] (HBOS, PPCA, K-NN, Kth-NN,
OCSVM) or Scikit− learn == 0.23.1 [22] (iForest and
LOF) packages. Our RHF’s Python 3 implementation is
available at [23].

Parameters: We set the parameters of each approach,
considered in our experimental evaluation, while following the
directions of the corresponding authors. In particular, we run
HBOS selecting the input parameter number of bins using the
rule of thumb K =

√
n as suggested by the authors. Similarly,

we set n components = mle and svd solver = full which
finds the best number of PPCA’s components. We run 10 times
the proximity based methods K-NN, Kth-NN and LOF by

increasing the number of nearest-neighbors K−nn ∈ [20, 30]

and aggregate the scores. As already successfully done in [10],
we use OCSVM’s default parameters kernel=rbf, degree=3
with regularization parameter ν = 0.5. Finally, iForest uses
its default parameters t = 100 and sample size ψ = 256. RHF
uses t = 100 and h = 5 corresponding to at most 32 leafs.
Both Isolation Forest and RHF are run 10 times.

Metrics: We evaluate the performance of the algo-
rithms by measuring the Average Precision (AP) of the
Precision-Recall Area Under the Curve (without interpola-
tion): AP :=

∑
n (Rn −Rn−1)Pn where Pn = tp

tp+fp and
Rn = tp

tp+fn are the Precision and Recall at the nth threshold.
We observe that the Receiver Operating Characteristic (ROC)
is often employed to evaluate anomaly detection methods [9]
- [3]. However, it has been shown in [8] that when the classes
are not balanced (e.g. anomalies) the AP curves better reflect
the efficacy of an algorithm. [8] shows moreover that a curve
dominates in ROC if and only if it dominates in AP space.

Datasets: We put a major effort in providing an extensive
experimental evaluation. In particular, we include all datasets
that have been considered in the literature for anomaly detec-
tion, to the best of our knowledge. This is crucial to ensure
a fair comparison, in that, the overall results might change
dramatically depending on the selection of the datasets, as
pointed out in [15]. We use 38 publicly available benchmark
datasets ranging from 240 to 623091 instances and from 3 to
274 features. Each of them is available either at the UCI [24]
or at the ODDS [25] repositories. We furthermore consider the
recently released WikiQOE [26] dataset, which consists of a
Wikipedia large measurements campaign of WebQOE metrics.

The KDD’99 Cup dataset is one of the most widely
used benchmark for anomaly detection. The dataset contains
information about network connections as exchanged bytes
(“source bytes”, “destination bytes”, etc.) and service type
(“http”, “smtp”, “ftp”, etc.). It consists of 4,898,431 instances
and 41 attributes. Similarly to the filtering technique used
by [27] [9] we extract 5 subsets according to the values of
the service attribute (http, smtp, ftp, finger and other). Out
of the 41 available attributes, we select, as already done
in [27] only 3 of them namely “duration”, “source bytes”,
and “destination bytes” as they are thought to be the most
relevant ones [27]. We obtain in this way the datasets we
call kdd http (623091 instances), kdd smtp (95554 instances),
kdd ftp (5214 instances), kdd finger (1033 instances) and
kdd other (12844 instances). While [9] filtered the dataset
according to the service attribute only, [27] filters them also by
the positive logged in attribute as they are successful attacks.
We also consider this additional filter by further reducing the
kdd http dataset into the http logged (567498 instances) one
by excluding the negative values of logged in attribute.

In order to determine to which extent the presence of
duplicates might affect the overall results, we consider also
a smaller version in which duplicates have been filtered out:
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n d
anomalous

HBOS PPCA OCSVM KNN KthNN LOF ISO RHFK RHFR- duplicates
musk 3060 166 3.1% - 0% 0.904 1.0 1.0 0.432± 0.023 0.626± 0.027 0.239± 0.013 0.980± 0.021 0.994± 0.007 0.990± 0.008

http logged 567498 3 0.4% - 97% 0.242 0.769 0.492 0.009± 0.001 0.009± 0.001 0.022± 0.003 0.947± 0.033 0.982± 0.002 0.990± 0.001
kdd smtp29 96554 3 0.03% - 0% 0.980 0.773 0.405 0.090± 0.002 0.104± 0.002 0.014± 0.001 0.989± 0.001 0.954± 0.008 0.970± 0.005
breastcancer 683 9 34.9% - 1.2% 0.878 0.958 0.918 0.933± 0.001 0.942± 0.002 0.294± 0.007 0.967± 0.004 0.952± 0.005 0.962± 0.003

shuttle 49097 9 7% - 0% 0.911 0.915 0.907 0.182± 0.001 0.188± 0.001 0.118± 0.002 0.976± 0.005 0.933± 0.006 0.951± 0.003
satimages 5803 36 1.2% - 0.03% 0.732 0.872 0.965 0.443± 0.013 0.554± 0.033 0.028± 0.002 0.923± 0.006 0.926± 0.008 0.918± 0.010

kdd ftp 5214 3 26.7% - 79.7% 0.391 0.846 0.596 0.259± 0.001 0.261± 0.001 0.284± 0.002 0.428± 0.014 0.922± 0.008 0.909± 0.007
ionosphere 351 33 35.8% - 0.7% 0.28 0.747 0.839 0.922± 0.003 0.866± 0.009 0.851± 0.004 0.812± 0.005 0.819± 0.006 0.800± 0.006

kdd99G 620098 29 0.17% - 1.33% 0.585 0.683 0.325 0.177± 0.003 0.190± 0.003 0.004± 0.001 0.531± 0.002 0.774± 0.056 0.577± 0.033
kdd http29 623091 29 0.64% - 31.2% 0.536 0.758 0.499 0.096± 0.002 0.108± 0.001 0.017± 0.003 0.537± 0.012 0.770± 0.076 0.501± 0.015

kdd http distinct 222027 3 0.03% - 0% 0.049 0.637 0.373 0.352± 0.010 0.375± 0.007 0.027± 0.001 0.017± 0.005 0.743± 0.042 0.795± 0.015
mulcross 262144 4 10% - 0% 0.064 0.979 0.643 0.052± 0.001 0.052± 0.001 0.171± 0.001 0.565± 0.034 0.733± 0.032 0.730± 0.041
satellite 5100 36 1.4% - 0% 0.500 0.583 0.622 0.563± 0.012 0.612± 0.006 0.187± 0.001 0.639± 0.014 0.651± 0.015 0.650± 0.015

magicgamma 19020 10 35.1% - 1.7% 0.467 0.586 0.626 0.735± 0.001 0.728± 0.001 0.540± 0.003 0.648± 0.008 0.624± 0.010 0.626± 0.012
wbc 378 10 5.5% - 4.7% 0.699 0.556 0.529 0.546± 0.001 0.554± 0.002 0.573± 0.011 0.591± 0.026 0.577± 0.013 0.612± 0.011

cardio 1831 31 9.6% - 0.56% 0.416 0.612 0.533 0.363± 0.003 0.384± 0.002 0.156± 0.001 0.557± 0.027 0.567± 0.023 0.553± 0.023
penglobal 809 16 11.1% - 0% 0.237 0.301 0.569 0.897± 0.003 0.864± 0.044 0.566± 0.018 0.612± 0.027 0.556± 0.039 0.553± 0.043
kdd http 623091 3 0.64% - 98.1% 0.204 0.550 0.369 0.010± 0.001 0.010± 0.001 0.017± 0.002 0.488± 0.049 0.550± 0.009 0.572± 0.002

thyroid 3772 6 2.4% - 0% 0.718 0.362 0.318 0.344± 0.006 0.376± 0.005 0.088± 0.005 0.515± 0.031 0.550± 0.024 0.376± 0.026
kdd other 12844 3 3.72% - 0% 0.076 0.052 0.092 0.095± 0.001 0.089± 0.001 0.095± 0.002 0.493± 0.012 0.539± 0.062 0.477± 0.046

pima 768 8 34.8% - 0% 0.517 0.454 0.464 0.521± 0.001 0.521± 0.001 0.423± 0.002 0.505± 0.012 0.489± 0.008 0.496± 0.008
arrhytmia 452 274 14.6% - 0% 0.384 0.395 0.391 0.390± 0.001 0.395± 0.001 0.340± 0.004 0.478± 0.012 0.431± 0.019 0.460± 0.021
spambase 4601 57 39.4% - 7.4% 0.541 0.404 0.399 0.408± 0.001 0.422± 0.001 0.345± 0.004 0.465± 0.017 0.413± 0.014 0.410± 0.023

kdd ftp distinct 2876 3 9.8% - 0% 0.304 0.259 0.190 0.255± 0.002 0.264± 0.002 0.138± 0.010 0.391± 0.011 0.399± 0.025 0.347± 0.017
kdd smtp 96554 3 1.22% - 97.8% 0.286 0.353 0.323 0.015± 0.001 0.015± 0.001 0.020± 0.001 0.251± 0.013 0.389± 0.087 0.478± 0.122

abalone 1920 7 1.5% - 0% 0.265 0.298 0.308 0.189± 0.015 0.329± 0.004 0.194± 0.022 0.458± 0.058 0.377± 0.027 0.340± 0.035
mnist 7603 100 9.2% - 0% 0.095 0.383 0.385 0.405± 0.001 0.411± 0.001 0.266± 0.007 0.272± 0.018 0.348± 0.028 0.300± 0.029

annthyroid 7200 6 2.3% - 0% 0.411 0.190 0.186 0.229± 0.001 0.225± 0.001 0.175± 0.002 0.303± 0.014 0.309± 0.008 0.220± 0.017
kdd finger 1033 3 2.42% - 0% 0.266 0.191 0.299 0.287± 0.006 0.312± 0.001 0.163± 0.005 0.244± 0.022 0.269± 0.019 0.374± 0.020

yeast 1191 31 4.6% - 0% 0.116 0.241 0.202 0.221± 0.005 0.278± 0.001 0.242± 0.005 0.220± 0.013 0.229± 0.012 0.214± 0.006
mammography 11183 6 2.3% - 2.3% 0.086 0.205 0.183 0.170± 0.001 0.174± 0.001 0.098± 0.003 0.187± 0.025 0.134± 0.011 0.129± 0.023

vowels 1456 12 3.4% - 8% 0.118 0.068 0.195 0.548± 0.007 0.464± 0.005 0.346± 0.010 0.152± 0.029 0.131± 0.035 0.103± 0.021
wikiqoe 55932 17 8.0% - 0% 0.088 0.120 0.122 0.135± 0.001 0.134± 0.001 0.091± 0.001 0.168± 0.001 0.118± 0.011 0.122± 0.010

vertebral 240 6 12.5% - 0% 0.090 0.104 0.103 0.091± 0.001 0.089± 0.001 0.105± 0.002 0.095± 0.002 0.094± 0.003 0.095± 0.004
kdd smtp distinct 71257 3 0.03% - 0% 0.162 0.085 0.058 0.136± 0.006 0.171± 0.013 0.047± 0.001 0.049± 0.003 0.078± 0.005 0.074± 0.004

cover 286048 10 0.9% - 0% 0.026 0.078 0.096 0.041± 0.001 0.041± 0.001 0.013± 0.001 0.059± 0.018 0.077± 0.017 0.085± 0.022
wine 4898 11 0.4% - 0% 0.030 0.062 0.065 0.087± 0.001 0.079± 0.001 0.080± 0.001 0.041± 0.009 0.064± 0.006 0.076± 0.006
aloi 50000 27 3.0% - 0% 0.029 0.037 0.040 0.058± 0.001 0.050± 0.001 0.092± 0.002 0.033± 0.001 0.036± 0.001 0.038± 0.001

average // // // 0.360± 0.093 0.460± 0.100 0.411± 0.088 0.308± 0.084 0.323± 0.084 0.197± 0.063 0.463± 0.098 0.513± 0.100 0.497± 0.100
TABLE I

AP SCORES OF ALL APPROACHES ON ALL OUR DATASETS. THE RESULTS ARE SORTED IN DECREASING ORDER OF iForest SCORES. IN THE CASE OF
PROBABILISTIC APPROACHES, EACH VALUE IS AN AVERAGE OVER 10 RUNS WHICH IS COMPLEMENTED WITH A 0.95 CONFIDENCE INTERVAL. THE BEST

RESULTS FOR EACH DATASET ARE REPRESENTED IN BOLD.

we will refer to them as kdd http distinct, kdd smtp distinct
and kdd ftp distinct. We include in our comparison also the
full version kdd http29 and kdd smtp29 in which all the 29
continuous attributes are used. All the continuous features are
used also by [9] in which the authors tackle also the duplicates
problem by limiting the number of attacks and present to
the community their kdd99 dataset (composed by 620098
instances with 0.17% anomalous instances). We will refer to
this dataset as kdd99G by author’s name.

B. Comparison

We evaluate all the algorithms discussed in Section II,
which have proven to be most effective according to previous
experimental evaluations [9], [10], [15]. We also consider two
variants of RHF: one variant where Kurtosis Split is used
(RHFK), and one where random splits are used (RHFR).

We report in Table I a full comparison of all approaches and
all datasets considered in our paper. Our results confirm some
of the results provided in [10]. In particular, iForest (0.463±
0.098), PPCA (0.460 ± 0.010), OCSVM (0.411 ± 0.088) and
RHF (0.513±0.100) are indeed the most effective algorithms
for anomaly detection, while proximity-based methods such

as K-NN and LOF appear to be less effective. Moreover, we
can see in Table I that both variants of RHF outperform the
other approaches. RHFK achieves best results in terms of
AP, with the most significant differences being observed in the
mulcross dataset and those extracted from kdd99. We observe
that RHFK achieves an AP which is roughly 10% larger than
iForest and PPCA on average and up to a factor of 2 in some
datasets.

One of the main reasons why RHF outperforms iForest is
probably that it computes a forest based on all input instances,
while iForest only focuses on a random sample of the input
data. As a result, there is a non-negligible probability of
neglecting some of the anomalies.

RHF and iForest clearly outperform PPCA on kdd http,
penglobal, thyroid, kdd ftp distinct, while PPCA is the clear
winner on mulcross dataset. This is not surprising, considering
that the latter dataset consists of two dense anomalous clusters,
whose density functions can be accurately estimated by PPCA.
For such a dataset, iForest exhibits the worst results.

As also stated in [15], we observe that, most of the ap-
proaches achieve similar performances in most of the datasets,
with the most prominent differences being found in a few
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Fig. 2. Parameters tuning: Average Precision score for increasing maximum
tree height h comparing both Kurtosis Split as well as Random Split criterion.

datasets such as http logged, penglobal, thyroid, mulcross,
kdd99G, kdd other, kdd fttp, kdd http distinct.

C. Parameters Tuning

RHF uses two input parameters: the max height h which
determines the η number of leafs and the number of trees t.
As in most of the ensemble methods, we use t = 100 trees
while empirically study the behavior of h. Our method is
somehow linked to histograms, as we split the data into η

leaves. Therefore, we employ the widely used rules of thumb
in determining the number of leaves (i.e. bins in histograms).
In particular Sturge’s [28] rule of thumb k = d1 + log2ne sug-
gests that the number of bins should increase logarithmically
in the number of instances. We study RHF’s performance for
increasing h ∈ [1, 8] which defines η ∈ [2, 256] comparing the
results obtained using both Random Split and Kurtosis Split.
The results depicted in Fig. 2 show two takeaways: i) RHF’s
performance smoothly vary over h and ii) on average, Kurtosis
Split consistently outperforms the Random Split.

Regarding the maximum height h parameter, we observe
from Fig. 2 that: i) the AP benefits from increasing h,
however, ii) the AP reaches its maximum value already when
h = 4/5; iii) the number of leaves η = 16/32 defined by
h=4/5 is consistent with Sturge’s rule of thumb which would
recommend to use K = 14 bins for smaller datasets (e.g.
5000 instance) while K = 21 for bigger ones (e.g. 620000
instance). We set and recommend thus h = 5, as it produces
the best results and should handle properly also larger datasets.

V. CONCLUSIONS

We present a novel anomaly detection method called Ran-
dom Histogram Forest (RHF), which builds a random forest
while using the Kurtosis score as splitting criterion. The
anomaly score of each instance is computed as the information
content of the leaf it belongs to. We provide an extensive
experimental evaluation on 38 datasets, including all datasets
used as benchmarks for anomaly detection, to the best of
our knowledge. Our experimental evaluation shows that our
approach outperforms the other approaches in terms of average
precision, while being simple and intuitive. Moreover, the
running time of our algorithm grows linearly with the size
of the input dataset.
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