
1

Per-Flow Fairness in the Datacenter Network
YiXi Gong, James W. Roberts, Dario Rossi

Telecom ParisTech

Abstract—Datacenter network (DCN) design has been ac-
tively researched for over a decade. Solutions proposed range
from end-to-end transport protocol redesign to more intricate,
monolithic and cross-layer architectures. Despite this intense
activity, to date we remark the absence of DCN proposals based
on simple fair scheduling strategies. In this paper, we evaluate
the effectiveness of FQ-CoDel in the DCN environment. Our
results show, (i) that average throughput is greater than that
attained with DCN tailored protocols like DCTCP, and (ii) the
completion time of short flows is close to that of state-of-art
DCN proposals like pFabric. Good enough performance and
striking simplicity make FQ-CoDel a serious contender in the
DCN arena.

I. INTRODUCTION

In the last decade, datacenter networks (DCNs) have
increasingly been built with relatively inexpensive off-the-
shelf devices. DCNs are frequently assumed to be highly spe-
cialized environments, owned by a single entity that has full
control of both the network architecture and the workload.
DCN transport research has consequently explored a larger
design space than that of the Internet leading to designs that
generally do not focus on a single layer of the protocol stack
but are more typically cross-layer. The proposed transport
solutions may for instance integrate application information,
use explicit or implicit rate control, incorporate routing and
load balancing or rely on an omniscient oracle.

Freedom in the DCN design space translates into a rel-
atively crowded landscape of proposals, each of which is
typically designed and tweaked with a specialized application
scenario in mind. DCN proposals are further entangled as
their design is tailored for very specific workloads, with
diverse application patterns including for instance, query-
response [6], [8], map-reduce jobs [12], [13], or packet-size
access to CloudRAM [7]. Rarely, if ever, is a DCN design
tested with a workload other than that for which the system
was explicitly designed.

Beyond any reasonable doubt, the single-tenant assumption
will be severely challenged in the near future. Increased user
reliance on Cloud applications will require DCNs to evolve
toward multi-tenant systems with a significantly more het-
erogeneous set of applications and workloads. For instance,
DCN owners could handle several types of VM-based or
container-based applications in their infrastructure as they
enter new lines of business, or as they rent resources to third-
parties. The DCN workload will thus evolve beyond a typical
mixture of short transactions and fat elastic transfers, as
frequently considered today, to include a significant fraction
of rate-limited flows with strict latency requirements as

produced by gaming applications [1], instant voice transla-
tion [29] and augmented reality services, for example. The
exact flow mix will also be highly variable in time, depending
both on the degree to which applications rely on offloading to
the Cloud and on the accessibility of the Cloud that varies due
to device capabilities, battery life, connectivity opportunity,
etc. [9].

As DCN resources are increasingly shared among multiple
stakeholders, we must question the appropriateness of some
frequently made assumptions. How can one rely on all end-
systems implementing a common, tailor-made transport pro-
tocol like DCTCP [6] when end-systems are virtual machines
under tenant control? How can one rely on applications
truthfully indicating the size of their flows to enable shortest
flow first scheduling as in pFabric [8] when a tenant can gain
better throughput by simply slicing a long flow into many
small pieces? Expected future DCN usage clearly puts these
assumptions in doubt and leads us to question the expected
benefits of fragile DCN designs that rely on them.

Following the above discussion, we observe an obvious yet
surprising omission in the explored DCN landscape, namely
a scheduling mechanism providing fairness among flows,
coupled with Active Queue Management (AQM) to upper-
bound delay. Such a scheduler is FQ-CoDel that has recently
gained prominence in another network application, namely
fighting bufferbloat notably in home routers [18]. Its aim of
keeping throughput high while controlling queueing delay
and its generality with respect to the traffic mix clearly make
it an excellent candidate for DCN operation. Our objective in
this paper is to compare its performance to that realized by
alternative state-of-the-art DCN proposals. We find notably
that, under FQ-CoDel:
• throughput of plain TCP is better than that of a tailored

end-to-end solution like DCTCP [6],
• short flows incur a delay comparable to what they incur

under pFabric [8].
We believe its “good enough” and future-proof performance,
coupled with a striking deployment simplicity, make FQ-
CoDel a particularly appealing solution for multi-tenant
DCNs. In the reminder of the paper, after overviewing related
work (Sec. II), we describe our proposal (Sec. III), present
methodology and the results of our comparison (Sec. IV),
and then conclude (Sec. V).

II. BACKGROUND

In Tab. I we report a non-exhaustive view of DCN re-
search to illustrate several important trends. We follow the

2

TABLE I
TAXONOMY OF RECENT DATA CENTER NETWORK DESIGNS.

Proposal Yr Primary Information Rate Control† Routing Scheduling Layers‡
metric Load balancing L N T A O

DCTCP [6] 10 Latency Imp+ECN FS •
Hedera [4] 10 Bisection bw switch buffer Yes •

D3 [39] 11 Throughput deadline, size Exp (D) ECMP VLB greedy • •
MPTCP [32] 11 Throughput MP-enabled ECMP •

Orchestra [12] 11 Transfer-CT everything Exp (C) Yes FIFO, FS, Priority •
HULL [7] 12 Throughput DCTCP+ECN ECMP •

DeTail [41] 12 Tail FCT priority TCP +ECN packet-based • • • •
PDQ [19] 12 FCT deadline, size Exp (D) ECMP EDF/SJF • •

pFabric [8] 13 FCT priority Imp RPS Priority • •
RepFlow [40] 14 Short flow FCT size ECMP • •

Baraat [15] 14 Task-CT priority Exp (D) FIFO-LM • •
PASE [25] 14 FCT size, max rate Exp+ECN (D) SJF • •
Varys [13] 14 Coflow-CT size Exp (C) SEBF + MADD • • •

CONGA [5] 14 FCT flowlet-based •
Fastpass [31] 14 Fairness/FCT size Exp (C) packet-based maximum matching • • •

FlowBender [21] 14 Latency flow-based • •
PIAS [10] 15 FCT DCTCP+ECN SJF •

RAPIER [35] 15 Coflow-CT size Exp (C) coflow-based MRTF • • •
pHost [17] 15 FCT Tail-CT Exp (D) packet-spraying RTS-mechanism •

NUMFabric [26] 16 FCT flow rates Exp (D) WFQ+ XWI • • •
ExpressPass [11] 17 FCT Exp (D) symmetric Credit rates • •

Flowtune [30] 17 FCT flowlet epochs Exp (C) central allocator • • •
LetFlow [36] 17 FCT Imp (D) flowlet-based FIFO • •

† Rate/congestion control: (Exp)licit vs (Imp)licit; (D)istributed vs (C)entralized
‡ Layers: (L)ink, (N)etwork, (T)ransport, (A)pplication, (O)racle

common assumption that DCNs have the leaf- spine topology
(e.g., [5], [8], [10], [35]) derived from the seminal FatTree
proposal [3]

DCN research was initially confined to a single layer of
the protocol stack. For instance, starting with the pioneering
work of DCTCP [6], the community recognized that specific
designs were needed to enable TCP to cope with the high
bandwidth and low delay properties of DCNs. This led to
the design of new protocols exemplified by HULL [7] that,
to the best of our knowledge, have not yet been deployed. It is
noteworthy that optimal parameter tuning for deployed TCP
variants like DCTCP remains the subject of active research
[20].

Alternative proposals for an improved network fabric in-
clude Hedera [4] and Orchestra [12] that rely on a central-
ized oracle to deal with routing, load balancing, congestion
avoidance and fault tolerance. Starting with pFabric [8],
which has become the de-facto standard for comparing new
DCN proposals, a number of papers have promoted a cross-
layer design. These DCN designs jointly impact multiple
aspects including explicit [19], [25], [30], [35], [39] or
implicit [8], [41] congestion and flow control at end-systems,
flow scheduling [8], [10], [13], [15], [19], [25], [31], [35],
[39], load balancing [5], [8], [21], [31], [35], [36], [41] and
oracles [13], [30], [31]. Recent exceptions to the above trend
are represented by pHost [17] and ExpressPass [11] that
introduce a credit-based transport mechanism.

Application-layer information has been progresively inte-

grated into decision logic (as either a priority index [8], [41],
or a flow deadline [19], [39] or size [19], [39], [40]). This
tendency was recently exacerbated by moving from network-
oriented to service-oriented metrics: e.g., Varys [13] and
RAPIER [35] use co-flow completion time, and Baraat [15]
uses task completion time. Mechanisms proposed in [13],
[15], [25], [30], [31], [35] all employ explicit rate control,
with either distributed or centralized arbitration. Some recent
proposals like NUMFabric [26] and Flowtune [30] would
apply utility maximizing rate controls, rapidly computed by a
centralized controller made aware dynamically of the precise
population of flows in progress.

This rapid survey reveals the wide range of research on
DCN architectures and it is all the more surprising that a
technique as simple and potentially effective as FQ-CoDel,
to our knowledge, remains unexplored.

III. FAIRNESS IN THE DCN

We argue that the advantages of decoupling rate control
from scheduling, put forward in the pFabric proposal [8],
would similarly be obtained by implementing per-flow fair
scheduling on bottleneck links.

A. Be fair to flows!

Fair queuing. Starting with the original proposal of Na-
gle [27], per-flow fair scheduling has often been advocated
as a means to make Internet bandwidth sharing robust and

3

more efficient. However, the need has never been considered
sufficiently compelling to warrant widespread implementa-
tion. An exception is the recent work on fighting bufferbloat,
notably on home routers [38] where the preferred solution has
been to perform fair queuing on the user access line, in as-
sociation with the CoDel queue management algorithm [18],
[28]. Per-flow scheduling on the user access line ensures
low latency for packets of delay-sensitive flows like VoIP
while allowing bulk data transfers to fully utilize residual
bandwidth. Such scheduling is generally unnecessary on
Internet links beyond the access line since these are rarely a
bottleneck.This is not the case in datacenters, however, where
an upstream or downstream link between a server and its
top-of-rack switch can be saturated by a single flow. On the
other hand, the large bisection bandwidth of DCNs coupled
with efficient load balancing over multiple paths (e.g. using
LetFlow [36]) tends to avoid congestion in the interconnect.
We therefore follow [8] in supposing scheduling is applied
only on the ToR–server links, in both directions.

Priority fair queuing. The DRR-based “FlowQueue Con-
trolled Delay” (FQ-CoDel) scheduler [18], originally pro-
posed for fighting bufferbloat, does in fact more than just fair
scheduling: it incorporates a priority mechanism to further
reduce the packet latency of low rate flows, which would also
be very useful in DCNs. A fair queuing scheduler maintains
a list of flows that currently have backlogged packets. It
can therefore recognize packets that come from flows that
are not currently backlogged. Such flows will include single
packet queries as well as any flows emitting packets at a rate
less than the current fair rate. In FQ-CoDel, these packets
are dequeued with priority, minimizing their latency without
undue impact on the throughput of backlogged flows. This
mechanism had previously been proposed as a means to
realize implicit service differentiation [24].

Controlling queue delay. In FQ-CoDel, packets can be
dropped on applying the CoDel [18], [28] AQM algorithm to
each flow queue. Packets are also dropped from the flow with
the biggest backlog when the shared buffer would otherwise
overflow. The latter, longest queue drop policy [34] would, as
in [8], avoid the coupling between rate control and scheduling
that is implicit in CoDel. A further alternative would be to use
per-flow backlogs as the drop criterion [2], [33]. However,
in the present work we retain the full implementation of FQ-
CoDel as currently available in the Linux kernel.

B. Suitability for DCN

Flow identity. In our evaluation we identify flows by the
usual IPv4 5-tuple. However, it may be more appropriate in
a DCN to use other criteria like the origin and destination
servers or virtual machines, or to identify co-flows belonging
to a single task. Note that the proposal is to apply lightweight,
egalitarian fair sharing as opposed to weighted fair sharing
and therefore requires no additional state beyond flow ID.

Quantum size. The default DRR quantum size in FQ-CoDel
is one 1500 byte MTU. This implies the packets of any flow
emitting less than 1500 bytes in a DRR cycle are handled
with priority. In the datacenter environment, it may make
more sense to increase the quantum size, to ensure all packets
of a short query are handled with priority, for instance. It is
interesting to note that the Baraat [15] scheduler has similar
behavior to FQ-CoDel with a particular choice of quantum.
Baraat handles flows in FIFO order until they are observed
to have emitted more than a given number of bytes θ. They
are then required to fairly share the link bandwidth under the
end-to-end control of RCP [16]. The result of applying FQ-
CoDel with a quantum equal to θ would be broadly similar.

Rate-limited flows. The workloads considered in pFabric [8]
and Baraat [15] do not include flows whose rate is intrinsi-
cally limited. Such flows exist in any datacenter supporting
streaming applications or gaming, for example, and would
benefit from the low latency provided naturally by FQ-CoDel.
For example, packets of a 10 Mbps flow on a 10 Gbps
link would not suffer significant delay until the number of
concurrent active flows exceeds 1000.

Incast. Imposing fair sharing has a similar impact on incast
as DCTCP [6] since fair sharing between the fanned-in flows
is guaranteed. The fair rate during incast would likely still
be high enough that packets of any streaming flow sharing
the bottleneck link would be handled with priority.

Scalablity. The complexity of fair queuing depends on the
number of active flows, i.e., flows that currently have one
or more buffered packets. It was shown in [22] for wide
area networks with Poisson flow arrivals that this number is
typically less than 100 even though the number of flows in
progress attains hundreds of thousands. In the datacenter, the
stochastic demand model may be different but the number of
flows is similarly limited especially on the considered ToR–
server links. A recent paper shows how fair queuing can be
realized in a reconfigurable switch [33] while our own work
on software routers [2] shows how upstream bandwidth might
be fairly shared an applying a fair dropping algorithm in the
server.

IV. EVALUATION

We describe the scenarios used to evaluate the performance
of FQ-CoDel in the datacenter before discussing calibration
of protocol parameters, and reporting ns2 simulation results.

A. Methodology

Terms of comparison. We compare FQ-CoDel against two
representative alternative DCN designs: (i) DCTCP [6], a
distributed end-to-end mechanism that exposes a general
transport service through an L4 abstraction, and (ii) pFabric
[8], a clean-slate cross-layer design that aims to optimize

4

TABLE II
PFABRIC TCP TUNING

param pFabric (default) note

rtx† minrto 45µs (200ms)
maxrto 2s (60s)
rtxcur init 45µs (3s) initial rto
tcpTick 1µs (10ms) clock granularity

rx‡ interval 6µs (100ms) delayed ack
window 106 (20) rx window

cc? windowInit 12 (2) initial cwnd
maxcwnd queue-1 (∞) max cwnd
windowOption 0: basic (1: std) cong. avoid.

†Retransmission, ‡Receiver, ?Congestion control

flow completion time performance. The first is actually
implemented in production datacenters [20], while the second
represents an ideal that may only be attained in a particu-
lar protected datacenter environment where end-systems are
compliant. The code of both designs is available in ns2.

Network and workload. We adopt a downscaled version
of the pFabric network scenario (32 vs 144 hosts [8], in-
terconnected by a leaf-spine topology with the same delay
characteristics). We adopt the pFabric “data mining” work-
load, presented in Fig. 4b in [8]. Flows arrive according to a
Poisson process and have a size drawn independently from
an empirical distribution, where half of the flows are single
packet while 95% of bytes are in flows larger than 35 MB.

Note that this workload does not include any rate limited
flows as arise in streaming and gaming applications, for
instance. To account for the growing impact of rate limited
flows in DCNs, we tweak the data mining scenario by
controlling the percentage of 1-packet flows. In the DCN
setting, in addition to query traffic, such flows are an approx-
imate representation of bandwidth-limited flows (streaming,
games,...) whose packets arrive widely spaced compared to
the time scale of queue dynamics. We let the overall volume
of 1-packet flows vary between 0.01% and 10% of the overall
offered traffic.

Performance measures. We compare the performance of the
considered DCN designs through two measures: the flow
completion time (FCT) of 1-packet flows and the mean
throughput of all flows defined as the ratio of mean size
in bits to to mean FCT in seconds. The 1-packet flow
completion time is a measure of latency for both single packet
queries and packets of rate limited flows.

B. Calibration
Since we consider the pFabric scenario (i.e., workload,

topology, capacities, etc.), we retain the transport protocol
settings of [8] and make necessary adjustments for DCTCP
and FQ-CoDel to make the performance comparison as fair
as possible.

Local AQM tuning. For DCTCP, we resort to standard Drop-
Tail FIFO, and experiment with two buffer sizes (namely,

All

Ret
ra

nsm
iss

ion

(rt
x)

Rec
eiv

er

(rx
)

Con
ges

tio
n

(c
c)

win
dow

In
it_

m
ax

cw
nd_

win
dow

Optio
n_

10

0

10

20

30

M
e
a
n
 F

C
T
 r

e
d
u
ct

io
n
 [

%
]

 Categories Congestion control (cc)

DCTCP

FQ-CoDel

Fig. 1. Applying pFabric TCP tuning to DCTCP and FQ-CoDel: overall,
per category, and breakdown for the cc category impact w.r.t. default TCP
settings.

All Retransmission (rtx) Receiver (rx) Congestion (cc)
10

5

0

5

1
-p

kt
 F

C
T
 r

e
d
u
ct

io
n
 [

%
]

~

+99.5%

~

+99.3%

1-pkt FCT reduction

Average throughput increase
10

5

0

5

A
v
e
ra

g
e
 t

h
ro

u
g
h
p
u
t

in
cr

e
a
se

 [
%

]

Fig. 2. Breakdown of pFabric TCP parameters impact on DCTCP: per-
category and per-flow size account.

100 and 1000 packets). FQ-CoDel uses the stochastic fair
queuing implementation of DRR and relies essentially on
three parameters: the number of FQ hash buckets (we stick
with the default value of 1024), the CoDel target delay
(default 5ms) and the inference interval (default 100ms). The
default CoDel settings were meant to counter bufferbloat
in the access network, with timescales correlated to human
perception that are thus orders of magnitude larger than what
is reasonable for the DCN environment. Considering that
the RTT propagation delay between any two hosts in our
DCN scenario is 12µs and an MTU packet transmission
time is 1.2µs, we downscale by a factor of 1000x both the
target delay (about 4 packets per bucket) and the inference
interval. While these settings work well in practice, a more
careful tuning along the lines of [14] might further improve
performance.

End-to-end TCP tuning. To perform a fair comparison it
is necessary to specialize transport protocol parameters to
the DCN environment [20]. Tab. II contrasts the pFabric
settings with default TCP values. The DCN environment
clearly requires an increase of timestamp precision [37],
a significant reduction of time-related parameters (such as
delayed ack and retransmission timer [37]), and an increase
of window-related parameters. Overall, the pFabric settings

5

Fig. 3. Performance at a glance. Original pFabric “data mining” scenario,
load 0.6.

reduce the mean FCT by a factor of more than 2 compared
to that provided by pFabric used with vanilla TCP settings.

To verify that pFabric settings do not play against DCTCP
and FQ-CoDel, we activate features progressively and mea-
sure differences in latency (i.e., single packet FCT) and
throughput. Results are shown in Fig. 1 showing that activat-
ing all parameters yields a reduction in mean FCT of 30% for
DCTCP and 20% for FQ-CoDel. The breakdown per rtx/rx/cc
categories of Tab. II shows that time-related parameters play
a paramount role, as expected. On the other hand, we see
that congestion-related parameters have a limited impact on
DCTCP and even a negative impact on FQ-CoDel. It follows
that, by enabling pFabric parameters without any further
tuning, our results are slightly more favorable for pFabric,
and provide a conservative estimate of relative FQ-CoDel
performance.

Fig. 2 further breaks down the rtx/rx/cc parameter impacts
on the FCT and throughput metrics for DCTCP. Here again
it can be seen that, while the FCT of 1-packet flows benefits
from the combined settings, the throughput of long DCTCP
flows suffers slightly with the bulk adoption of pFabric
settings. On the other hand, selective parameter adoption
is hardly possible since each impacts performance metrics
differently (e.g., cc parameters have a negative impact for
short flows and a positive impact for long flows).

C. Performance comparison

Original data-mining scenario. To show differences at a
glance, we start from the original pFabric scenario where
1-packet flows represent a significant fraction of the flow
volume but account for only a negligible portion of the byte-
wise traffic volume. Average throughput and completion time
of 1-packet flows is reported in Fig. 3 showing that pFabric
indeed exhibits outstanding performance for both metrics. It
also shows, however, that FQ-CoDel comes second: FCT for
FQ-CoDel is very close to that of pFabric; throughput of
long flows is significantly smaller than with pFabric but still
higher than with DCTCP.

Tweaked data-mining scenario. Robust DCN designs should

 10

 100

 1000

 10000

 0.01 0.1 1 101
-p

k
t
fl
o
w

 c
o
m

p
le

ti
o
n
 t
im

e
 [

µs
]

Bytewise volume of 1-pkt flows [%]

}1.7x

2300x

DCTCP
FQ-CoDel

pFabric

 0.1

 1

 10

 0.01 0.1 1 10

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t
[G

b
p
s
]

Bytewise volume of 1-packet flows [%]

{1.3x

3x

DCTCP
FQ-CoDel

pFabric

Fig. 4. Impact of 1-packet flow intensity: Tweaked pFabric scenario, load
0.6.

maintain their performance across scenarios. Simply increas-
ing the proportion of traffic generated by 1-packet flows
constitutes an insightful sensitivity analysis. For technical
reasons tied to the simulation duration, we cap the maximum
flow size to 105 packets. This tweak is favorable to pFabric
as the gap between pFabric and FQ-CoDel for 0.01% in
Fig. 4 is larger than in Fig. 3. However, it can be easily
seen that the difference reduces significantly for increasing
intensity of 1-packet flows (i.e., as the proportion of low rate
flows increases). While the difference between DCTCP and
pFabric always remains significant, the performance of FQ-
CoDel approaches that of pFabric.

V. A FAIR STATEMENT

We have argued that multi-tenant DCNs cannot rely on
specialized protocols and mechanisms that assume single
ownership and end-system compliance. It is necessary rather
to implement general, well-understood mechanisms provided
as a network service that require as few assumptions about
DC workload as possible.

Specifically, we have proposed that fair scheduling coupled
with a mechanism to explicitly controll the queue size con-
stitutes an appealing traffic management solution for multi-
tenant DCNs. In the light of our results, we believe it is fair
to say FQ-CoDel achieves “good enough” performance while
being “simple enough” for rapid deployment.

It is surprising that this simple yet effective approach has
so far been neglected in DCN research and our main aim
in this paper has been to raise awareness of this omission.
Clearly, much remains to be done. For instance, FQ-CoDel
should be compared against DCTCP in a real deployment to
prove that benefits are immediately and painlessly achievable
in today DCNs.

While FQ-CoDel is already available in the current Linux
kernel release, it is not directly applicable in DCN ToR

6

switches. However, the recent paper [33] shows how the
latest configurable switches can be used to realize per-
flow fair bandwidth sharing. The proposed mechanism could
be readily extended to accurately approximate priority fair
queuing [23]. Instead of using FQ-CoDel to control sharing
in the server–TpR link, we currently envisage the use of a
fair dropping algorithm as discussed in [2].

It remains a significant challenge to design and perform
the experimental campaign that is necessary to confirm the
expected advantages of priority fair queueing under realistic
conditions. More broadly, it is also necessary to gain a better
understanding of how it would perform in combination with
additional key DCN developments (like co-flow identification
and efficient load balancing techniques).

ACKNOWLEDGEMENTS

This work has been carried out at LINCS (http://www.
lincs.fr) and benefited from support of NewNet@Paris, Cis-
cos Chair “NETWORKS FOR THE FUTURE” at Telecom
ParisTech (https://newnet.telecom-paristech.fr).

REFERENCES

[1] http://www.gartner.com/newsroom/id/2614915.
[2] V. Addanki, L. Linguaglossa, et al. Controlling software router

resource sharing by fair packet dropping. In IFIP Networking 2018.
2018.

[3] M. Al-Fares, A. Loukissas, et al. A scalable, commodity data center
network architecture. In ACM SIGCOMM. 2008.

[4] M. Al-Fares, S. Radhakrishnan, et al. Hedera: Dynamic flow schedul-
ing for data center networks. In USENIX NSDI. 2010.

[5] M. Alizadeh, T. Edsall, et al. Conga: Distributed congestion-aware
load balancing for datacenters. In ACM SIGCOMM. 2014.

[6] M. Alizadeh, A. Greenberg, et al. Data center TCP (DCTCP). In ACM
SIGCOMM. 2010.

[7] M. Alizadeh, A. Kabbani, et al. Less is more: Trading a little bandwidth
for ultra-low latency in the data center. In USENIX NSDI. 2012.

[8] M. Alizadeh, S. Yang, et al. pfabric: Minimal near-optimal datacenter
transport. In ACM SIGCOMM. 2013.

[9] V. Bahl. Cloud 2020: The Emergence of Micro Datacenters (cloudlets)
for Mobile Computing. Microsoft Devices and Networking Summit,
2015.

[10] W. Bai, L. Chen, et al. Information-agnostic flow scheduling for
commodity data centers. In NSDI’15, pages 455–468. 2015.

[11] I. Cho, K. Jang, et al. Credit-scheduled delay-bounded congestion
control for datacenters. In SIGCOMM ’17, pages 239–252. 2017.

[12] M. Chowdhury, M. Zaharia, et al. Managing data transfers in computer
clusters with Orchestra. In ACM SIGCOMM. 2011.

[13] M. Chowdhury, Y. Zhong, et al. Efficient coflow scheduling with
Varys. In ACM SIGCOMM. 2014.

[14] M. Christiansen, K. Jeffay, et al. Tuning RED for web traffic. In ACM
SIGCOMM. 2000.

[15] F. R. Dogar, T. Karagiannis, et al. Decentralized task-aware scheduling
for data center networks. In ACM SIGCOMM. 2014.

[16] N. Dukkipati. Rate Control Protocol (RCP): Congestion Control to
Make Flows Complete Quickly. Ph.D. thesis, Stanford University, ’08.

[17] P. X. Gao, A. Narayan, et al. pHost: Distributed near-optimal datacenter
transport over commodity network fabric. In ACM CoNEXT. 2015.

[18] T. Hoeiland-Joergensen, P. McKenney, et al. The Flow Queue CoDel
Packet Scheduler and Active Queue Management Algorithm. RFC
8290, 2018.

[19] C.-Y. Hong, M. Caesar, et al. Finishing flows quickly with preemptive
scheduling. In ACM SIGCOMM. 2012.

[20] G. Judd. Attaining the promise and avoiding the pitfalls of tcp in the
datacenter. In NSDI. 2015.

[21] A. Kabbani, B. Vamanan, et al. Flowbender: Flow-level adaptive
routing for improved latency and throughput in datacenter networks.
In ACM CoNEXT. 2014.

[22] A. Kortebi, L. Muscariello, et al. Evaluating the number of active
flows in a scheduler realizing fair statistical bandwidth sharing. In
ACM SIGMETRICS. 2005.

[23] A. Kortebi, S. Oueslati, et al. Cross-protect: implicit service differenti-
ation and admission control. In 2004 Workshop on High Performance
Switching and Routing, 2004. HPSR., pages 56–60. 2004.

[24] A. Kortebi, S. Oueslati, et al. Implicit service differentiation using
deficit round robin. In Proceedings of ITC 19. 2005.

[25] A. Munir, G. Baig, et al. Friends, not foes: Synthesizing existing
transport strategies for data center networks. In ACM SIGCOMM.
2014.

[26] K. Nagaraj, D. Bharadia, et al. Numfabric: Fast and flexible bandwidth
allocation in datacenters. In ACM SIGCOMM. 2016.

[27] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896,
1984.

[28] K. Nichols and V. Jacobson. Controlling queue delay. Commun. ACM,
55(7):42, 2012.

[29] D. Patterson. The trouble with multi-core. Spectrum, IEEE, (7), 2010.
[30] J. Perry, H. Balakrishnan, et al. Flowtune: Flowlet control for

datacenter networks. In NSDI’17, pages 421–435. 2017.
[31] J. Perry, A. Ousterhout, et al. Fastpass: A centralized ”zero-queue”

datacenter network. In ACM SIGCOMM. 2014.
[32] C. Raiciu, S. Barre, et al. Improving datacenter performance and

robustness with multipath TCP. In ACM SIGCOMM. 2011.
[33] N. K. Sharma, M. Liu, et al. Approximating fair queueing on

reconfigurable switches. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages 1–16. 2018.

[34] B. Suter, T. V. Lakshman, et al. Buffer management schemes for
supporting TCP in gigabit routers with per-flow queueing. IEEE JSAC,
pages 1159–1169, 2006.

[35] Z. Uestc, K. Chen, et al. RAPIER : Integrating Routing and Scheduling
for Coflow-aware Data Center Networks. IEEE INFOCOM, 2015.

[36] E. Vanini, R. Pan, et al. Let it flow: Resilient asymmetric load
balancing with flowlet switching. In NSDI 17, pages 407–420. 2017.

[37] V. Vasudevan, A. Phanishayee, et al. Safe and effective fine-grained
TCP retransmissions for datacenter communication. In ACM SIG-
COMM. 2009.

[38] G. White. Active queue management in DOCSIS 3.x cable modems.
Technical report, CableLabs, 2014.

[39] C. Wilson, H. Ballani, et al. Better never than late: Meeting deadlines
in datacenter networks. In ACM SIGCOMM. 2011.

[40] H. Xu and B. Li. Repflow: Minimizing flow completion times with
replicated flows in data centers. In IEEE INFOCOM. 2014.

[41] D. Zats, T. Das, et al. Detail: Reducing the flow completion time tail
in datacenter networks. In ACM SIGCOMM. 2012.

