
1

High-speed Software Data Plane
via Vectorized Packet Processing

David Barach1, Leonardo Linguaglossa2, Damjan Marion1, Pierre Pfister1, Salvatore Pontarelli2,3, Dario Rossi2
1Cisco Systems, 2Telecom ParisTech, 3CNIT - Consorzio Nazionale Interuniversitario per le Telecomunicazioni

{first.last}@cisco.com, {first.last}@telecom-paristech.fr

Abstract—In the last decade, a number of frameworks started
to appear that implement, directly in user-space with kernel-
bypass mode, high-speed software data plane functionalities on
commodity hardware. Vector Packet Processor (VPP) is one of
such frameworks, representing an interesting point in the design
space in that it offers: (i) in user-space networking, (ii) the
flexibility of a modular router (Click and variants) with (iii) the
benefits brought by techniques such as batch processing that have
become commonplace in high-speed networking stacks (such as
netmap or DPDK). Similarly to Click, VPP lets users arrange
functions as a processing graph, providing a full-blown stack of
network functions. However, unlike Click where the whole tree is
traversed for each packet, in VPP each traversed node processes
all packets in the batch (called vector) before moving to the
next node. This design choice enables several code optimizations
that greatly improve the achievable processing throughput. This
paper introduces the main VPP concepts and architecture, and
experimentally evaluates the impact of design choices (such as
batch packet processing) on performance.

I. INTRODUCTION

Software implementation of networking stacks offers a
convenient paradigm for the deployment of new functional-
ities, and provides an effective way to escape from network
ossification. Therefore, the past two decades have seen tremen-
dous advances in software-based network elements, capable
of advanced data plane functions in commodity servers. One
of the seminal attempts to circumvent the lack of flexibility
in network equipment is represented by the Click modular
router [1]: its main idea is to move some of the network-
related functionalities, up to then performed by specialized
hardware, into software functions executed by general-purpose
computers. To achieve this goal, Click offers a programming
language to assemble software routers by creating and linking
software functions, which can then be compiled and executed
in a commodity server. The original Click approach placed
most of the high-speed functionalities as close as possible to
the hardware, which were thus implemented as separate kernel
modules. However, whereas a kernel module can directly
access a hardware device, Click applications need to explicitly
perform system calls and use the kernel as an intermediate
step. This overhead is not negligible: in fact, due to recent
improvements in transmission speed and network card capa-
bilities, a general-purpose kernel stack is far too slow for
processing packets at wire-speed over multiple interfaces [2].
As such, a tendency has emerged to implement high-speed
network stacks via kernel bypass (referred to as KBstacks in
what follows) and bringing the hardware abstraction directly

to the user-space, with a number of efforts (cfr. Sec. II)
targeting both the low-level building blocks for kernel bypass
like netmap [4] and the Intel Data Plane Development Kit
(DPDK), and the design of full-blown modular frameworks
for packet processing [2, 5]. Interested readers can find an
updated survey of fast software packet processing techniques
in [6].

In this paper, we report on a framework for building high-
speed data plane functionalities in software, namely Vector
Packet Processor (VPP). VPP is a mature software stack
already in use in rather diverse application domains, ranging
from Virtual Switch in data-center to support virtual machines1

and inter-container2 networking, as well as Virtual Network
Function (VNF) in different contexts such as 4G/5G3 and
security4.

In a nutshell, VPP offers the flexibility of a modular router,
retaining a programming model similar to that of Click.
Additionally, it does so in a very effective way, by extending
benefits brought by techniques such as batch processing to the
whole packet processing path, increasing as much as possible
the number of instructions per clock cycle (IPC) executed by
the microprocessor. This is in contrast with existing batch-
processing techniques, that are merely used to reduce interrupt
pressure (as done by netmap [4] or DPDK) or are non-
systematic and pay the price of a high-level implementation
(e.g., in FastClick [2] batch processing advantages are offset
by the overhead of linked-lists).

The rest of the paper is organized as follows: in Sec. II we
put VPP in the context of related work. We then introduce
the main elements of the VPP architecture in Sec. III, and
in Sec. IV we assess their benefits with an experimental
approach. We finally discuss our findings in Sec. V.

II. BACKGROUND

Almost all the software frameworks for high-speed packet
processing based on kernel bypass share some commonalities.
By definition, KBstacks avoid the overhead associated with
kernel-level system calls and additionally employ a plethora
of techniques. For the sake of space, we only briefly define
them here, and refer the reader to e.g., [2] or [15] for a more
complete description. At hardware level, KBstacks leverage

1NetworkingVPP https://wiki.openstack.org/wiki/Networking-vpp
2Contiv http://contiv.github.io/
3Intel’s GTP-U implementation https://ossna2017.sched.com/event/BEN4/

improve-the-performance-of-gtp-u-and-kube-proxy-using-vpp-hongjun-ni-intel
4NetGate’s pfSense (today called TNSR) https://www.netgate.com/



2

Network Interface Card (NIC) support of multiple RX/TX
hardware queues such as Receive-side Scaling (RSS). RSS
queues are made accessible to userland software and used
for hardware-based packet classification and especially to
assist (per-flow) Lock-free multi-threaded (LFMT) processing.
Additionally, KBstacks are Non Uniform Memory Access
(NUMA) aware, and exploit memory locality when running
on NUMA systems (like multi-processor systems based on
Intel Xeon processors). Furthermore, to avoid costly memory
copy operations, latest KBstacks use Zero-copy techniques via
Direct Memory Access (DMA) to the memory region used
by the NIC. Finally, costs associated with system calls or
interrupts are mitigated in KBstacks by means of I/O batching
(i.e., by using a separate zero-copy DMA buffer, and sending
an interrupt once the whole buffer is full, as opposed to
sending one interrupt per packet). For high-speed KBstacks,
batching is commonly coupled with poll-mode drivers, where
interrupts are replaced by periodic polling of the device.

KBstacks are supported by several low-level building blocks
like netmap [4], DPDK5 and PF RING [7]. Most of them
support high-speed I/O through zero-copy, kernel-bypass (at
least to some extent, as for netmap [4]), batched I/O and
multi-queuing. A more detailed comparison of features pro-
vided by a larger number of frameworks is available in [2],
while an experimental comparison of DPDK, PF RING and
netmap (for relatively simple tasks) is described in [8]. Worth
mentioning are also the eXpress Data Path (XDP) project6,
which embraces similar principles but using a kernel-level
approach, and The Open Data Plane (ODP) Project7, an open-
source, cross-platform set of APIs running on several hardware
platforms such as x86 servers or networking System-on-Chip
(SoC) processors.

Another active research activity is represented by prototypes
targeting very specific network functionalities such as IP
routing [9], traffic classification [10], name-based forwarding
[11]. In spite of the different goals, and the possible use of
CPUs only [10], network processors [11] or GPUs [9], a
number of commonalities arise. PacketShader [9] is a GPU
accelerated software IP router. In terms of low-level functions,
it provides kernel bypass and batched I/O, but not zero
copy. MTclass [10] is a CPU-only traffic classification engine
capable of working at line rate, by employing lock-free multi-
threading; at low-level, MTclass uses PacketShader hence
inheriting the aforementioned limitations. Prototype in [11]
addresses high-speed functions related to Information-centric
networking (ICN) architectures, such as name-based forward-
ing and caching. All these tools scale-up by leveraging RSS
queues and lock-free multi-threading at user-space. In contrast
to these efforts, VPP aims for generality, feature richness and
consistent performance irrespectively of the specific purpose.

Full-blown modular frameworks closer in scope to VPP
are [1, 2, 5, 12]. VPP shares with Click [1] the goal of
building a flexible and fully programmable software router.
Whereas the original Click cannot be listed among KBstacks

5http://dpdk.org
6https://www.iovisor.org/technology/xdp
7https://www.opendataplane.org/

applications (as it requires a custom kernel, and runs in
kernel-mode), a number of extensions [2, 5, 12] have brought
KBstacks elements into Click, e.g. introducing support for HW
multiqueue [5], batching [12], and high-speed processing [2].
Important differences among Click (and variants) and VPP
arise in the scheduling of packets in the processing graph
(cfr. Sec.III). Finally, the recently proposed MoonRoute [13]
heavily uses a multi core scheduling where there are several
fast path components distributed to different CPU cores and a
single slow path component.

III. VPP ARCHITECTURE

Initially proposed in [3], VPP was recently released as open
source software, in the context of the Fast Data IO (FD.io)
Linux Foundation project8. VPP is a user-space high-speed
framework for packet processing, designed to take advantage
of general-purpose CPU architectures. VPP can exploit the
recent advances in the KBstacks low-level building blocks
described above: as such, VPP runs on top of DPDK, netmap,
etc. (and ODP, binding in progress) used as input/output nodes
to the VPP processing. It is to be noted that non-KBstacks
interfaces such as AF_PACKET sockets or tap interfaces are
also supported.

In contrast with frameworks whose first aim is performance
on a limited set of functionalities, VPP is feature-rich: it
implements a full network stack, including layer-2 and 3
functionalities, which follows from the fact that the VPP
technology was included in Cisco router products since about
a decade. Furthermore, the release of VPP as open source
software fueled the development of novel features, in particular
for layer-4 (and above) functionalities, which are currently in
an active development phase, and that enable the use of VPP as
a framework for data-center and NFV environments, as early
introduced. For the sake of the example in the rest of the paper
we focus on layer-2 and 3 functionalities.

The VPP main loop follows a “run-to-completion” model.
First a batch of packets is polled using a KBstacks interface
(like DPDK), after which the full batch is processed. Poll-
mode is quite common as it increases the processing through-
put in high traffic conditions (but requires 100% CPU usage
regardless of the traffic load conditions). A unique fieature of
VPP is that its natively executes per-node batch processing to
increase the processing troughput.

VPP consists of a set of low-level libraries for realizing
custom packet processing applications as well as a set of
high-level libraries implementing a specific processing task
(e.g. l2-input, ip4-lookup) representing the main core
of the framework. User-defined extensions, called plugins,
may define additional functionalities or replace existing ones
(e.g., flowperpkt-plugin, dpdk-plugin). The main
core and plugins together form a forwarding graph, which
describes the possible paths a packet can follow during its
processing.

More specifically, VPP allows three sets of nodes: namely
process, input, and internal (which can be terminating leaves,
i.e, output nodes). Process nodes do not participate in the

8https://fd.io



3

packet forwarding graph, being simply software functions
running on the main cores9 and reacting to timers and events.
Input nodes abstract a NIC interface, and manage the initial
vector of packets. Internal nodes are traversed after an explicit
call by an input node or another internal node. For some
nodes, a set of fine-grained processing tasks (aka features10 in
VPP’s terminology) can be activated/deactivated on demand
at runtime.

VPP architecture adopts all well-known KBstacks tech-
niques discussed in Sec.II, to which it adds a design
(Sec.III-A) and coding practices (Sec.III-B) that are explicitly
tailored to (i) minimize the data cache misses using data
prefetching, (ii) minimize the instruction cache misses, (iii)
increase the instructions per cycle that the CPU front-end can
fetch, and that we describe in what follows.

A. Vectorized processing

The main novelty of VPP is to offer a systematic way to
efficiently process packets in a “vectorized” fashion: instead of
letting each packet traverse the whole forwarding graph, each
node processes all packets in a batch, which provides sizable
performance benefits (cfr. Sec.IV-B). Input nodes produce a
vector of work to process; then, the graph dispatcher pushes
the vector through the directed graph, subdividing it as needed,
until the original vector has been completely processed. At that
point, the process recurs. Packets may follow different paths
within the forwarding graph (i.e., vectors may be different
from node to node). While it is outside the scope to provide
a full account of all the available nodes, Fig.1 compactly
depicts a subset of the full VPP graph (comprising 253 nodes
and 1479 edges) and the vectorized processing. We consider
a case of a vector consisting in a mixture of traffic, and
then focus on classical IPv4 processing for the sake of the
example. Notice how the overall processing is decoupled in
different components, each of them implemented by a separate
node. VPP’s workflow begins with a node devoted to packet
reception (dpdk-input), and then the full vector is passed to
the next node dealing with packet parsing (l2-input). Here
the vector can be split in case of multiple protocols to process.
After this step, we enter the IPv4 routing procedure (split
in ip4-input, ip4-lookup, ip4-rewrite). The work-
flow finally ends in a forwarding decision (l2-forward). A
drop decision may be taken at every step (error-drop).

Advantages of vectorized processing: In a classic “run-to-
completion” [1, 2] approach, different functions of the graph
are applied to the same packet. This generates a significant
performance penalty, due to several factors. (i) The instruction
cache miss rate increases when a different function has to be
loaded and the instruction cache is already full. (ii) There is
a sizable framework overhead tied to the selection of the next
node to process in the the forwarding graph and to its function
call. (iii) It is difficult to define a prefetching strategy that
can be applied to all nodes, since the next execution node

9VPP features its own internal implementation of cooperative multitasking,
which allows running of multiple process nodes on the main core.

10Which are not functions and thus do not incur function call overhead.

is unknown and since each node may require to access to a
different portion of the packet data.

VPP exploits a “per-node batch processing” to minimize
these effects. In fact, since a node function is applied to all
the packets in the batch, instruction misses can occur only for
the first packet of the batch (for a reasonable codesize of a
node). Moreover, the framework overhead is shared among all
the packets of the batch, so the per-packet overhead becomes
negligible when the batch size is of hundreds of packets.
Finally, this processing enables an efficient data prefetching
strategy. When the node is called, it is known which packet
data (e.g. which headers) are necessary to process the specific
feature. This allows to prefetch the data for the (i + 1)-th
packet while the node processes the data of the i-th packet.

Vector processing vs I/O Batching: In some sense, VPP
extends I/O batching to the upper layers of KBstacks pro-
cessing. However, if the goal of batching I/O operations
is to reduce the interrupt frequency, the goal of vectorized
processing is to decrease the overall numbers of clock cycles
needed to process a packet, amortizing the overhead of the
framework over the batch. These two goals are complementary.

Vector processing vs Compute Batching: It is worth
pointing out that tools such as G-opt [14], FastClick and
the pipelines of the DPDK Packet Framework do offer some
form of “Compute Batching”, which however barely resemble
to batching in VPP only from a very high-level view, as
several fundamental differences arise on a closer look. In G-
opt batching serves only the purpose of avoiding CPU stalls
due to memory latency. The pipeline model of DPDK Packet
Framework is used to share the processing among different
CPUs and is not focused on improving the performance on a
single core. Instead, FastClick “Compute Batching” (see Sec
5.7 in [2]), is close in spirit to VPP.

However, the functions implemented in any VPP node are
designed to systematically process vectors of packets. This
natively improves performance and allows code optimiza-
tion (data prefetching, multi-loop, etc). In contrast, nodes in
FastClick implicitly process packets individually, and only
specific nodes have been augmented to also accept batched
input. Instead, per-vector processing is a fundamental primitive
in VPP. Vectors are pre-allocated arrays residing in contiguous
portions of memory, which are never freed, but efficiently
managed in re-use lists. In FastClick, batches are constructed
by using the simple linked list implementation available in
Click, with significantly higher memory occupancy (inherently
less cacheable) and higher overhead (adding further 64-bits
pointers to manage the list).

Ultimately, these low-level differences translate into quite
diverse performance benefits. VPP’s vectorized processing is
lightweight and systematic: in turn, processing vectors of pack-
ets increase the throughput consistently, and our measurements
confirm that the treatment of individual packets significantly
speeds up. In contrast, opportunistic batching/splitting over-
head in FastClick, coupled to linked list management yields
limited achievable benefits in some cases and none in others
(e.g., quoting [2], in “the forwarding test case [. . . ] the
batching couldn’t improve the performance”).



4

B. Other low-level code optimization techniques

As mentioned before, batch processing in VPP enables addi-
tional techniques to exploit all lower-level hardware assistance
in user-space processing.

Multi-loop: We refer to multi-loop as a coding practice
where any function is written to explicitly handle N packets
with identical processing in parallel: since computations on
packets i, . . . , i +N are typically independent of each other,
very fine-grained parallel execution can be exploited letting
CPU pipelines be continuously full. The CPU front-end can
in fact execute in parallel several instructions applied to data
coming from different packets in the same clock cycle. Sec. IV
verifies the efficiency of this technique, by measuring the IPC
achievable enabling or disabling multi-loop for some example
VPP nodes. This technique provides significant performance
improvements for certain processing nodes (see Sec. IV for
details) but it presents two limitations: (i) the multi-loop
technique is applied writing C code that is explicitly parallel11

(the programmer leverages C template code to write multi-loop
functions); (ii) the multi-loop technique increases the number
of IPC removing data dependency, but does not provide benefit
when the performance bottleneck is due to the number of
memory accesses.

Data prefetching: Once a node is called, it is possible to
prefetch the data that the node will use for the i+1-th packet
while processing the i-th packet. Prefetching can be combined
with multi-loop, i.e. prefetching data for packets from i + 1
to i + N while processing packets from i − N to i. This
optimization does not work at the vector bounds: for the first
N packets of the batch no prefetching is possible, while for the
last N packets there is no further data to prefetch. However,
since in the standard setting VPP uses a quad-loop (N =
4) or a dual-loop (N = 2), and the vector size is 256, this
effect is negligible. We verify in the Sec. IV the efficiency of
this technique by measuring IPC with prefetching enabled vs
disabled.

Function flattening: In VPP a majority of graph nodes
make use of inline functions. This avoids the cost of reshuf-
fling registers to comply with the Application Binary Interface
(ABI) calling convention and avoids stack operations. As a
beneficial side effect, flattening likely yields to additional op-
timizations by the compiler (e.g., removing unused branches).

IV. EXPERIMENTAL RESULTS

This section describes the experimental setup (Sec.IV-A)
we use to assess the impact of VPP architectural choices
(vector size, Sec.IV-B) and coding practices (multi-loop and
data prefetching Sec.IV-C). While this paper reports a limited
set of experiments, an extended set of results is available in
[15] for the interested reader.

A. Setup

Hardware: Our hardware setup consists in a server with
2× Intel Xeon Processor E52690, each with 12 physical
cores running at 2.60 GHz in hyper-threading and 576KB

11Automating the deployment of multi-loop functions is an on going work.

(30MB) L1 (L3) cache. The server is equipped with 2× Intel
X520 dual-port 10Gbps NICs, that are directly connected with
SFP+ interfaces. The server runs a vanilla Linux kernel 4.8.0-
41 (Ubuntu 16.04.3). Since we are interested into gathering
insights on the performance gains tied to the different aspects
of the whole VPP architecture, as opposed to gathering raw
absolute performance data for a specific system, we study
per-core performance – intuitively, provided a good lock-
free multi-threaded application design, the overall system
performance can be deduced by aggregating the performance
of individual cores.

Metrics: As observed in [4], performance of switch-
ing/routing functionalities are dominated by per-packet oper-
ations: for a given bandwidth, minimum size packets require
more CPU cycles to be processed, and therefore corresponds
to the maximum packet dropping rate. In fact, most of the
clock cycles are used to process the packet headers, while the
payload processing requires very few clock cycles. Therefore,
the processing time per byte is worst in case of minimum size
packets. To stress the system, we thus measure the VPP packet-
level processing rate R for the 64B packets, corresponding to
14.88 Mpps. Of the two NUMA nodes, one is used as Traffic
Generator and Sink (TGS), the other as the System Under Test
(SUT): the TGS generates via DPDK synthetic traffic that is
the input workload to the VPP SUT, which is sent back to the
TGS that measures VPP processing rate.

Scenarios: To gather results representative of different net-
work operations, we consider different input workloads (where
the L2/L3 addresses are either static or vary in a round-robin or
uniformly random fashion) and processing tasks (such as pure
IO, Ethernet switching and IPv4 and IPv6 forwarding). Due to
space limitations, we refer the reader to an extended technical
report [15] for details and, in line with the push toward
research reproducibility, we make all scripts available12.

B. Vector size

The VPP input node works in polling mode, processing a
full batch of packets from the NIC: during this time frame,
which depends on the duration of the packet processing tasks,
further packets arrive at the NIC. The size of the actually pro-
cessed vector cannot therefore be directly controlled, though it
is possible to cap its maximum size. In the default VPP 17.04
branch, the VLIB_FRAME_SIZE is set to 256 by default, but
it can be tuned at compile time (to a minimum of 4 packets,
due to quad-loop operations in some nodes).

Fig.2 presents a set of metrics gathered from three main use
cases, namely (i) Cross-connect (XC) case, (ii) a IP longest-
prefix-match forwarding and (iii) a mixed traffic (MIX) in
which the incoming traffic activates L2, IPv4 and IPv6 nodes.
In the XC case, packets are purely moved from the SUT input
to the SUT output port without processing. In the IP case,
a longest-prefix matching lookup is performed from a FIB
comprising over 130,000 entries to select the output interface
(in this setup, the one towards the TGS). In the MIX case, 1/3
of the traffic is forwarded at L2, while the remaining 1/3 IPv4
and 1/3 IPv6 traffic is managed by the IPv4 and IPv6 nodes.

12http://newnet.telecom-paristech.fr/index.php/vpp-bench



5

The plots in Fig.2 depict a set of key performance indicators
(y-axis) as a function of the vector size (x-axis). Experiments
are repeated 10 times, so that in addition to the average of the
metric of interest, we additionally report the minimum and
maximum values13 over the repetitions.

The per-core packet processing rate in Mpps is reported in
Fig.2-(a): for all cases, the packet processing rate increases
linearly with the vector size, up to a saturation point where
increasing the size further does not bring noticeable benefits.
When the vector size becomes too large (greater than 512
packets), a slight penalty arises, probably due to the overhead
of managing a larger memory portion. This holds across all
types of processing function: interestingly, for the IP case,
a single core is able to forward over 8 million packets per
second, for a fairly large FIB. In a sense, the XC gap with
the 14.88Mpps line rate can be considered as a measure of
the VPP framework overhead (see [15] for a more detailed
comparison with DPDK l3fwd). We also remark that, that
while VPP is able to sustain the 14.88Mpps line rate for XC
and IP on on a single core for different architectures [15],
however we prefer to report conservative results in this paper:
while quantitative results may vary, the observations we gather
here are qualitatively valid to a larger extent.

Increasing the frame size also increases the average per-
packet latency: for all the traffic cases, the knee in the
curve at about 256 packets-per-vector corresponds to a sweet-
spot with maximum throughput and bounded maximum delay.
Measuring the per-packet latency of this operational point
with an input rate set to 99% of the lossless throughput
(i.e., close to overload), we observe an average latency of
10.7µs, 16.7µs and 35.5µs for the XC, IP and MIX scenario
respectively. Furthermore, 99-th and higher percentiles of the
latency distribution are of the same order of magnitude of the
mean [15], which testifies predictable performance.

Fig. 2-(b) shows the average number of instructions per
packet with respect to the vector size. The decrease of the
number of instructions relates to the amount of code that is
executed just once per vector (e.g., call of the input DPDK
function, scheduling of the node graph, etc.), and that repre-
sents the overhead of the processing framework. Even if this
overhead in directly related to the VPP framework, we argue
that any kind of software-based packet processing framework
will experience similar overhead. Instead of optimizing the
code to minimize this overhead, an easier and most efficient
solution consists in sharing this overhead over several packets,
as VPP does.

Fig. 2-(c) reports the average number of instructions per
clock cycle (IPC), which is related to the ability of VPP
to optimize the code execution by leveraging multi-loop and
prefetching strategies discussed in Sec. III-B. As we can see,
the IPC significantly increases when the vector size grows up
to 256. In particular, for the XC case the increase is around
10%, while for the IP forwarding case it is around 20%.

Finally, Fig. 2-(d) shows the average L1 instruction-cache
misses occurred for each packet: as expected the miss rate

13We prefer to report the full range since performance are tightly clustered
around the mean and 95% confidence intervals are hardly distinguishable.

decreases when the vector size increases, thus avoiding stalling
in the CPU pipeline and improving the processing capabilities.
The number of misses in the instruction cache is relatively
small in modern CPU. In fact, we observe that the percentage
of cache miss is between 0.3% (when the max vector size is 4
) and 0.05% (when the max vector size is 256 or above) in our
experiments. An L1 instruction-cache miss requires to access
to the L2 level cache, and each miss has a penalty of around
10 clock cycles: the reduction of i-cache miss rate corresponds
to a saving of roughly 30-40 clock cycles for each processed
packet.

C. Multi-loop

Fixing VLIB_FRAME_SIZE to 256, we next consider the
impact of multi-loop programming practice due to the in-
struction parallelization (improvement in terms of IPC) and
prefetching (avoiding stalls due to data cache misses). Fig. 3
reports the number of cycles per packet obtained by enabling
and disabling the quad-loop and pre-fetching options, for IPv4
and IPv6 processing. While the difference between IPv4 and
IPv6 is ties to the data structures used for lookups (tries for v4
and [15] hash-tables for v6, cfr. [15]), the figure clearly shows
that the quad-loop technique sizeably reduces the number of
clock cycles both when prefetching is enabled (25% for IPv4)
or disabled (16%).

Additionally, we stress that these gains are consistent across
a wide range of input workloads: notably, the largest observed
discrepancy for XC, IP and MIX scenarios considering random
uniform, deterministic or round-robin spatial variation of input
traffic tops to just 8% in the MIX case with very large FIBs
(with 138K elements) and is otherwise negligible [15].

V. CONCLUSION

This paper introduces Vector Packet Processing (VPP), a
feature-rich high-performance software router, by illustrating
its main novelty from an architectural viewpoint, as well
as briefly assessing its performance. With respect to known
techniques for high-speed software processing, VPP extends
batching from pure I/O (which merely reduces interrupt
pressure) to complete graph processing (which amortizes
the software framework overhead). The low-level vectorized
processing primitive offered by VPP is key to its performance,
as it increases both data cache hit rate (with prefetching) and
instruction cache hit rate (inherently, since the same node
functions are repeated over packets in the batch), as well as
increasing the processor IPC (using multi-loop).

ACKNOWLEDGMENTS

This work has been carried out at LINCS (http://www.
lincs.fr) and benefited from support of NewNet@Paris, Cisco’s
Chair “NETWORKS FOR THE FUTURE” at Telecom ParisTech
(https://newnet.telecom-paristech.fr).

REFERENCES

[1] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek. The Click
Modular Router. Operating Systems Review, 34(5):217231, 1999.



6

[2] T. Barbette, C. Soldani, and L. Mathy. Fast userspace packet processing.
In ACM/IEEE ANCS, 2015.

[3] D. Barach and E. Dresselhaus. Vectorized software packet forwarding,
June 2011. US Patent 7,961,636.

[4] L. Rizzo. netmap: a novel framework for fast packet I/O. In USENIX
ATC, 2012.

[5] M. Dobrescu et al. Routebricks: exploiting parallelism to scale software
routers. In SIGOPS, 2009.

[6] D. Cerovi, V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle. Fast
packet processing: A survey. IEEE Communications Surveys & Tutorials,
2018.

[7] L. Deri et al. Improving passive packet capture: Beyond device polling.
In Proc. of SANE, 2004.

[8] S. Gallenmller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle. Com-
parison of frameworks for high-performance packet io. In ACM/IEEE
ANCS, 2015

[9] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-accelerated
software router. In ACM SIGCOMM, 2010.

[10] P. M. Santiago del Ro, D. Rossi, F. Gringoli, L. Nava, L. Salgarelli,
and J. Aracil. Wire-speed statistical classification of network traffic on
commodity hardware. In ACM IMC, 2012.

[11] D. Perino, M. Varvello, L. Linguaglossa, R. P. Laufer, and R. Boislaigue.
Caesar: a content router for high-speed forwarding on content names. In
ACM/IEEE ANCS, 2014.

[12] J. Kim, S. Huh, K. Jang, K. Park, and S. Moon. The power of batching
in the click modular router. In Asia-Pacific Workshop on Systems, 2012.

[13] S. Gallenmller, P. Emmerich, R. Schnberger, D. Raumer, and G. Carle.
Building fast but flexible software routers. In Proceedings of the Sym-
posium on Architectures for Networking and Communications Systems,
pages 101102. IEEE Press, 2017.

[14] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen. Raising the bar
for using gpus in software packet processing. In USENIX NSDI, 2015.

[15] L. Linguaglossa et al. High-speed Software Data Plane via Vec-
torized Packet Processing (Extended Version). In Tech.Rep. avail. at
https://newnet.telecom-paristech.fr/ index.php/ vpp-bench/, 2017.

BIOGRAPHIES

David Barach is a Cisco Fellow specializing in networking
data-plane codes. He is the inventor of the Vector Packet
Processor code: before the recent open-source release, VPP
principles were implemented in most of the high-speed Cisco
routers.

Leonardo Linguaglossa is a post-doctoral researcher at
Tlcom ParisTech (France). He received his master degree
in telecommunication engineering at University of Catania
(Italy) in 2012. He pursued a Ph.D. in Computer Networks
in 2016 through a joint doctoral program with Alcatel-Lucent
Bell Labs (nowadays Nokia), INRIA and University Paris 7.
Leonardo’s research interests focus on architecture, design
and prototyping of systems for high-speed software packet
processing, future Internet architecture and SDN.

Damjan Marion is a Principal Engineer of the Chief
Technology and Architecture Office (CTAO) at Cisco
Systems. He is a regular commiter of many open source
projects, among which the Fast Data I/O project (FD.io) and
of the VPP source code relase in particular.

Pierre Pfister is a Software Engineer at Cisco. He received
a MSc from the Ecole Polytechnique in 2012. He is an active
participant and author at IETF (homenet, 6man, bier and
hackathons) and co-developed the reference implementation
of HNCP on OpenWrt platform. He is now commiter to
FD.io and active contributor to the VPP project.

Salvatore Pontarelli received a master degree in electronic
engineering at University of Bologna and the PhD degree
in Microelectronics and Telecommunications from the
University of Rome Tor Vergata. Currently, he works as
Senior Researcher at CNIT (Italian National Inter-University
Consortium for Telecommunications), in the research unit
of University of Rome Tor Vergata. His research interests
include hash based structures for networking applications, use
of FPGA for high speed network monitoring and hardware
design of software defined network devices.

Dario Rossi received his MSc and PhD degrees from
Politecnico di Torino in 2001 and 2005 respectively, and his
HDR degree from Universit Pierre et Marie Curie (UPMC)
in 2010. He is currently a Professor at Telecom ParisTech
and Ecole Polytechnique and is the holder of Cisco’s Chair
NewNet@Paris. He has coauthored 9 patents and over 150
papers in leading conferences and journals, that received 8
best paper awards, a Google Faculty Research Award (2015)
and an IRTF Applied Network Research Prize (2016). He is
a Senior Member of IEEE and ACM.


