
1

TupleMerge: Fast Software Packet Processing for
Online Packet Classification

James Daly∗, Valerio Bruschi†‡, Leonardo Linguaglossa‡, Salvatore Pontarelli†§ Dario Rossi‡, Jerome Tollet¶,
Eric Torng∗, Andrew Yourtchenko¶ ∗Michigan State University, †University of Rome “Tor Vergata”, ‡Telecom

ParisTech, §CNIT (National Inter-University Consortium for Telecommunications), ¶Cisco Systems

Abstract—Packet classification is an important part of many
networking devices, such as routers and firewalls. Software-
Defined Networking (SDN) heavily relies on online packet clas-
sification which must efficiently process two different streams:
incoming packets to classify and rules to update. This rules out
many offline packet classification algorithms that do not support
fast updates. We propose a novel online classification algorithm,
TupleMerge (TM), derived from Tuple Space Search (TSS), the
packet classifier used by Open vSwitch (OVS). TM improves
upon TSS by combining hash tables which contain rules with
similar characteristics. This greatly reduces classification time
preserving similar performance in updates.

We validate the effectiveness of TM using both simulation
and deployment in an full-fledged software router, specifically
within Vector Packet Processor (VPP). In our simulation results,
which focus solely on the efficiency of the classification algorithm,
we demonstrate that TM outperforms all other state of the art
methods including TSS, PartitionSort (PS), and SAX-PAC. For
example, TM is 34% faster at classifying packets and 30% faster
at updating rules than PS. We then evaluate experimentally TM
deployed within the VPP framework comparing TM against lin-
ear search and TSS, and also against TSS within the OVS frame-
work. This validation of deployed implementations is important
as SDN frameworks have several optimizations such as caches
that may minimize the influence of a classification algorithm. Our
experimental results clearly validate the effectiveness of TM. VPP
TM classifies packets nearly two orders of magnitude faster than
VPP TSS and at least one order of magnitude faster than OVS
TSS.

I. INTRODUCTION

A. Motivation
Packet classification is a vital part of internet routing,

firewalls, and other services. These services classify each
packet in an incoming stream with a label, such as “forward
on physical port 1” or “discard”, determined by the first rule
in a multi-dimensional rulelist that matches the packet.

Packet classification has traditionally been viewed as an
offline problem where we are given a static rulelist, and the
aim is to build a static data structure that will classify a stream
of packets as quickly as possible. With the advent of new
networking paradigms such as software-defined networking
(SDN) [1], exemplified by OpenFlow [2], and network func-
tion virtualization (NFV) [3], packet classification is now an
online problem where the system receives a mixed stream of
packets to classify and rules to update (insert or delete). Rather
than creating a static data structure, we must create a dynamic
data structure that supports both fast packet classification and
fast rule update. We present a formal definition of the online
packet classification problem in Section II.

Fig. 1: State of the art of packet classification: tradeoff in
the classification vs update times. Results are obtained via
simulation (cfr. Sec. IV) and are averaged over ACL seeds
with [1k,32k] rules.

All packet classifiers, offline and online, must have fast
classification times because internet services have real-time
constraints. They constantly receive new packets that go into
a queue until they are processed. If they are not processed
in a timely manner and the queue fills up, further packets
are dropped which causes network congestion. Even before
this point, delays in one location can cause congestion and
problems elsewhere.

Online packet classifiers required by SDN introduce a
new constraint for packet classifiers: fast updates. In SDN,
a controller program dynamically configures the behavior
of switches by inserting and deleting rules. These changes
occur much more frequently than in traditional networks, so
packet classification algorithms for SDN must support both
fast updates and fast classification. In particular, OpenFlow
based networks has update requirements that are not met by
some current OpenFlow hardware switches, as reported in
[4]. Achieving both fast classification and fast rule update
is a research topic of growing interest, since delay in policy
update can lead to thousands of mis-routed packets in high
performance networks [5].

B. Summary and Limitations of Prior Art

One of the primary challenges in packet classification,
among the typical metrics [6] used to evaluate packet clas-
sification performance, is simultaneously achieving fast clas-
sification times and fast updates. Because fast updates were
not as important as fast classification for traditional offline
packet classification, most methods, such as HyperCuts [7]
and SmartSplit [8], essentially ignored updates to focus on
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minimizing classification time. Others such as Tuple Space
Search (TSS) [9] sacrifice classification time for fast updates.
The result is that high-speed classification methods are not
competitive for updates while fast update methods are not
competitive for classification time. We visually represent this
tradeoff between classification time and update time in Fig. 1.

With the advent of SDN and the increased importance of
fast updates, the best choice has been to use the fast update
methods such as TSS; the fast classification methods are
unusable because they provide no support for fast updates.
For example, Open vSwitch [10] which uses TSS can handle
up to 42,000 rule updates per second [4].

TSS, like all existing fast update methods, is a partitioning
method that partitions the initial rule list into parts that can be
efficiently processed. TSS groups rules based on the number
of bits used for each field (a tuple) creating a hash table for all
rules that share the same tuple. This leads to O(d) searches,
insertions, and deletions from each hash table where d is the
number of dimensions. The main drawback is that the number
of tuples can be large and each tuple may need to be searched
leading to slow classification.

The current state of the art method that best balances fast
classification and fast updates is PartitionSort (PS) [11]. Rather
than partitioning rules based on tuples, PS partitions rules
into sortable rulesets which can be stored using binary search
trees that support O(d+ log n) search, insertion, and deletion
of rules where d is the number of dimensions and n is the
number of rules. PS requires fewer partitions because sortable
rulesets is less constraining than tuples; the drawback is that
each sortable ruleset requires a little more time to process. In
our simulations, we found that PS was 5.31 times faster than
TSS at classifying packets on our largest classifiers, but 77%
slower to update. Our objective is to improve upon PS in both
classification time and update time.

C. Proposed Approach and Deployment Validation

Our approach, which we call TupleMerge (TM), improves
upon TSS by relaxing the restrictions on which rules may be
placed in the same table. We call our method TupleMerge
because it merges tuples together to minimize the number
of resulting tables. More precisely, TM defines compatibility
between rules and tuples so that rules with similar but not
identical tuples can be placed in the same table as long as each
rule is compatible with that table’s tuple. This significantly
reduces the number of tables required and thus the overall
classification times. In comparison to PS, TM may require
more partitions, but each partition is represented using a hash
table rather than a tree, so TM can still achieve faster packet
classification and updates.

To fully validate the effectiveness of any packet processing
algorithm, we must not only develop an efficient algorithm
but also test the algorithm implementation inside a specific
network appliance (such as a software router) as there are
many implementation issues beyond algorithmic efficiency that
impact the actual throughput. For example, SDN frameworks
such as Open vSwitch (OVS) and Vector Packet Processor
(VPP) can leverage optimizations such as caches that may

minimize the influence of the packet classification algorithm
on network throughput. We not only propose TM but also val-
idate its true effectiveness by implementing it within the VPP
framework and conducting rigorous experimental evaluations
in actual network deployments.

D. Technical Challenges and Proposed Solutions

We face three key technical challenges in designing and
validating our TM classifier. The first is designing a flexible
hashing scheme. Since packets represent points, but rules
represent volumes, it is difficult to use hashing schemes to
match the two together. We address this by stretching rules so
that they are all the same size by ignoring some bits in each
rule. Hashing then lets us determine if the volume that the
packet falls into contains a rule.

The second challenge is designing a strategy for online
partitioning. This is challenging because we must achieve both
fast updates and preserve fast classification speeds after many
updates. We define a scheme for inserting new rules as well
as a method for recognizing that an existing combination of
rules does not work well together.

The third is validating a deployed implementation of TM.
Validating a deployed implementation of any packet process-
ing algorithm is extremely difficult and rarely done. Correctly
integrating a new packet processing algorithm into a complex
framework such as OVS or VPP is challenging enough; tuning
the integration so that the algorithm works well with all the
other components of the framework is extremely daunting. We
propose to do exactly this; specifically, we integrate TM into
the VPP framework and then conduct extensive experiments
stimulating the framework with both synthetic and real traffic
traces to validate the true effectiveness of TM deployed in the
VPP framework.

E. Summary of Simulation and Experimental Results

We conduct extensive simulation-based comparisons be-
tween TupleMerge and other methods, in particular Partition-
Sort and Tuple Space Search. We find that TM outperforms PS,
the current state-of-the-art, in both objectives. Specifically, it
is 34% faster at classifying packets and 30% faster at updating
rules than PS. Compared with TSS, TM is 7.4 times faster at
classifying packets and is only 39% slower at updating rules.
These simulation results suggest that TM may be the best
choice for online packet classification.

We then validate the effectiveness of TM in deployment
by conducting extensive experimental comparisons between
different implementations in actual deployed network frame-
works. Specifically, we contrast our VPP TM implementation
against VPP TSS and OVS TSS implementations. Our results
show that our deployed VPP TM is up to two orders of
magnitude faster than both VPP TSS and OVS TSS under real
traffic. Combining our simulation results with our deployment
validation, we conclude that TM is extremely effective for
online packet classification.
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II. BACKGROUND

A. Problem statement

We now formally define the Online Packet Classification
problem. We first need the following definitions. A packet field
f is a set of nonnegative integers, usually [0, 2w−1] for some
integer w. A rule r over d fields is a mapping from a subset of
those fields to some decision, represented r = (s1 ⊆ f1×s2 ⊆
f2×· · ·×sd ⊆ fd → decision). A packet p = (p1, p2, · · · pd)
matches r if p1 ∈ s1 ∧ p2 ∈ s2 ∧ · · · ∧ pd ∈ sd. At any point
in time, there is an active rulelist [r1, r2, · · · , rn] sorted by
order of priority. An example active rulelist is given in Table
I. When we classify a packet p, we must return the first rule
that matches it. Without loss of generality, we assume we start
with an empty active rulelist [ ].

The input to the online packet classification problem is a se-
quence of requests where requests have two types: (i) rule up-
dates (rule insertions or deletions) and (ii) packets to classify.
The first request should be a rule insertion. When processing a
request, either a rule update or packet classification, the online
classifier must perform the request as quickly as possible, and
we usually assume it has no knowledge of future requests,
though it is possible that some requests might be queued
up. The online classifier maintains a dynamic data structure
representing the current active rules. When performing a rule
update, it must balance the time required for the update against
the cost of future packet classification searches. The goal is
to come up with an algorithm and dynamic data structure that
supports both fast packet classification and fast rule updates.

B. Packet classification algorithms

Although packet classification is a well-studied topic [12],
[6], most prior work is on offline packet classification. This
is not suitable for SDN, NFV, or for new applications such
as Reflexive IP ACLs [13], since online packet classification
where fast updates to the rule list is a strong requirement.
We briefly review prior work dividing algorithms among the
different classes of algorithms [12], focusing especially into
decision trees and partition-based. We go into more detail on
the partition-based methods as they can be used for online
packet classification.

1) Decision Trees: Decision tree methods such as Byte-
Cuts [14], HyperCuts [7], HiCuts [15], and HyperSplit [16]
have emerged as the state-of-the-art for traditional offline
packet classification because they achieve fast classification.
These methods work by partitioning the search space and then
distributing rules into the resulting partitions. The search space
partitions, along with the corresponding rules, are represented
by trie nodes. The main difficulty with these methods is rule
replication that results because rule boundaries do not perfectly
align with the partitions, so rules must be copied into multiple
partitions (trie nodes). The resulting rule replication leads to
both memory blowup and complex rule update. In particular,
the best known way to update an arbitrary decision tree is to
perform tree reconstruction which takes far too long making
most decision tree methods unusable for online classification
and thus out of the scope of this paper.

TABLE I: Example 2D rulelist

Rule Source Dest Tuple
r1 000 111 (3, 3)
r2 010 100 (3, 3)
r3 011 100 (3, 3)
r4 010 11* (3, 2)
r5 10* 101 (2, 3)
r6 110 *** (3, 0)
r7 *** 011 (0, 3)

This is even true for more recent decision tree methods
such as EffiCuts [17] and SmartSplit [8] that mitigate some
rule replication by performing rule partitioning (distinct from
search space partitioning) in a manner similar to partition-
based methods. Unfortunately, the rule partitioning they do is
not enough to eliminate rule replication or provide a better
alternative to tree reconstruction for performing rule update.
One recent decision tree method, CutSplit [18], provides a
rule update mechanism that avoids tree reconstruction in most
cases. CutSplit achieves average update times of 50µs which
is still one to two orders of magnitude larger than partition-
based methods.

2) Partition-based: Since packet classification has become
an “online” problem, different structures are needed that are
able to more easily accommodate other operational points
in the classification vs update time tradeoff. Partition-based
approaches achieve this by splitting a ruleset into multiple
smaller ones (based on rule characteristics that can easily
be computed), so that fast exact-match techniques, like those
based on hash tables, can be used to access the data structure
for both lookup of existing rules and insertion of new rules. We
compactly present the key characteristics of the best partition-
based methods in Tab.II including TM.

Tuple Space Search (TSS) is one of the oldest offline packet
classification methods that was left behind as faster methods
were developed [9]; TSS has reemerged for online packet
classification because it supports fast updates. In particular,
Open vSwitch [21] uses TSS as its packet classifier because
TSS offers constant-time updates and linear memory.

In TSS, each partition is defined by a mask tuple ~m which
represents the actual bits used in each of the prefix or ternary
fields of all rules in that partition. Since all the rules in a
partition have the same ~m, we can store these rules using a
hash table where the masked bits ~m for each rule form the
hash key. The main drawback of TSS is that the number of
partitions/tables is large. This results in relatively slow packet
classification as many tables must be searched. TM improves
upon this by putting together rules from multiple TSS tables
into a single hash table resulting in many fewer tables.

Srinivasan et al. suggest using a (usually 1-dimensional)
preclassifier to identify which tables contain rules that might
match the packet [9]. This allows fewer tables to be searched,
potentially resulting in significant time savings. The tradeoff is
that the preclassifier requires extra time and memory; for some
rulelists, it may take more time to query the preclassifier than
is saved by reducing the number of tables queried. In contrast,
TM reduces the total number of tables and does not need a
preclassifier.

Another option for reducing the number of tables is to
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TABLE II: Mentioned state of the art packet classifiers in order of number of partitions, fewest to largest, comparing key
metrics such as worst case lookup time per partition, worst case update time, and worst case storage.

Linear
Search
(LS)

SmartSplit
(SS) [8]

SAX-PAC(3)
[19]

Partition Sort
(PS) [11]

SAX-PAC(2)
[19]

Tuple Merge
(TM) [20]

Tuple Space
Search (TSS)
[9]

Partition
Definition

single
partition

fixed O(1)
partitions

non-intersecting
rules (≥ 3
fields)

sortable rules non-intersecting
rules (< 2
fields)

merged tuples:
subset of bits
used in rules

tuples: bits
used in rules

Partition
Data
Structure

sorted
linked
list

hypercuts or
hypersplit de-
cision trees

unspecified binary search
tree

binary search
tree

hash table with
collision limit c

hash table (no
collisions)

WC lookup
time per
partition

O(n)
memory
accesses

O(log(n))
tree height

unspecified O(d+ log(n)) O(log(n)) O(1) hashed
memory access
+ O(c)

O(1) hashed
memory access

WC update
time

O(n)
but often
much
faster

no update
mechanism
given

update
complexity
not specified

O(d+ log(n)) O(log(n)) O(1) hashed
memory access
+ O(c)

O(1) hashed
memory access

WC
Storage

O(n) superlinear in
n

unspecified O(n) O(n) O(n) O(n)

reduce the number of tuples by ignoring certain fields (such
as the port fields). This results in a drastic reduction in the
number of tables, which is exponential in the number of fields.
This may cause some false matches; removing fields reduces a
rule’s ability to exclude packets, but it cannot cause a matching
rule to be missed. It may also cause multiple rules to match
the same packet. We check the packet against the actual rule
to solve both of these cases. We also exploit this optimization
which, combined with other optimizations, results in far fewer
tables than TSS.

Yet another strategy to avoid querying hash tables is to use
Bloom filters [22]. Bloom filters are a very space-efficient
probabilistic hash set that can answer whether an item is prob-
ably in the set (with the probability being related to memory
usage) or definitely not in the set. Since Bloom filters are space
efficient, they can be stored in cache and used to check whether
a matching rule probably exists before performing a query to
slower memory. This is a complementary optimization that
TM can also leverage; in fact, it may be more efficient for
TM as TM has fewer hash tables than TSS.

Recently, Yingchareonthawornchai et al. proposed a new
partitioning method called PartitionSort (PS) [11] where they
partition rules into a small number of sortable rulesets. They
store each partition in a multi-dimensional tree that supports
O(d + log n) searches and updates. They observe that the
resulting number of partitions is significantly fewer than TSS
and that the first few partitions contain the vast majority of
rules, so high priority matches are likely to be found after
searching only a few trees. As a result, PS classifies packets
significantly faster than TSS with only a modest slowdown in
update time. TupleMerge essentially achieves the best traits
of both TSS and PS. TM, like TSS, uses hashing so each
partition can be searched in O(d) time rather than O(d+log n)
time. TM, like PS, produces far fewer tables than TSS. PS’s
requirements for total ordering are more relaxed than TM,
so PS requires fewer tables, on average, than TM, but this
gain is typically offset by the extra O(log n) time required
for searches and updates. Because of this, TM typically

outperforms PS in both classification time and update time.
SAX-PAC is another partitioning scheme that requires the

fewest partitions but in its most general form does not support
fast classification [19]. SAX-PAC requires that the rules in
a partition be non-overlapping; these rules can be ordered
in any way since at most one rule will match any packet.
Furthermore, specific fields can be ignored as long as the rules
are still non-overlapping with only one extra false positive
check. Unfortunately, while non-overlapping is a natural par-
titioning requirement to impose on rules, it does not provide
any type of fast search guarantee unless we use only two fields.
We thus identify two versions of SAX-PAC: SAX-PAC(2)
which uses at most two fields and SAX-PAC(3) which uses
at least three fields. SAX-PAC(2) supports rule update and
fast classification, but PS requires fewer partitions than SAX-
PAC(2) while still using binary search trees, so we compare
against PS rather than SAX-PAC(2) in our experiments. SAX-
PAC(3) unfortunately does support fast packet classification,
so we do not compare against SAX-PAC(3). That said, we do
use SAX-PAC(3) as a benchmark to determine how effective
TM’s partitioning scheme is in practice.

C. Packet processing frameworks

While a complete survey of all software processing frame-
works (for which we refer the interested reader to [23])
is out of the scope of this paper, we briefly describe the
two frameworks we use in this this paper: Open vSwitch
(OVS) [21], [10] and Vector Packet Processor (VPP) [24],
[25], [26]. Both leverage the Intel Data Plane Development Kit
(DPDK)[27] to deal with the low-level networking operations
(i.e. packet reception, forwarding). We describe both from the
context of embedding online packet processing algorithms to
implement ACLs.

1) Open vSwitch (OVS): Briefly, OVS is a multi-layer
software switch released as open-source in the context of
the Linux Foundation’s Open vSwitch project [28] and it is
specifically designed to tackle the OpenFlow classification
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problem in software. As described in [29], OVS operates
as a daemon which controls a group of network interfaces:
the packet forwarding between the interfaces is blocked until
a rule enables a forwarding action. We now highlight three
key properties about OVS that are relevant for our experi-
ments. First, OVS uses a generic table of match/action rules
meaning that its Classifier may include exact match rules (for
L2 switching) and/or longest prefix matching rules (for L3
routing). Second, differently from VPP, OVS processes packets
one at a time which means that once a packet is classified,
the packet classification process moves on to process the next
packet. Third, OVS has a three-tiered cache to speed up packet
classification [30].

2) Vector Packet Processor (VPP): was recently released
as open-source software as part of the Linux Foundation’s
Fast Data IO (FD.io) project [31]. Before its release, VPP
was present in high-end Cisco routers. VPP is designed to
take advantage of general-purpose CPU architectures and im-
plements a full network stack in user-space. We now highlight
three key VPP properties that are relevant for our experiments.
First, VPP has separate nodes in a forwarding graph where
each node implements a specific forwarding function such as
L2 exact matches, L3 routing via longest prefix matches, and
ACL matching. Second, VPP processes packets in batches
of typically 256 packets. Combining the above two proper-
ties, VPP packet classification moves the batch of packets
from node to node in the forwarding graph processing the
appropriate packets in the batch at the appropriate node using
the corresponding table and algorithm from that node. Thus,
unlike in OVS, once packets from a batch are dropped in an
earlier node in the forwarding graph, those void packet slots
in the batch are not used by the next node in the forwarding
graph. Third, the current version of VPP does not come with
any form of caching to speed up packet processing. But VPP
does leverage prefetching to maximize usage of multiple CPU
pipelines and minimize memory access stalls.

3) ACLs in VPP vs OVS frameworks: Currently, OVS
includes the TSS packet classification algorithm whereas VPP
includes a naı̈ve linear search (LS) algorithm in version 17.04
and TSS in version 17.10 or newer.

In this work, we further extend VPP by deploying the
TM algorithm in VPP 17.10. We can then explore (i) the
impact of an algorithm (e.g., comparing VPP TM vs VPP
TSS) and (ii) the impact of the framework it is deployed in
(e.g., comparing VPP TM vs OVS TSS). We present such
experimental comparisons in Section V.

III. ALGORITHM DESIGN

A. Definitions

Let L be a list of n unique rules. Each rule r is a d-tuple
of range, prefix, or ternary fields, where each field defines a
subset of some finite discrete set (usually [0, 2w−1] for some
w). A range s = [l, h] is a discrete interval between l and h,
inclusive. A prefix p of length 0 ≤ wp ≤ w is represented by a
bit string {0, 1}wp∗w−wp , where * represents that it matches
both 0 and 1. Thus, each prefix represents a range where l
and h can only take on certain values. Specifically, a prefix

p = n∗w−wp , with 0 ≤ n < 2wp corresponds to a range
[n · 2w−wp , n · 2w−wp + (2w−wp − 1)].

A ternary field is a different generalization of a prefix in
that the 0s, 1s, and *s can be mixed in any order. They have
an associated bit mask of length w where a 1 represents that
the ternary field has a 0 or a 1 in that position while a 0
represents a * in that position. Thus a prefix has a bit mask
of 1wp0w−wp .

A rule contains a tuple of d fields. If all of the fields are
the same type, we say that the rule is also of that type. So
a rule containing only ternary fields is a ternary rule. A rule
containing multiple types of fields is a mixed rule. A rule list
likewise inherits the descriptor of the rules it contains. Note
that since prefixes generalize to either ranges or ternary fields,
we may consider such a mixed range-prefix rule list as purely
a range rule list (or likewise for ternary fields) if we do not
handle prefixes specially.

Two fields conflict if the subsets defined by them are not
disjoint. Thus, two prefixes pa and pb conflict if either their
first wa or wb bits are the same. Two d-dimensional rules ra
and rb conflict if ra(i) conflicts with rb(i) for any 1 ≤ i ≤ d.

A prefix or ternary rule r has a mask tuple ~mr associated
with it. This tuple is the associated prefix length or ternary
mask of each of its fields. For example, the rule (00*, 010)
will have a mask tuple of (2, 3). The bits in r associated with
the tuple are its key kt,r. We say that ~m1 ⊆ ~m2 if ~m2 has
a 1 in every position where ~m1 does; that is each of the bits
used by ~m1 is also used by ~m2. For example, given the rules
in Table I ~mr4 ⊆ ~mr1 as each field in (3, 2) is smaller than
the corresponding fields in (3, 3).

In this paper, we use the mask tuple to quickly match
packets to rules using hashing. Since range fields do not have
masks, this does not yield a suitable solution for us. We
transform range fields into prefix fields by expanding them
to the longest containing prefix; that is the longest prefix that
contains both l and h. This changes the semantics slightly,
yielding some false positive matches, so we validate such
results to ensure correctness.

For example, consider the one-dimensional rule represented
by the range [9, 10] being matched against the packets 7, 8,
10, and 12. Since [9, 10] cannot be represented by a prefix,
we widen it to [8, 11], which can be represented by the prefix
10**. This prefix will match 8 and 10 but reject 7 and 12. We
then validate against the original range, rejecting 8 as a false
positive, but accepting 10.

B. TupleMerge in a nutshell

There are two key differences that make TupleMerge faster
at packet classification than TSS. First, TM exploits the
observation that not all bits are always required to identify
which rules are potential matches. In TSS, rules are separated
so that rules that use exactly the same tuple will end up in
the same hash table and every other rule will end up in a
different table. Many rules have similar but not identical tuples
which TSS places in separate tables. TM allows these rules to
be placed into the same table, reducing the number of tables
required; this leads to faster classification.
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Second, TM has methods for reducing the number of hash
collisions. It is possible for two keys to be hashed to the same
value. Additionally, both TSS and TM may produce the same
hash key from different rules because of information that is
omitted. For TSS, this is because most implementations will
omit port fields (which are ranges) and sometimes other fields
as well; the exact field selection is usually chosen by the
designer ahead of time and is the same for all tables. For
TM this occurs because it has decided to omit some bits
from the tuple. In either case, this can create false matches
where a rule is incorrectly determined to match a rule (but it
cannot cause a matching rule to be missed). TSS has only one
option when this happens; it must sequentially search all of the
colliding rules until it finds a true match. TM uses the number
of collisions to control the number and specificity of its tables;
if there are too many collisions (determined by parameter c)
it adds more specific tables to reduce the number of collisions
so that no table will have more than c rules collide on any
given packet.

We now explain how TM allows rules with different tuples
to be placed in the same hash table. Like TSS, each TM hash
table T has an associated tuple ~mT . In TM unlike TSS, a rule
r may be placed in T if ~mT ⊆ ~mr; in TSS, r may be placed
in T only if ~mT = ~mr. We create a hash key kT,r from ~mT

and r by extracting the bits specified by ~mT from r. The key
issue is identifying what tuples ~mT should be constructed for
each ruleset, particularly as we construct the classifier in an
online fashion. We describe this in more detail in our Rule
Insertion section below.

Consider for instance the classifier in Table I: r2 has tuple
(3, 3) and r4 has tuple (3, 2). We could place both r1 and
r4 into the same table if the table used (3, 2) for its tuple. If
we wanted to use (3, 3) for the tuple, we would find that r4
is incompatible since 3 > 2; this would require splitting r4
into two rules which we do not do because this complicates
updating. Another possibility is to use (3, 1) for the tuple; both
rules would have a hash key of (010, 1 ∗ ∗) which creates a
hash value collision in the table. This tuple would be allowed
if the number of collisions in this hash value does not exceed
c. TM maintains a list T of tables created along with their
tuples where the tables are sorted in order of the maximum
priority rule contained and a mapping F : L → T of rules
to tables. During packet classification, only T is used. The
mapping F supports fast deletions of rules. Both require space
that is linear in n.

C. TupleMerge structures

1) Packet Classification: TupleMerge classifies packets just
like TSS classifies packets; we search for a packet in each table
in T ∈ T in order by extracting the bits specified by ~mT

from the packet and hashing those bits to see if a matching
rule is found. As with TSS, once a high priority matching
rule is found, later tables with lower priority rules do not
need to be searched. While the table construction algorithm
changes, the packet classifier can remain the same. This is
a potential implementation advantage that allows TM to be
easily integrated into existing implementations.

2) Tuple Selection: We now describe how TupleMerge
chooses which tuples to use for tables. For TSS, no choice
is necessary as it simply uses the tuples defined by the used
bits for each rule. For TM, we have the opportunity to use
fewer bits to define tuples which can reduce the number of
tables, at the cost of increasing the number of collisions. We
strive to balance between using too few bits and having too
many collisions and using too many bits and having too many
tables. One key observation is that if two rules overlap, having
them collide in the same table is a better option than creating
separate tables for the two rules. For this reason, we maintain
a relatively high collision limit parameter c.

Consider the situation when we have to create a new table
T for a given rule r. This occurs for the first rule inserted and
for later rules if it is incompatible with all existing tables.
In this event, we need to determine ~mT for a new table.
Setting ~mT = ~mr is not a good strategy; if another similar,
but slightly less specific, rule appears we will be unable to
add it to T and will thus have to create another new table. We
thus consider two factors: is the rule more strongly aligned
with source or destination addresses (usually the two most
important fields) and how much slack needs to be given to
allow for other rules. If the source and destination addresses
are close together (within 4 bits for our experiments), we use
both of them. Otherwise, we drop the smaller (less specific)
address and its associated port field from consideration; r is
predominantly aligned with one of the two fields and should
be grouped with other similar rules. This is similar to TSS
dropping port fields, but since it is based on observable rule
characteristics it is more likely to keep important fields and
discard less useful ones.

We then look at the absolute lengths of the addresses. If
the address is long, we are more likely to try to add shorter
lengths and likewise the reverse. We thus remove a few bits
from both address fields with more bits removed from longer
addresses. For 32 bit addresses, we remove 4 bits, 3 for more
than 24, 2 for more than 16, and so on (so 8 and fewer bits
don’t have any removed). We only do this for prefix fields like
addresses; both range fields (like ports) and exact match fields
(like protocol) should remain as they are.

3) Rule Insertion: Now consider the case where we need to
insert a new rule r into TM’s classifier. We first try to find an
existing table that is compatible with r. We search the tables
T ∈ T in order of max priority rule. For each table T , r is
compatible with T if ~mT ⊆ ~mr. If no compatible table is
found, we create a new table for r as described above.

If a compatible table is found, we perform a hash probe to
check whether c rules with the same key already exist within
T . If not, we add r to T and add the mapping r → T to F .
Otherwise, this is a signal that we ignored too many bits in
~mT and we need to split the table into two tables. We select
all of the colliding rules ` and find their maximum common
tuple ~m`. Normally ~m` is specific enough to hash ` with few
or no collisions. We then create a new table T2 with tuple ~m`

and transfer all compatible rules from T to T2. If ~m` is not
specific enough, we find the field with the biggest difference
between the minimum and maximum tuple lengths for all of
the rules in ` and set that field to be the average of those two
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TABLE III: TM builds 3 tables

Rule Source Dest Nominal Tuple Used Tuple
r1 000 111 (3, 3) (3, 2)
r2 010 100 (3, 3) (3, 2)
r3 011 100 (3, 3) (3, 2)
r4 010 11* (3, 2) (3, 2)
r5 10* 101 (2, 3) (2, 0)
r6 110 *** (3, 0) (2, 0)
r7 *** 011 (0, 3) (0, 3)

values. We then transfer all compatible rules as before. This
guarantees that some rules from ` will move and that T2 will
have a smaller number of collisions than T did.

4) Rule Deletion: Deleting a rule r from TupleMerge is
straightforward. We can find which table T contains r with
a single lookup from F . We then remove r from T and the
mapping r → T from F . This requires O(1) hash updates.

5) Offline Table Selection: We now consider the case where
we periodically rebuild the tables. We restrict ourselves to fast
algorithms that take roughly a second, a reasonable amount
of time given that OpenFlow hardware switches can require
roughly half a second for the data plane to catch up to the
control plane update command. In this scenario, we try to
place as many high-priority rules in early tables to minimize
the number of tables searched. Specifically, if a high priority
rule is matched in an early table, tables that contain only lower
priority rules do not need to be searched.

Let Li be the first i rules in L. Let ~mLi
be the maximum

common tuple of these rules; that is it is the tuple that contains
all of the bits that they have in common. We now create a
counter H of hashes, `i, a proposed table, and ¯̀

i, the rules not
in `i. For each rule r ∈ L, we compute h(r). If H(h(r)) < c,
where c is an argument representing a maximum number of
collisions, we add r to `i and increment H(h(r)). Otherwise
we add r to ¯̀

i. Each different ~mLi will yield a `i and ¯̀
i. To

maximize the probability that we do not need to search future
tables, we select the `i that minimizes the maximum priority
of ¯̀

i (the first missing rule is as late as possible), breaking ties
by maximum |`i|, thus reducing the number of tables required.
We make a new table T = (`i,mLi

) and append it to T , and
repeat on the remaining rules L′ = ¯̀

i until L′ is empty.
For example, consider the rules in the classifier in Table I.

Tuple (3, 2) can contain 4 rules without any collisions: r1, r2,
r3, and r4. Tuple (3, 3) can only contain the first three rules,
while (2, 2) has a collision between r2 and r3, making them
worse choices. We create a table containing rules r1, r2, r3
and r4 and repeat on the remaining three rules. The results
from this process can be seen in the classifier in Table III.

Other strategies exist that may yield fewer tables. For
example, the classifier in Table IV contains only two tables.
However, unless the incoming packet matches rule r1, both
tables will need to be searched. The classifier in Table III will
need to search only 1 table if any of r1, r2, r3, or r4 match,
which may provide better results in practice even if the worst
case is not as good.

D. TupleMerge implementation in VPP
We faced two main challenges in implementing TM in VPP:

(i) updating the data structure to support both IPv4 and IPv6

TABLE IV: An alternate TM scheme builds 2 tables

Rule Source Dest Nominal Tuple Used Tuple
r1 000 111 (3, 3) (3, 0)
r3 011 100 (3, 3) (3, 0)
r4 010 11* (3, 2) (3, 0)
r6 110 *** (3, 0) (3, 0)
r2 010 100 (3, 3) (0, 3)
r5 10* 101 (2, 3) (0, 3)
r7 *** 011 (0, 3) (0, 3)

and (ii) accommodating the batch processing workflow of
VPP [26]. Due to lack of space, we can only provide a survey
of the implementation choices of TM for VPP; the complete
source code is available at [32].

Besides dealing with these two challenges, we also needed
to add flow caching to VPP as it did not previously provide any
caching mechanism. Since our TM in VPP differs from our
TM in simulation, we will compare the performance of TM
in the two settings. These results can be seen in Section V-B.

1) TM changes: In the simulation implementation the 5-
tuple data structure uses ranges (defined as intervals between
a low and a high value), so each field requires two variables
representing the lower and upper bound. Instead, in our VPP
implementation the 5-tuple is instead represented by a bitmask.
This representation can be more easily adapted to work with
hash tables; furthermore, most of the packet fields are accessed
via prefix match (a subset of bitmask match). As in the
simulation implementation, we handle the ranges for port
fields by using the smallest bit mask (prefix) that includes
the range; this requires checking matching packets against
potentially a linked list of actual ranges that correspond to the
bit mask to ensure they are true matches. We further extend the
TM structure to handle IPv6 packets and improve the ‘relax
method’ to deal with extra IPv6 bytes.

Finally, unlike the simulation implementation that uses a
separate hash table for each partition, we use a single hash
table by simply adding an ID field for each table. That is, a
query is formed by combining the key with this ID so that
only the correct “virtual table” within the single hash table is
queried. This simplifies the management of tables in part by
eliminating the issue of having different sized tables.

2) Implementing Caching in VPP: As mentioned before,
OVS uses a three-tiered cache (i.e. EMC [30]) during the
packet classification stage whereas VPP did not have any cache
for packet classification. Since real traffic exhibits spatial
skew that a cache can exploit to improve packet classification
performance, we needed to add a front-end cache system
to VPP so that we could fairly compare different packet
classification algorithms.

In our cache, we store the most frequently seen flows (i.e.,
the heavy hitters) as opposed to the most frequently seen
rules because rules must be stored with some context such
as the matching flow or else erroneous behavior may result.
For example, suppose we start with an empty cache and there
are two rules r1 and r2 where r1 has higher priority than r2
and r1 is more specific than r2. Further suppose that some
packet from flow f2 arrives that matches r2 but not r1 and
that and we simply store the matching rule r2 in the cache
without the context that it matched a packet from flow f2.
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If we then process a packet from flow f1 that matches both
r1 and r2, if we search the cache, we will find rule r2 and
erroneously classify this packet using r2’s action which may
be different than r1’s action. Since the cache stores flows,
it maintains a representation of the flow (plus the action to
apply) instead of the matched rule. Note that when a rule is
added or removed, the results given by the cache could be
inconsistent with respect to the new ruleset. We address this
issue by flushing the entire cache whenever rules are added or
removed to ensure correct operation.

Our ACL plugin processes a packet using the following
sequence of actions. First, it checks to see if the packet belongs
to an already in-progress cached flow. If so, it applies the
resulting action. If not, it will start the TM packet classification
mechanism. This creates an opportunity to tradeoff ACL
computation for cache space.

IV. SIMULATION RESULTS: ALGORITHMIC COMPARISON

We now evaluate the performance of the TM algorithm and
compare it with the other classification algorithms presented
in Section II. We make our simulator available as open-
source software at [33]. Note this simulation evaluation only
compares the algorithms in isolation and does not necessarily
represent how the algorithms will perform when deployed in
an actual network. We measure that in Section V.

A. Simulation Setup

We ran our experiments on rulelists created with Class-
Bench [34], [35]. ClassBench comes with 12 seed files that can
be used to generate rulelists with different properties. While
the seeds are divided into three categories (5 access control
lists (ACL), 5 firewalls (FW), and 2 IP-chain (IPC)), different
seeds in the same category can have very different properties.

We generate rulelists of nine different sizes, from 1k up to
256k rules. For each of the 12 ClassBench seeds, we generate
5 rulelists of each size for 540 rulelists total.

We use these rulelists in three types of scenarios. For an
offline scenarios, we construct a static data structure from all
the rules and then use the data structure to classify packets.
For an online scenarios, we have two protocols. In the first
protocol, we create a dynamic data structure where the rules
are fed to the online algorithm one at a time in a random order
where each algorithm receives the rules in the same order. The
resulting classifier is then used to classify packets. It classifies
1,000,000 packets which are generated using the ClassBench
method for generating packets given a rulelist. In the second
protocol which we use to measure update time, half of the
rules are selected at random to be in the initial active rulelist.
We create an initial data structure by inserting these rules one
at a time into the data structure in a random order where
each algorithm receives the rules in the same order. A list of
500,000 insertions and 500,000 deletions is then created and
shuffled. Each insertion inserts one of the excluded rules and
each deletion removes one of the included rules, each chosen
at random from the available rules. This sequence is the same
for each algorithm. In this protocol, we do not use the resulting
data structure to classify packets.

Fig. 2: Average # of partitions required for each rulelist size

For a given rulelist L and a given algorithm A, we measure
four things. First is classification time, denoted CT (A,L),
which is the total time required to classify all 1,000,000 pack-
ets divided by 1,000,000. Second is the number of partitions
P (A,L) in the resulting data structure. This is useful as a
static estimator of each data structure’s classification speed.
Third is update time, denoted UT (A,L), which is the total
time required to perform all 1,000,000 rule updates divided
by 1,000,000. Note we do not include the time to create the
initial data structure with half the rules. Finally is memory,
denoted M(A,L), which is the total memory required by the
data structure.

For each metric, we average the results across all rulelists of
a given size or seed. To better compare an algorithm A, typ-
ically PS, against TM, we compute the relative classification
time of A and TM on a rulelist L, denoted RCT (A, TM,L),
as the ratio CT (A,L)/CT (TM,L); higher values are better
for TM. Likewise, we compute the relative update time of A
and TM for rulelist L, denoted RUT (A, TM,L), to be the
ratio UT (A,L)/UT (TM,L). We average these relative time
metrics across all rulelists of a given size or seed. We note
that for the two relative time metrics, the range of ratios is
relatively small whereas for the raw metrics, some values are
much larger than others and thus have a much larger impact
on the final average. This leads to some apparent discrepancies
between the two averages.

These simulation were run on a machine with an Intel
Xeon CPU at 2.8 GHz, 4 cores, and 6 GB of RAM running
Ubuntu 16.04. We verified correctness of classification results
by ensuring each classifier returns the same answer for each
test packet.

B. Comparison with PartitionSort (PS)

We compare TupleMerge against PS [11] as it represents
the state-of-the-art online packet classifier. Briefly, in our
simulation results, online TM outperforms online PS in both
classification speed and update time. Focusing on the relative
metrics averaged over all seeds and all sizes, TM performs
rule updates 30% faster than PS, and TM classifies packets
34.2% faster than PS. PS also requires 2.71 times the amount
of memory that TM does, though both require only linear
memory in the number of rules.

We now examine these results in more detail. The number
of tables required for online TM, online PS, and TSS are
shown in Figure 2. Relative update time results averaged over
each rulelist size are shown in Figure 3a, and raw update time
results for online TM, online PS, and TSS for each seed for the
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(a) Relative Update Time between PS and TM (b) Absolute Update Time on 256k rules

Fig. 3: Online Update Time

(a) Relative Online Classification Time between PS and TM (b) Absolute Online Classification Time on 256k rules

Fig. 4: Online Classification Time

256k rulelists are shown in Figure 3b. Relative classification
time results averaged over each rulelist size are shown in
Figure 4a, and raw classification time results for online TM
and online PS for each seed for the 256k rulelists are shown
in Figure 4b.

Looking more closely at update time, we see that TM
consistently outperforms PS in every way. Specifically, TM
has a faster update time for all rulelist sizes and for all 12
seeds. For the largest rulelists, TM outperforms PS for all 12
seeds and has an average update time of only 1.78µs whereas
PS has an average update time of 2.27µs.

Looking more closely at classification time, TM again
outperforms PS for all rulelist sizes where the gap between
TM and PS generally increases with rulelist size, but we do
observe that PS does outperform TM for some seeds. On the
largest rulelists, TM takes 0.64µs on average to classify a
packet, while PS takes 0.65µs. TM classifies faster on 10
of the 12 seeds, but the two remaining seeds (ACL2 and
FW1) are the slowest for both PS and TM which skews
the average classification times to be closer than the average
relative classification time. Focusing on the other 10 seeds, TM
takes 0.15µs to 0.76µs (average 0.34µs) to classify a packet
and PS takes 0.26µs to 1.00µs (average 0.47µs) to classify a
packet. These results can be seen in Figure 4b.

These results can be explained by the number of partitions
required and the time required to search each partition. We
plot the average number of partitions required by TM and PS
for each rulelist size in Figure 2. As expected, TM typically
requires a few more partitions than PS. Focusing on the 256k
rulelists, TM requires an average of 30 partitions whereas PS
requires an average of 11 partitions. TM typically achieves a
smaller classification time because TM uses hash tables (O(d)

time) whereas PS uses trees (O(d+log n) time). However, for
the worst case seeds, ACL2 and FW1, TM requires 131 and
53 partitions, respectively, whereas PS requires only 24 and
17 partitions, respectively. For the remaining ten seeds, TM
requires at most 38 partitions.

The number of partitions has more effect on classification
time than rule update time. For rule insertion, once we find an
available partition, we do not need to search later partitions.
For rule deletion, both schemes store a pointer to the partition
containing each rule.

For memory, for the 256k rulelists, TM requires only 4.47
MiB on average whereas PS requires 12.19 MiB on average.

C. Comparison with Tuple Space Search (TSS)

We now compare TM with TSS [9]. Briefly, TM is, on
average, 7.43 times faster at classifying packets than TSS, and
TM is, on average, 39% slower at rule updates than TSS.

For our 256k rulelists, TM takes on average 0.64µs to clas-
sify a packet whereas TSS takes on average 2.93µs to classify
a packet. For our 256k rulelists, TM takes on average 1.78µs
to update a rule whereas TSS takes on average 1.28µs to
update a rule. We thus see that for only a small penalty in rule
update, TM achieves a significant gain in classification time.
This improvement in classification time is largely explained by
the fact that TM requires many fewer tables than TSS, as can
be seen in Figure 2. Besides improving classification time, TM
also requires 1.93 times less memory on average than TSS.

Given the significant improvement in classification time and
even memory, TM clearly is a better choice than TSS as an
online packet classification algorithm. At the same time, TSS
is the de facto standard algorithm in deployed networks. It
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Fig. 5: Relative classification time between SS and TM

Fig. 6: Number of partitions produced by Sax-Pac vs TM

remains to be seen, in Section V, whether TM continues to
outperform deployed TSS.

D. Comparison with SmartSplit (SS)

We now compare offline TupleMerge with SS, the current
state-of-the-art offline packet classification algorithm, to assess
how much we give up in classification time to achieve fast
updates [8]. SS selectively builds either HyperCuts [7] or
HyperSplit [16] trees depending on expected performance
and memory requirements. We compare these algorithms on
classification time, construction time, and memory usage. The
largest rulelists we use are the 64k rulelists because of SS’s
slow construction time.

SS is significantly faster than TM (or the other methods
studied). For our 64k rulelists, on average, SS classifies
packets in 0.12µs whereas offline TM classifies packets in
0.24µs. The relative classification time required by SS and
TM can be seen in Figure 5.

TM requires orders of magnitude less time to build a
classifier than SS. While TM can usually generate a classifier
in seconds even for very large rulesets, SS can take hours,
even for reasonably sized rulesets.

Finally, SS has very unpredictable memory requirements.
For smaller rulelists, it produces a single HyperCuts tree, max-
imizing classification speed. As the number of rules increases,
it switches over to multiple trees and/or HyperSplit trees, both
of which reduce rule replication and thus memory required.
This doesn’t fix the underlying problem though. Eventually
there are enough problematic rules that this is not enough.

E. Comparison with SAX-PAC

SAX-PAC [19] partitions the rulelist into non-overlapping
or order-independent sets. As stated earlier, we do not directly

Fig. 7: TM search time vs small collision limits c

Fig. 8: TM search time vs larger collision limits c

compare against SAX-PAC (2) since PS requires fewer parti-
tions than SAX-PAC (2). We do compare against SAX-PAC
(3) to measure how well our table selection scheme performs.

TM requires a comparable number of partitions to SAX-
PAC. When SAX-PAC uses all of the fields, TM requires on
average 2.1 times more partitions than SAX-PAC. Compared
against SAX-PAC (2), TM requires only 68% more tables.
This shows that the number of partitions required by TM is not
too much larger than the theoretical minimum. These results
can be seen in Figure 6.

F. TupleMerge Collision Limit

We now measure how the collision limit c influences TM’s
effectiveness. A higher c allows to produce fewer tables, but
each table may take longer to search. We report the average
classification time as a function of c in Figures 7 and 8.

We make the following observations. First, online TM needs
a larger c than offline TM. The optimal c values are 40 and
8 for online TM and offline TM, respectively. Second, for
the same c value, offline TM tends to have more entries with
collision limits close to c than online TM leading offline TM
to be slower than online TM for c > 25 in the average case.
Third, smaller rule lists generally need smaller c. Finally, using
a fixed value of c will not significantly increase classification
time due to flatness of the graph near the optimal c. The
maximum increases in average classification time were 7.8%
and 4.4% for online TM (c = 40, fw1 seed) and offline TM
(c = 8, fw5 seed), respectively.

Since the choice of the c value is a critical aspect of our
algorithm, we performed additional simulations using ad-hoc
rulesets generated mixing ClassBench ACL and FW rulesets.
In these additional experiments, using the fixed c instead of
the optimal c increased the classification time by at most 2.4%
for the online classifier and 2.8% for the offline classifier.
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Fig. 9: Synoptic of experimental methodology

V. EXPERIMENTAL RESULTS: FRAMEWORKS COMPARISON

As mentioned before, an accurate evaluation of a complete
system, e.g. when the packet classification algorithm is em-
bedded in the software router, is missing from the literature.
Indeed, although the simulation results from the previous
section provide a fair comparison of algorithm performance,
these results are only valid as a reference in a controlled
environment. We now provide an accurate evaluation of our
VPP TM implementation and the current state of the art OVS
TSS implementation, and we provide access to our open source
code [32].

A. Experimental Methods

We first outline our methodology for getting realistic yet
repeatable benchmark results. We illustrate in Fig. 9 the key
components that we use: namely, ClassBench, MoonGen and
the VPP/OVS Device Under Test (DUT).

1) Testbed: Our testbed setup consists of a COTS server
with 2× Intel Xeon Processor E52690, each with 12 physical
cores running at 2.60 GHz in hyper-threading and 576KB
(30MB) L1 (L3) cache. The server is equipped with 2× Intel
X520 NICs with dual-port 10Gbps full duplex links directly
connected with SFP+ interfaces. In this paper, we stress-test
the DUT packet classification performance using a single-core:
a complementary viewpoint, that we leave for future work,
would be to leverage Receive Side Scaling (RSS) to find the
minimum number of threads able to sustain the input rate.

2) Ruleset generation (ClassBench): We generate rulesets
using ClassBench [34], [35]. Consistent with our simula-
tions and much prior work [20], [11], [8], [19], we use the
twelve different ClassBench default seeds (5×ACL, 5×FW
and 2×IPC). For each seed, we generate rulesets ranging in
size from 2 rules up to 64K rules. We further make each rule
including the default rule have the ACCEPT action so that no
flows are dropped due to classification; thus we stress the DUT
as much as possible.

3) Synthetic workload generation (ClassBench and Moon-
Gen): We generate synthetic workloads using ClassBench and
MoonGen. We first use ClassBench to generate tracesets, that
are sequences of synthetic packet headers, that exercise a given
ruleset. To provide conservative results, we generate uniform
random synthetic tracesets which we feed to the workload
generator. We then develop a MoonGen [36] application that

Fig. 10: Number of partitions required by TM and TSS:
Simulation vs VPP 17.10 Experiments.

takes a ClassBench traceset as input and generates a 10 Gbps
stream of 64 Bytes packets as output. We ensure each packet
payload has the minimum size of 64 Bytes to stress test the
packet classifier. Considering bytes of Ethernet preamble and
9.6ns of inter-frame gap, this leads to a worst-case rate of
14.88 Mpps.

4) Real workload generation (CAIDA): We also use a real
traffic trace obtained from CAIDA [37] capping the original
packets to 64B of size to obtain a worst-case traffic rate1. Since
this is a real trace, we can test how OVS and VPP caches can
exploit the spatial skew. At the same time, since the packets
in a CAIDA trace have no relationship with the ClassBench
seeds, most packets will not match any rule meaning all tables
will have to be searched and only the default rule will be
matched. This is a worst case scenario for both TM and TSS,
but since TM has fewer tables the impact is less significant
for our algorithm.

B. VPP-TM validation: Simulation vs Experiments

We validate the fundamental correctness of our TM and TSS
VPP implementations by comparing the number of partitions
generated by them for a given ruleset with the number of
partitions generated by our TM and TSS simulation imple-
mentations on the same ruleset. We report this validation in
Fig. 10 as a function of the cardinality of the ruleset.

We observe that the actual VPP TSS implementation re-
quires, on average, 170% more partitions than the original TSS
algorithm due to IP fragmentation. In fact, an IP fragmented
packet does not provide all the fields of the 5-tuple and
therefore requires a different mask. This likely could be
eliminated by improving the TSS implementation in VPP, but
we do not carry this out since VPP TSS is not the focus of
our paper. On the other hand, our VPP TM implementation
actually reduces the number of partitions required with respect
to the simulation implementation for rulesets larger than 1K
rules. In fact, the simulation implementation uses ranges
whereas the VPP implementation uses bitmasks: as such,
the VPP implementation can exploit various bit-level “tricks”
to relax and compact different bitmasks resulting in fewer

1The experiments used the equinix-sanjose.dirA.20120119-132400.UTC
.anon.pcap trace.
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Fig. 11: Experimental throughput stressing the VPP framework
with a 14.88 Mpps real vs synthetic traffic.

partitions and thus validating the decision to use bit masks.
Moreover, by putting all the partitions in one hash table, we
simplify memory allocation which, in turn, leads to more
efficient resolution of hash table collisions. This results in
fewer memory accesses for each hash table lookup leading
to faster processing.

C. Algorithm comparison: VPP implementations of LS, TSS
and TM

We now compare the VPP LS, TSS, and TM implemen-
tations, noting that LS is only available with VPP 17.04
and TSS and TM are available with VPP 17.10. In these
experiments, we do not use the VPP flow cache so that we can
focus on the packet classification algorithm’s performance. We
acknowledge that VPP 17.04 may contribute a little towards
the relatively poor performance of LS, but we feel safe in
suggesting it is a relatively small factor and that naı̈ve LS is
the main cause of the performance difference.

For each ruleset, we stress test our three algorithms using
both a synthetic workload and our real traffic workload under
a worst-case input rate (a stream of 14.88 millions of packets
per second) that is processed on a single core. We remind the
reader that for the synthetic workload, all rules are matched
with equal probability, whereas for the real traffic workload,
the default rule is the main rule matched. We report average
throughput results for all rulesets of a given size for our
synthetic workload and our real traffic workload; confidence
intervals are tight but not shown to avoid cluttering the figure.

We report average throughput results in Fig. 11; this figure
has 6 lines (3 algorithms for 2 workloads). We make five
key observations. First, TM clearly outperforms both TSS
and TM once ruleset size is at least 500 rules. Second, the
performance gap increases as ruleset size increases reaching
one order of magnitude for rulesets of size 4k and nearly
two orders of magnitude for rulesets of size 64k rules. Third,
there is relatively little difference in performance for our
synthetic traffic versus our real traffic, particularly for TM.
Fourth, TM performance only slowly degrades as ruleset size
increases. TM maintains a throughput of at least 1 Mpps for all
ruleset sizes and workloads. Finally, surprisingly, LS matches
or outperforms TSS until rulesets have at least 8k rules.

Fig. 12: Distribution of the experimental classification time
taken by the different VPP implementations to classify a
packet. Results are made with ACL 1 seed.

Synthetic Traffic
Real Traffic
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Fig. 13: Experimental throughput stressing VPP and OVS
frameworks with a 14.88 Mpps real vs synthetic traffic. For
both frameworks a frontend cache is enabled

We next inspect the distribution of the per-packet classifi-
cation time to determine whether or not classification time is
stable. Per-packet classification times are reported in Fig. 12
for LS (top), TSS (middle), and TM (bottom), for the ACL 1
seed ruleset sizes 1k, 2k, 4k, and 8k (results are qualitatively
similar across seeds). We make two key observations. First,
TM classification times, all well under 1µs, are significantly
faster than those for LS, which range from 2µs to over 20µs
and TSS, which range from 5µs to over 15µs. Second, while
the packet classification time increases significantly as ruleset
size increases, the packet classification time for TM are quite
tight in the range of 0.2µs to 0.7µs. Thus, TM is much more
predictable and stable across ruleset sizes.

D. Effect of VPP front-end cache

We now measure the effect of the VPP front-end cache on
the performance of VPP TSS and VPP TM. Specifically, we
run the synthetic workloads and the real workload on VPP
TSS and VPP TM with front-end cache and VPP TSS and
VPP TM without front-end cache with rulesets ranging in size
from 1k rules to 64k rules. We report the average multiplicative
throughput gain achieved with the front-end cache in Table V;
a value of two means that VPP TM with cache has twice the
throughput of VPP TM without cache.
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TABLE V: Throughput gain of front-end cache with respect
to VPP TSS and VPP TM without cache.

Ruleset size 1K 2K 4K 8K 16K 32K 64k AVG
TM, Syn 2.48 2.01 1.58 1.22 1.1 0.98 1.03 1.49
TM, Real 0.96 0.98 0.97 0.98 0.98 0.99 0.99 0.98
TSS, Syn 21.07 12.38 8.19 4.02 2.45 1.73 1.97 7.4
TSS, Real 1.08 1.08 1.07 1.08 1.08 1.13 1.11 1.09

TABLE VI: Example Source Port Range to Prefix Expansion
for the range [1:17].

Rule Source Port - Prefix Range representation
r1 0000 0001 [1:1]
r1 0000 001* [2:3]
r1 0000 01** [4:7]
r1 0000 1*** [8:15]
r1 0001 000* [16:17]

We make three observations. First, the cache helps both
algorithms with the synthetic workload more than with the real
workload. This is expected because in the synthetic workload,
all rules are matched with equal probability whereas in the
real traffic workload, the default rule is the main rule matched.
Thus, for the real traffic workload, almost all partitions must be
searched and the cache can actually cause a slowdown because
of the extra lookup. We see this play out for VPP TM; that
is, VPP TM without front-end cache is actually faster on the
real workload than VPP TM with front-end cache. Second, the
cache helps VPP TSS more than VPP TM largely because VPP
TSS is so much slower at classifying packets than VPP TM.
Finally, the cache benefit decreases as ruleset size increases
which again is to be expected as there will be fewer cache
hits as ruleset size increases.

E. Framework comparison: VPP vs OVS

We now compare our VPP TM implementation against the
state of the art, represented by OVS TSS. In these experiments,
we use OVS’s three-tiered cache and the front-end cache we
developed for VPP. Thus, these VPP results will generally be
faster than the results from section V-C which did not use
the VPP front-end cache. Finally, we note that while the VPP
front-end cache helps most of the time, the OVS three-tiered
cache is at the kernel level and is more effective than the VPP
front-end cache.

However, OVS is designed for OpenFlow compliant rules,
it is more limited than VPP, particularly in the context of
port ranges. Specifically, OVS can only specify fields using
prefixes, represented as a 〈value,mask〉 pair, and thus a single
port range must be expanded to multiple prefixes (equivalently
〈value,mask〉 pairs) [38]. An example of such an expansion
is given by the classifier in Table VI. For our rulesets, the
average increase in ruleset size due to this range to prefix
expansion would be +133% for the five ACL seeds, +248%
for the five FW seeds, and +18% for the two IPC seeds. Rather
than subjecting OVS TSS to this expansion, we make the
following modification to the rules in each ruleset. For VPP,
we use each rule as is. For OVS TSS, we modify each rule
so that each port range other than all ports is a single port
number. This modification clearly favors OVS TSS.

TM-VPP
TSS-OVS

TSS-VPP

Fig. 14: Experimental throughput of VPP TM, VPP TSS
and OVS TSS for different ClassBench seeds (rulesets size
equal to 64k) with real traffic; dashed lines represent average
throughput over all twelve seeds

TM-VPP

TSS-OVS

TSS-VPP

Fig. 15: Experimental throughput of VPP TM, VPP TSS and
OVS TSS for different ClassBench seeds (rulesets size equal
to 64k) with synthetic traffic; dashed lines represent average
throughput over all twelve seeds

We report our average classification throughput results in
Fig. 13; these results consist of 6 lines as we have three
framework and algorithm combinations (VPP TSS, VPP TM,
and OVS TSS) and two workloads (real, synthetic). We
make the following observations. First, VPP TM significantly
outperforms OVS TSS for the real workload on all ruleset
sizes and the synthetic workload on rulesets of size at least
16k rules; for smaller rulesets, VPP TM still outperforms OVS
TSS on the synthetic workloads, but the gap is small. One
reason the gap is small for small rulesets and synthetic traffic
is that OVS’s kernel level cache is more effective than VPP’s
front-end cache. Second, VPP TM experiences a relatively
small loss in throughput as ruleset size increases. Third, all
the framework and algorithm combinations work better on
the synthetic workload than the real workload. This again is
explained by the fact that in the synthetic workload, all rules
are matched with equal probability whereas in the real traffic
workload, the default rule is the main rule matched. In general,
for the real traffic, all the partitions must be searched, and
TM’s superior performance is most evident in this scenario.
Finally, OVS TSS outperforms VPP TSS for two reasons. First,
due to some implementation issues, VPP TSS produces more
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partitions than OVS TSS. Second, OVS’s kernel level cache
is more effective than VPP’s front-end cache.

We next explore the results for the largest ruleset size of
64k rules in more detail showing all twelve ClassBench seeds
separately. We plot the results with real traffic, Fig. 14, and
synthetic traffic, Fig. 15. In both figures, the bars show the
throughput achieved by each framework and algorithm com-
bination (VPP TM, VPP TSS, and OVS TSS), and the dashed
lines indicate the average throughput for each framework and
algorithm combination over all twelve seeds. We see that VPP
TM outperforms OVS TSS on almost every seed except ACL5
for the real traffic and FW2 for the synthetic traffic. Overall,
VPP has an average speedup of 12.63× for real traffic and
2.86× for synthetic traffic. VPP TM outperforms VPP TSS
on all seeds for both types of traffic with an average speedup
of 31.20× for real traffic and 45.86× for synthetic traffic.

VI. CONCLUSION

We provide the following contributions. First, we provide a
flexible hashing scheme that uses far fewer tables than Tuple
Space Search and thus classifies packets much more quickly.
Second, we show how to effectively insert and delete rules
while retaining fast classification speeds. Together, we produce
TupleMerge, a new online packet classification method that
surpasses the previous state-of-the-art method, PartitionSort,
on classification speed, update time, and memory.

We further integrate TupleMerge into the widely used open
source VPP framework producing VPP TM. Our experiments
show that VPP TM achieves consistently superior performance
to the previous state of the art, namely VPP TSS and OVS
TSS. Specifically, VPP TM outperforms VPP TSS by two
orders of magnitude in terms of classification speed when we
ignore the front-end cache. Likewise, when using caches, VPP
TM classifies packets 12.63× faster, on average, than OVS
TSS, even when OVS TSS is given rules where port ranges
are reduced to single ports.

Finally, we also provide an open source implementation and
test environment [32] that can be used by anyone to carry out
their own realistic yet reproducible experiments with VPP LS,
VPP TS, VPP TM, and OVS TSS.
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