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Abstract—Testing experimental network devices requires deep
performance analysis, which is usually performed with expensive,
not flexible, hardware equipment. With the advent of high-
speed packet I/O frameworks, general purpose equipments have
narrowed the performance gap in respect of dedicated hardware
and a variety of software-based solutions have emerged for
handling traffic at very high speed. While the literature abounds
with software traffic generators, existing monitoring solutions do
not target worst-case scenarios (i.e., 64B packets at line rate) that
are particularly relevant for stress-testing high-speed network
functions, or occupy too many resources.

In this paper we first analyze the design space for high-speed
traffic monitoring that leads us to specific choices characterizing
FlowMon-DPDK, a DPDK-based software traffic monitor that
we make available as open source software. In a nutshell,
FlowMon-DPDK provides tunable fine-grained statistics at both
packet and flow levels. Experimental results demonstrate that our
traffic monitor is able to provide per-flow statistics with 5-nines
precision at high-speed (14.88 Mpps) using a exiguous amount of
resources. Finally, we showcase FlowMon-DPDK usage by testing
two open source prototypes for stateful flow-level end-host and
in-network packet processing.

I. INTRODUCTION

Evaluating the performance of experimental devices and
network applications requires intensive measurement cam-
paigns on real prototypes, where several variables comes into
play. The procedure follows the guidelines provided by RFC
2544 on benchmarking network devices, as in Fig. 1. In case
of open loop experiments, a traffic generator (TX), transmits
packets to the Device Under Test (DUT) at a given rate,
typically the worst-case (e.g., a stream of 14.88 Mpps 64B-
packets in case of a 10 Gbps interface). To measure its per-
formance (maximum sustainable throughput, packet loss, etc.)
the DUT in turn relies the received packets to a traffic monitor
(RX). Similarly, in case of closed loop experiments, the traffic
monitor captures packets exchanged between transmit and
receive sides of the DUT (i.e., a client-server application) and
evaluates their performance.

The TX component presents two design approaches. The
first one is leveraging expensive commercial equipment (i.e.,
hardware traffic generators), capable of generating line-rate
traffic with high accuracy but low-to-none programmability.
A second approach is employing a software traffic generator,
which may provide less accurate generation, but a higher level
of flexibility. A similar discussion applies for the RX compo-
nent: hardware solutions can provide accurate measurements
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Fig. 1: Performance evaluation of a Device Under Test (DUT)

on a specific set of preset variables. However, monitoring non-
default variables may be difficult if not impossible. In contrast,
software solutions can be programmed to monitor (or not) any
relevant variable, at the cost of possible inaccuracy or even
mis-computations. Additionally, RX resources can share the
same hardware of the TX (or DUT in some case) for which
lightweight operation is a very desirable property.

The last decade has witnessed a dramatic advancement of
high speed I/O frameworks such as DPDK [1], PFQ [12], and
netmap [2]. By means of kernel bypassing, batch-processing
and poll-mode fetching, such frameworks provide general
purpose hardware with the ability to capture and process
packets in excess of 10 Gbps. This has resulted in the rise
of software traffic generators (TX) [10], [16], capable of
saturating a 10 Gbps link with minimum-size 64B packets by
using one (or few) core(s) on commodity hardware. Despite
the great availability of multiple choices on TX side, this is
not yet the case for the RX one. Software monitoring tools
either offer simplistic capabilities (e.g., per-packet operations
only), or require a significant amount of resources to sustain
processing of worst-case traffic and hence can hardly be co-
located with TX or DUT (see Sec. II).

In this paper, we present FlowMon-DPDK, a flexible traf-
fic monitor based on DPDK that, beyond the typical per-
flow statistics (e.g., flow size), is also able to perform more
complex tasks, such as computing high order statistics (e.g.,
percentiles) of more involved metrics (e.g., per-flow inter-
leave gap) while using the minimum amount of processing
resources. We outline our choices in the design space (Sec. III),
which we experimentally verify (Sec. IV) by systematically
benchmarking FlowMon-DPDK performance in a controlled
setup (Sec. V). Our results show that by carefully choosing
the appropriate data structures and, depending on the required
accuracy, packet- and flow-level statistics incur negligible
overhead (orders of magnitude smaller than available tools [3],



[16]). Finally we also provide similar evaluations with pub-
licly available traffic traces and showcase FlowMon-DPDK
capabilities to monitor open- and closed-loop traffic of two
open-source prototypes (CliMB [4], [24], a modular stack for
the composition of L2-L7 network functions and FD.io [5], a
packet processing framework for software routers). We release
FlowMon-DPDK as open source at [6], which advances the
state-of-the-art by providing fine-grained flow-level statistics at
high-speed using the least possible amount of CPU resources.

II. RELATED WORK

Previous work on high-speed traffic generation (TX), pro-
cessing (DUT) and monitoring (RX), relate to our contribution.
Given our monitoring focus, we refer the reader to [11], [17]
for a state of the art on TX and DUT, respectively. We pur-
posely breakdown the available literature on traffic monitoring
into basic vs advanced. FlowMon-DPDK sits in between of
the two, as it attempts at doing operations pertaining to the
latter class, while using as few resources as tools in the former.

A. Basic traffic monitoring

Traffic monitoring is bundled with TX tools such as Moon-
Gen [16] and pktgen-DPDK [10], which not only support
minimum-size packet generation at line-rate, but also of-
fer basic packet-level measurement capabilities. In particu-
lar, MoonGen [16] is a high-speed traffic generator based
on DPDK framework. In addition to generation, MoonGen
takes advantage of hardware features for rate control and
latency measurement. Since MoonGen scripts are based on
the Lua programming language, the provided APIs are rela-
tively easy to use for packet capture as well, which makes
MoonGen a good candidate for both packet-level and flow-
level monitoring operations. Yet, programmability in a high-
level language allows for rapid prototyping of flow-based
measurements at a cost of reduced performance. Alternatively,
DPDK-Speedometer [3] is a C application capable of packet-
level traffic monitoring, and can be used to measure bandwidth
consumption and throughput at line rate, making it a good
comparison candidate for packet-level operations. These basic
RX monitoring capabilities have traditionally sufficed for pro-
totype design, especially since network function implemented
in software have long been stateless and operating on a
per-packet basis. However, recent emergence of stateful and
higher-level functions operating on flows (see [4], [24] and ref-
erences therein) started challenging the usefulness of packet-
level monitors. As such, with respect to DPDK-Speedometer
or MoonGen, FlowMon-DPDK advances the state of the art by
providing not only packet-level measurements, but also fine-
grained per-flow statistics with negligible performance loss.

Finally, Bonelli et al. [13] advance packet capture on com-
modity hardware, by complementing the well-known pcap
library with additional features such as parallelization via
RSS queues and PFQ support. Authors show that thanks
to their optimization pcap is able to capture packets and
perform basic counting in a 10Gbps link with 64-byte packets
(using at least 3 different RX cores). This optimized pcap

can be even used with advanced monitoring tools such as
Tstat, with slightly decreased performance (i.e.,, when using
3 Tstat instances and 128-byte packets the packet loss is a
few percent points). On the contrary FlowMon-DPDK targets
(i) minimum-size packets, (ii) aims to use a smaller number
of CPU cores to perform not only packet-level measurements
and (iii) keeps the packet loss ratio in the order of few parts
per million.

B. Advanced traffic monitoring

A set of monitoring tools with complementary capabilities
have also been proposed, whose goal is to provide a more
complete analysis of traffic at either local or global network
scale. At local level, which is the closest to this work, a
number of sophisticated monitoring tools are reviewed in [28].
Among them, nTop [7] and DPDKStat use the least amount
of resources in terms of CPU cores. At the same time, nTop
and DPDKStat are sophisticated tools designed for Internet
traffic monitoring [19]. Whereas Deep Packet Inspection (DPI)
and others advanced analytics can be deactivated, the TCP-
based statistics are deeply entangled in the software and
would require a complex code modifications to be deactivated.
For instance, according to [7] “using a dual core CPU,
nProbe can be used for capturing packets at 1 Gbits with
very little loss (<1%)”, whereas on similar hardware the
simpler flow-level statistics tracked by FlowMon-DPDK allow
to achieve 10Gbps with loss rate in the order of few parts-
per-million. Similarly, DPDKStat achieves 40 Gbps processing
on a NUMA system with 16 physical cores, on real traffic
workload with average packet size in [716, 811] bytes range
corresponding to [385, 435] kpps. In contrast, FlowMon-DPDK
achieves operation rates of about 3.7 Mpps per-core, an order
of magnitude more than DPDKStat and several orders of
magnitude with respect to Bro, Snort and Suricata [28].

As such, the capabilities of these advanced monitoring tools
do not make them a good point for a direct quantitative
comparison. Conversely, it is useful to make extensive quali-
tative comparison of the findings, as the operational point of
simple vs advanced traffic monitoring tools are significantly
different, and thus the design choices. Alternatively to on-line
monitoring, and in contrast to FlowMon-DPDK, some traffic
monitors can capture and store packets for off-line analysis. In
particular FlowScope [18] is capable of continuously capturing
a subset of flows that can be further dumped into disk through
predefined triggers. As FlowScope goals are significantly dif-
ferent from ours, we do not consider it for direct comparison.

At network level, NetFlow [15] is an example of network-
level monitor with implementations in custom ASICs and pure
software. A NetFlow ASIC is available only for costly high-
end routers capable of dealing with up to 65k concurrent flows,
whereas software solutions instead heavily rely on sampling,
typically less than 1/1000 packets, which we want to avoid.
Given its network-wide nature, data collection is crucial in
NetFlow. As such, to reduce the size of the data to be sent
to the collector, FlowRadar [25] proposes to store each flow
counter using a compact data structure based on counting



bloom filters. To further reduce data size, SketchVisor [22]
proposes to split the data collection path into regular and fast-
path, which is used on load surges and which only performs
updates locally at the switch for a small portions of the heavy-
hitter flows. Yet, whereas NetFlow (and variants) perform
operations similar to ours, however their differ from FlowMon-
DPDK in that the collected per-flow statistics are simpler (e.g.,
no per-flow percentiles) and the data-collection stage has a
prominent impact (unlike in our local case), and as such are
not worth to directly compare experimentally.

III. SYSTEM DESIGN

Flow monitoring can be decomposed in four stages [21],
namely packet capture to retrieve and pre-process packets
when needed, flow aggregation to aggregate packets belong-
ing to the same flow, data collection to store the collected
statistics, and data analysis to provide the desired metrics
characterizing the different flows. In this section, we briefly
review each of them and describe FlowMon-DPDK design
according to this classification.

A. Packet capture

The first stage consists in retrieving packets from the line
card, timestamping and forwarding them to the flow monitor
engine. To capture and process all packets (i.e., without sam-
pling) FlowMon-DPDK builds on top of DPDK, a fast packet
I/O framework that enables user-space packet reception at line
rate by means of kernel bypass, batch, multi-queue, and multi-
thread processing. To optimize FlowMon-DPDK performance,
in the following we consider different design choices such as
multi-threading and DPDK programming models.

Programming models: DPDK provides two alternative pro-
gramming models. In run-to-completion, each packet is re-
trieved and processed by the same thread. As shown in Fig. 2-
(a), each thread keeps polling the receive descriptor ring and
fetching a batch of packets into user space for further process-
ing. Instead, in the pipeline model, the workload is distributed
to a group of threads. As shown in Fig. 2-(b), FlowMon-
DPDK pipeline mode has two different types of threads: rx-
and monitor-thread. The former keeps polling the descriptor
rings to retrieve packets, and the latter fetches retrieved packets
from the rx-threads through the corresponding software ring
for further processing (i.e., collect flow statistics). Although
such programming models are consolidated, it is uncertain
whose performance is superior in our case. In this paper, we
test both of them and evaluate their performance under packet-
and flow-level processing, which hopefully provides guidelines
with a wider applicability than the boundaries of our work.

Multi-threading models: DPDK provides its own multi-
threading model, namely lthread [8], as an alternative to
the standard POSIX pthread library. Unlike pthread, lthread
embraces cooperative scheduling in which threads cannot be
preempted, and they need to periodically yield their execution.
Thus lthread yields lower scheduling overhead, contention
avoidance and per-thread local storage. In our context where
threads perform relatively simple operations (e.g., few table
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Fig. 2: Packet capture under (a) run-to-completion and (b)
pipeline programming models

and memory accesses), lthreads seem a lightweight appealing
alternative: we implement both models in FlowMon-DPDK
and perform a selection by benchmarking their performance.

B. Flow aggregation

After being captured, packets are aggregated in flows by
means of a flow identifier, typically the TCP-UDP/IP 5-tuple
and stored in an hash table. While it is desirable for hash func-
tions to have good entropy properties [26], however computing
the hash has a non-marginal penalty in performance [27], for
which simple functions (sum or xor) are generally used [19].
We argue that already accessing the 5-tuple elements incurs
a non-negligible overhead. As the NIC already computes
some hash (i.e., Toeplitz) over the 5-tuple when Receive Side
Scaling (RSS) is enabled, we further argue that is preferable to
access and reuse this single pre-computed 32-bit hash value,
as opposite to access multiple (albeit contiguous) memory
portions over which to recompute a hash function.

Once the flow hash is available, it is used to index a table
storing the per-flow statistics. Clearly, the most naı̈ve solution
of directly access an array with 232 entries requires significant
amount of memory, especially given that the structure should
be preallocated with counters for the task at hand (e.g., flow
size counting, flow interleaving gap, etc.). We thus consider
three approaches, that are (pedagogically) reported in Fig. 3.

Double hash: A data structure with good properties is the
double hash, as in Fig. 3-(a). The table contains only 216

buckets, each of which hosts two entries. Flows are indexed
using only a portion of the RSS hash (e.g., the lowest bits)
while the remaining RSS hash portion (16 high bits) is used to
discriminate flows within a bucket. The structure is efficient,
as it is cache aligned, but not accurate in presence of several
concurrent flows as collisions are poorly handled. Indeed,
due to the birthday paradox, on average 1.25

√
2 · 216 ≈ 450

concurrent flows can be tracked without collisions.
Linked-list hash: To resolve hash conflicts, one option is

to allow multiple entries in the same bucket through a linked
list, as in Fig. 3-(b). This approach avoids the saturation of
a bucket and allows a correct count for all the flows, but
suffers from the overhead of dynamic memory allocation and
of non-contiguous memory accesses, as well as the time for
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Fig. 3: Flow table implemented with (a) double hash, (b) linked-list hash, (c) combined hash.
.

the linear search in the list. We point out that optimized
data structures (e.g., red-black trees) could be used to handle
chaining, making the number of memory accesses logarithmic
in the worst case. At the same time the payoff of these
advanced structures is low in practice since the overhead of
tree management offset most of the gain [27].

Combined hash: To simultaneously retain performance and
correctness, we combine the previous two data structures, by
appending the double hash with a linked list in each bucket, in
order to resolve all hash conflicts, as in Fig. 3-(c). In this way,
double hash miscounting is removed, while at the same time
we avoid the higher cache miss rate due to non-contiguous
memory space of the flow buckets in the linked-list hash case.

C. Data collection

The data related to the different flows are collected either
in a volatile memory (e.g., the RAM) or in a persistent device
(e.g., a SSD drive). In both cases, queries about the collected
data can be performed online or offline. Unlike nTop [7],
DPKDStat [28], Netflow [15] or FlowScope [18], FlowMon-
DPDK data collection is very simple (i.e., post-mortem reports
of per-flow statistics or at periodic configurable intervals),
exploits volatile memory and does not offer advanced features
for export. As such, a thorough accounting of data collection
in FlowMon-DPDK is outside the scope of this paper.

D. Data analysis

FlowMon-DPDK supports both per-packet and per-flow
analysis. At packet-level, it is capable of hardware (HW)
and software (SW) packet counting. Per-packet HW counting
queries the NIC registers and gets the packet statistics, includ-
ing transmitted/received packets/bytes, as well as total dropped
ones due to the saturation of internal queues. Per-packet
SW counting simply maintains per-queue packet counters and
updates them upon arrivals of traffic batches: thus, statistics
can be derived using a purely SW approach – which allows
to assess the overhead of SW for very simple tasks.

Per-flow analytics are only available in software due to
HW limitations, and make use of the previously outlined
flow aggregation structures. Per-flow statistics can range from
simple per-flow packet counting, to more complex metrics
(first and second moment, percentiles of a per-flow distri-
bution). To make an example of a fairly complex per-flow
estimator, throughout this paper we consider the per-flow inter-
leaving gap metric, which allows to appreciate the burstiness

 time 

packet arrival of flow i

packet arrival of other flows

Fig. 4: Example of per-flow inter-leaving gap evaluation

of a given flow. In particular, for a given flow i, we define
the inter-leaving gap Ii as the number of packets received
between two consecutive packet arrivals of flow i, as shown
in Fig. 4. To stress test FlowMon-DPDK, we monitor the per-
flow 99th percentiles of the inter-leaving gap implemented
using the well-known PSquare algorithm [23], which requires
only to keep track (and update at each packet reception) of
a constant amount of state (in the order of a small tens
of memory accesses and some floating point operations).
While significantly simpler than the average task performed
by advanced monitoring tools such as DPDKStat [28], this
task already represent a stressful scenario for RX tools that
aim at using a very limited amount of resources.

IV. TESTBED ENVIRONMENT

A. Hardware

Our testbed consists of two commodity servers, running
Linux 4.4.0+ distributions and equipped with Intel(R) Xeon(R)
2.60GHz CPUs, 32k/256k/25600k L1-3 caches, 64G RAM,
and Intel(R) 82599ES 10-Gbps NICs. Unless otherwise stated,
there is no DUT, the two servers (TX and RX) are directly
connected, and Ethernet flow control is disabled. This allows
us to precisely measure the amount of losses due to the RX,
without incurring losses due to DUT. According to [9], we
configure the servers to reserve cores for the exclusive usage of
FlowMon-DPDK so as not to degrade the performance. Then
the CPU frequency scaling governors are set to “performance”
for all the active cores to maximize the processing speed. We
set 1GB Huge Pages to enable efficient page lookup in Linux.

B. Software

For our tests structured as in Fig. 1, we use MoonGen as
TX. We use FlowMon-DPDK as RX, and experiment with
the different design possibilities early outlined. As main RX
performance metric we compute the Packet Drop Ratio (PDR),
i.e., the average drop probability – we stress PDR to be the
primary metric to assess RX performance, as losses at the
monitor alter the accuracy of any other flow-level metric. After
having accurately estimated the PDR due to RX, in Sec. VI
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Fig. 5: Impact of (a) batch size (b) number of RSS queues, and (c) of mempools. Default parameters are denoted with ?.

we additionally consider the throughput with CliMB [24] and
FD.io [5] as DUT, as terms of comparison.

TABLE I: Details of the traces in the experiments

Trace Rate Avg pkt. size # packets # flows Type(Mpps) (Bytes)
1 2.07 583 7.24× 108 5514 ISP
2 11.12 92 3.88× 109 17006 malware

C. Traffic workload

For the initial experiments, we adopt open-loop traffic.
MoonGen (TX) is used to generate synthetic traffic and trace-
driven traffic. Under synthetic traffic (Secs. V, VI-A), all
packets are 64B and injected at 10 Gbps (14.88 Mpps). A flow
is identified by the standard TCP/IP 5-tuple and the identifiers
are generated according either to a uniform distribution or
to a Zipf law (with α = 1) across a set of 216 flows,
corresponding to an hash load factor 1.0. Under trace-driven
traffic (Sec. VI-A), MoonGen replays the traces described in
Table I. To mesure the loss rate with great precision (that we
report in a 10−6 scale, i.e., part-per-million), each experiment
last 6 minutes (over 5 billion packets), and all the graphs report
the 95% confidence intervals averaged across 50 repetitions of
the same test. In the case of trace-driven traffic, the trace is
repeated in a loop to reach the target duration.

For the final experiments, in Sec. VI-B we use closed-loop
traffic, generated with a fast TCP server/client implementation.
In particular we use CliMB [4], [24] a modular network
L2-L7 stack for end-host and middlebox functions. A given
pool of CliMB clients connects to the CliMB server using
random input ports in the range [1−65535], i.e., 65k different
flows as in the previous scenarios. Once the connection is
established, the client sends a 512B packet that is echoed back
by the server. When the client receives the echo message, the
connection is closed and the procedure repeated.

As open-loop traffic, in Sec. VI-B we consider as DUT a
software router using the stack provided by the FD.io Linux
Foundation project [5]. In particular, we consider the case
in which the FD.io router employs a per-flow scheduling
algorithm to enforce bandwidth fairness among flows. Packets
belonging to flows exceeding their fair rate are dropped while
packets belonging to flows sending less than their fair rate
are forwarded without any drop. The traffic is again injected

TABLE II: Optimal running parameters for FlowMon-DPDK.

Parameter Value
Flow data structure combined (double hash + linked list)
Batch size 256 packets
Number of RSS queues 2
Number of mempools one for each RSS queue
Hyper-threading disabled
Programming model pipeline with pthread
Flow analytics per-flow packet counting

by MoonGen (TX) at full-rate, and the number of concurrent
flows is 1000 with variable rates, where the rate of the k-th
flow is k times slower than the first one (i.e., the fastest).

V. SOFTWARE TUNING

In this section, we carefully validate our system by com-
paring the different alternatives. We first conduct a set of
experiments to tune the packet capture stage, and then detail
the performance of the flow aggregation and data analysis
stages. Tab. II reports “default” values yielding to the best
performance that are used unless otherwise specified.

A. Packet capture stage

Batch size: The batch size is the maximal number of packets
fetched through one poll-mode fetch in DPDK. Similar to [20],
we evaluate the impact of batch size ranging from 64 to 1024
packets: the tradeoff is that small batches cannot properly
handle RX bursts and lead to losses in the NIC, whereas too
long batches may take longer to process and yield to losses
in the RX. Fig. 5-(a) shows that losses are minimal for 256
packets batches – an operational point at which the DPDK
Direct Memory Access (DMA) operations are likely optimized
and that we set as default for the following experiments.

Number of HW queues: By enabling RSS, the load of
incoming traffic is distributed into multiple queues, that are
associated with different threads (or cores). While increasing
the number of RSS queues is beneficial for load balancing
purposes, increasing the number of RSS queues can lead
to contention on the PCI bus. Fig. 5-(b) reports the PDR
for increasing number of RSS queues, from which we infer
that 2 queues are optimal to handle worst-case traffic on our
commodity hardware (we thus fix RSS=2 in what follows).
Conversely, given the lightness of our tasks at hand, increasing
the number of RSS queues further yields to performance
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degradation due to increased PCI bus contention. Note that
this phenomenon do not appear in tools performing more
complex analytics [28] on bigger packets, where CPU is a
more stringent bottleneck.

Per-queue memory pool: DPDK reserves pools of packet
descriptors to associate incoming packets from the NIC, thus
avoiding the overhead of dynamic memory allocation. Most
of the DPDK sample applications use a single memory pool
for multiple queues, which might increase contention, even
in the presence of per-core mempool cache. An interesting
point to check is whether the performance can be improved
by allocating a separate mempool for each RSS queue. As
shown in Fig. 5-(c), our intuition proves correct for both per-
packet and per-flow operations. Per-queue mempool is heavily
beneficial in both cases, reducing the loss rate by roughly
one order of magnitude, and we thus only consider per-queue
mempools in the following.

Programming models: Finally, we implement two flavors of
FlowMon-DPDK. The first one adopts the run-to-completion
model while the other is based on the pipeline model. As
shown in Table III-(e), the pipeline model outperforms the
run-to-completion one (for the sake of space, we report only
results for pthread). In the pipeline model, the retrieved packets
are staged in a big software ring before being processed by the
monitoring threads: the software ring acts as a big buffer that
absorbs the processing delays of packet monitoring threads,
thus achieving maximum throughput.

TABLE III: Comparison of the packet drop ratio for different
programming models. A ? sign denotes default parameters.

Parameter Average PDR 95% C.I.
Run-to-completion 4.8× 10−6 5.7× 10−7

Pipeline with pthread ? 3.5× 10−6 5.6× 10−7

B. Flow aggregation stage

Data structure: Fig. 6-(a) compares FlowMon-DPDK per-
formance with different data structures and shows HW, SW
packet counting as a reference. Per-flow SW counting per-
formance is significantly affected by the data structure. In
particular, losses of double hash is comparable with that
of SW packet counting, although double hash can present

miscounting and should be avoided in case of high load
on the hash table. Conversely, single hash with linked lists
offers precise counting but incurs a non-negligible overhead
due to non-contiguous memory allocation. This translates into
a precision decreased by orders of magnitude for the same
amount of CPU resources, and should thus be avoided in case
of high rates. Finally, combined hash sits at the intermediate
point in the performance tradeoff, achieving precise counting
for a limited overhead. Per-packet SW and HW losses are
very similar, and provide a lower bound for the PDR of flow-
level measurement, settling around a measurable 2 · 10−6 on
average. It should be noted that packet losses with HW, SW
packet counting are negligible1 and mainly due to software
generation inaccuracy [14], [17].

Implementation choices: Flow aggregation stage perfor-
mance depends on implementation details, such as the offload-
ing of hash computation to the NIC (which spares useless
memory accesses and saves useful CPU cycles) as well as the
selection of libraries for thread implementation. In particular,
with FlowMon-DPDK we verified that computing the hash
in software2 results in a PDR of about 30%, translating to
a maximum RX rate of 10.5Mpps. Considering the double-
hash implementation (for the sake of simplicity) and limitedly
focusing on the pipeline model (similar results holds for
run-to-completion model) we contrast the lthread vs pthread
implementations. The pipeline model consists of two threads, a
receiver (R) and a monitoring (M ) thread, for each RSS queue,
i.e., for 2 RSS queues, 4 distinct threads (R1, R2,M1,M2) in
total. The allocation of threads to cores is illustrated in Fig. 6-
(b). Specifically, the four cells in the first row represents 4
physical cores, while those in the second row the virtual cores,
enabled by hyper-threading. In case of lthreads, cooperative
multi-threading is implemented within the application itself:
R and M threads coexist in the same core and the application
manages their execution. In case of pthread, threads can be
placed onto different physical cores, or on two logical cores
of the same physical one.

1A loss probability of 2 · 10−6 corresponds to about 30pkts of size 64B
per second, i.e., a throughput distortion <16 kbps for a full 10 Gbps tx-rate.

2Using the optimized DPDK function rte_softrss_be()
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Fig. 7: Traffic monitoring: performance under (a) Synthetic traffic with Uniform and Zipf patterns (b) Real traffic traces.

We see that with respect to lthreads, pthread in hyper-
threading significantly decreases the packet losses; at the same
time, there seems to be a further advantage into separating
the receiver and the monitoring threads across multiple cores,
which is in stark contrast with more complex monitoring
software such as DPDKStat [28]. A plausible explanation
is that complex software requires to perform more memory
accesses: in this case, hyper-threading is beneficial to keep the
pipeline full when the execution of another pipeline is stalled.
Conversely, in our case the lower memory usage, coupled to a
cache-friendly memory structure, may diminish the usefulness
of hyper-threading (similar phenomena are also observed in
optimized software stack FD.io [5] with high instruction-per-
clock efficiency).

C. Data analysis stage

Finally, we analyze two types of analytics: per-flow packet
counting (only per-flow packet and byte counters are recorded)
and the per-flow 99th percentile of the inter-leaving gap (which
requires access and manipulation of more state).

Results are shown in Fig. 6-(c), where the simple and
complex analytics are executed over increasing number of
flows. As the number of flows increases, so does the hash
load, and thus the penalties due to the linked list. It can be
seen that the cost of per-flow percentile estimation increases
the losses by an order of magnitude: at the same time, the
distortion remains below 10−5 for load up to 1 (i.e., 65k flows
for a double hash of 65k entries), which may yield to tolerable
distortion in many use cases. Conversely, in case of simple
analytics, PDR remains on average below 10−5 for hash loads
up to 1, achieved with a parsimonious amount of resources.
Note that for higher hash load, then the losses are too high
for the targeted scenarios.

VI. EXPERIMENTAL RESULTS

We test FlowMon-DPDK in different scenarios. Specifically,
Sec. VI-A contrasts the performance of FlowMon-DPDK to
that of other tools under synthetic as well as trace-driven
traffic. Next, Sec. VI-B considers two operational scenarios in
which we employ our tool to assist the evaluation of closed-
loop and open-loop DUT (respectively CliMB and FD.io).

A. Traffic monitor precision

Synthetic traffic: Fig.7-(a) shows the performance for hard-
ware packet counting (left, orange) vs software packet count-
ing (center, yellow) vs software per-flow monitoring (right,

violet). Experiments under uniform and Zipf distribution of
the flows are reported with solid color and hashed pat-
tern, respectively. Hardware packet counting is reported as
a reference. Packet-level counting performance are reported
for HW, MoonGen, Speedometer, and FlowMon-DPDK. For
Speedometer, we additionally report “default” and “tuned” set-
tings. In the “default” ones, Speedometer is used unmodified
and report two orders of magnitude more losses than HW.
In the “tuned” ones, Speedometer has the same FlowMon-
DPDK tuning adopted in Sec. V and results in one order of
magnitude more losses than HW, similarly to Moongen. We
also note that FlowMon-DPDK exhibits an advantage (albeit
slight) over Speedometer and Moongen possibly because they
perform more operations, although we did not dig further as
we focused our study mainly on flow-level performance.

Finally we consider per-flow counting, contrasting
FlowMon-DPDK with a lua implementation of the double
hash (without linked list) strategy in MoonGen, taking
advantage of a recent MoonGen feature that allows to directly
access the RSS hash computed by the NIC directly in lua
(so without hashing and memory access overhead). Two
main takeaways can be derived from the picture with this
respect. First, activating per-flow counting in MoonGen
increases losses by one additional order of magnitude.
Second, activating per-flow counting in FlowMon-DPDK has
only a negligible effect as far as loss are concerned.

Trace-driven experiments: We test the performance under
the traffic traces of Table I. Real traffic may exhibit tem-
poral correlation that the independent traffic models used in
experiments with synthetic traffic do not capture. It follows
that performance may differ with respect to the synthetic
traffic case (e.g., temporal correlation may induce cache hits).
Clearly, different temporal traffic patterns and spatial flow
distribution may affect the results, which are thus to be
interpreted in qualitative sense.

In particular, from the experiments reported in Fig. 7-(b)
one can expect from FlowMon-DPDK a loss rate in the
order of few parts-per-million [10−6, 10−5]. Part of this loss
rate is physiologic in the capture process (coherently with
HW packet counting) and part of it is due to the speed of
operation in packet processing in software. From these DUT-
less experiments, we can thus conclude that FlowMon-DPDK
is able to measure per-flow statistics with 5-nines precision and
that any measured per-flow loss rate above the 10−5 threshold
has therefore to be imputed to the DUT under test.
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Fig. 8: DUT testing: (a) closed-loop transport function in CliMB and (b) open-loop scheduling function in FD.io.

B. Traffic monitor usage

CliMB transport: Fig. 8-(a) shows the per-flow (bars) and
total throughput (line) measured in the CliMB client-server
scenario, cf. Sec. IV-C. Surprisingly, when the number of
concurrent clients is small (i.e., < 400), total and per-flow
throughput are far from line rate. This can be explained by
the fact that, in this scenario, CliMB cannot completely exploit
the performance bonuses given by batch processing and poll
mode, due to the low amount of packets that need to be trans-
ferred. Indeed it is known that, when processing small batches,
DPDK exhibits poor performance mainly due to congestion
on the PCIx bus (the same behavior can be observed with
small batch size, cf. Sec. V). Conversely, when the number of
concurrent clients is bigger (i.e., > 400), CliMB throughput
achieves the line rate and FlowMon-DPDK provides a handy
complement to the CliMB log, allowing to check fairness and
efficiency of the TCP server implementation.

FD.io scheduling: We use FlowMon-DPDK to monitor both
the TX and the DUT traffic, which are reported in Fig. 8-(b).
It can be noticed that (i) the first 200 most aggressive flows
observe a decrease in their rate because they exceed their fair
share of the link, while (ii) the output rate of the remain-
ing flows matches their input rate, since their rate is lower
than their fair share. Note that to reliably monitor low-rate
flows, and thus check the correctness of the implementation,
FlowMon-DPDK reliability is of uttermost importance.

VII. CONCLUSIONS

In this paper, we design, tune and experiment FlowMon-
DPDK, a tool capable of providing fine-grained per-packet
and per-flow statistics at line rate, using a minimal amount of
resources. The tool leverages RSS hash computation to offload
software operations, and employs a careful design where flow-
tables are aligned with cache line boundaries. Thanks to its
careful design, FlowMon-DPDK outperforms state-of-the-art
alternative solutions and provides the researchers a precise,
inexpensive tool for monitoring the performance of their high
speed prototypes. We make the tool available at [6].
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