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ABSTRACT
IP anycast is a commonly used technique to share the load of a

variety of global services. For more than one year, leveraging a

lightweight technique for IP anycast detection, enumeration and

geolocation, we perform regular IP monthly censuses. This paper

provides a brief longitudinal study of the anycast ecosystem, and

we additionally make all our datasets (raw measurements from

PlanetLab and RIPE Atlas), results (monthly geolocated anycast

replicas for all IP/24) and code available to the community.
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KEYWORDS
IP anycast; IP Census; BGP; Geolocation; Network monitoring

1 INTRODUCTION
IP anycast is an important building block of the current Internet,

primarily used to share the load of a variety of global services [34]

– from DNS, to DDoS protection, to CDNs and content distribution,

to even BitTorrent trackers and Internet radios [41]. At the same

time, IP anycast remains largely unknown from an operational

viewpoint: whereas DNS and large CDN operators publish maps

of their catchments, these maps cover only a small fraction of

the available anycast services [24], and are additionally seldom

outdated [25, 37].

Internet service providers would thus bene�t, for their opera-

tional needs, to have a comprehensive and updated view of any-

cast catchments. Knowledge of IP anycast is instrumental not only

for characterization, troubleshooting [64] and infrastructure map-

ping [4] but also for security-related tasks such as censorship de-

tection [59]. Yet, detailed knowledge and understanding of IP any-

cast in the scienti�c literature is generally limited to one or few

deployments [19–22, 27, 30, 38, 49, 53, 54, 62, 65]. Fewer studies

provide a broad spatial viewpoint [24, 55] and even fewer a tempo-

ral view [64]. This work focuses on a broad and longitudinal view
of anycast evolution, that to the best of our knowledge has yet to

appear.

This paper is built on our own previous work [24, 26]. Shortly,

[26] introduces a methodology that is able to (i) assert whether an

IP is anycast, (ii) enumerate the replicas and (iii) geolocate them. It

uses a set of latency measurement from a distributed set of vantage

points with known location towards the same IP target. Our previ-

ous work [24] applies this methodology at scale, geolocating all the

replicas for all IPv4 anycast at IP/24 level, through four censuses

that refer to the same snapshot in time (March 2015).

In this work, we extend �ndings in [24] along the temporal

dimension, providing an analysis of monthly snapshots collected

over more than a year-long period. Particularly, we adopt a coarse

time granularity, so that we assume visibility of anycast replicas to

be tied to long-term changes in the anycast catchment, as opposite

to as being related to short-term dynamics of anycast deployments

(such as temporary unavailability as in [64]).

Summarizing our main contributions:

• we conduct monthly anycast censuses at IP/24 level from

distributed PlanetLab nodes, and conduct additional mea-

surements from RIPE Atlas;

• we run our anycast geolocation algorithm [26] to build

monthly snapshots of anycast at IP/24, BGP announcement

and AS levels, that we export as interactive tables and maps;

• based on these censuses, we provide the �rst bird-eye view

of IPv4 anycast from both a spatial and a temporal view-

point.

The rest of this paper puts this work in perspective with related

e�ort (Sec.2), then describe our campaign (Sec.3) and comment

our main �ndings (Sec.4). To empower the community with up-

to-date knowledge about the current state of anycast, as well as

to enable further studies, we make all our raw dataset, results and

code available at [6].

2 BACKGROUND
Anycast servers enumeration and geolocation is part of a broader

e�ort from the research community to geographically map the phys-

ical Internet infrastructure and identify its various components [31],

possibly at scale, that we overview in the following.

Infrastructure mapping. Techniques designed for application-

level anycast are not applicable with IP-level anycast. As such,

there are only a handful of techniques that allow to detect [55],

enumerate [37] or also geolocate [26] IP anycast replicas.

Database-based techniques, that are unreliable with IP unicast [60],

fail by de�nition with IP anycast, since they report a single geolo-

cation per IP. Further, mapping techniques that exploit the EDNS-

client-subnet (ECS) extension [23, 63] fail with anycast. Techniques

relying on speed-of-light violation from ICMP measurements and

Border Gateway Protocol (BGP) feeds [55] limitedly allow to detect

anycast, but fail to provide replica geolocation. Techniques based

on DNS queries of special class (CHAOS), type (TXT), and name

(host-name.bind or id.server) provide reliable enumeration [37] but

are DNS-speci�c and thus unsuitable to cover all services. While

latency-based IP unicast geolocation [36, 43] is well understood,

triangulation techniques do not apply in case of anycast, so that to

the best of our knowledge, our previous technique [26] is the �rst

one able to provide accurate geolocation of anycast replicas by only

leveraging protocol-agnostic delay information. While it is outside

the scope of this work to fully recall details of our technique [26],
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we need to brie�y cover it to both make this paper self-contained,

as well as to recall its limitations.

Anycast geolocation overview. In a nutshell, the technique builds

on inferring IP anycast by detecting speed-of-light violations via

latency measurements: i.e., as packets travel slower than speed of

light, an US and EU host probing the same target cannot both ex-

hibit excessively low latency (e.g., few milliseconds), as this would

violate physical laws. While this observation is not new [55], our

iGreedy technique [26] phrases the problem in terms of �nding

the maximum number of vantage points that are in such violation:

by de�nition, these vantage points all contact a di�erent anycast

replica of the same IP target t . By extension, the location of a van-

tage point i that is found violating the speed-of-light constraint

assists in geolocating the replica of t contacted by i: by de�nition,

this replica is contained into a circle centered in the vantage point

i and that stretches by at most the distance that the probe packet

can have traveled during RTTi,t /2. Finding anycast replicas boils

then down to �nding the maximum number of non-overlapping

disks, i.e., solving a a Maximum Independent Set (MIS) optimization

problem. It turns out that, with the goal of attaining city-level preci-

sion, a very simple yet very good criterion is to choose the position

of the most inhabited city as likely location of the anycast replica

t . This follows from the fact that the decision to add an anycast

replica, follows from the goal of ameliorate the performance for a

large fraction of users, which live in large cities (interestingly, this

was already used to bias geolocation of unicast addresses [35]).

Overall, the technique is protocol agnostic, reliable in IP anycast

detection (since detection just requires to �nd any two disks that

do not overlap among the hundreds of latency measurements) and

exhibits high recall (i.e., over the 75% of all contacted replicas are

correctly discriminated [26]): at the same time, we expect the enu-

meration to be a lower bound with respect to (i) the actual number

of deployed replicas as well as (ii) the enumeration obtained by a

protocol-speci�c technique. As for (i), it is intuitive that in case

a deployment is con�ned in a region where there the measure-

ment infrastructure has few vantage points (e.g., Africa, Asia), then

these replicas cannot be measured. As for (ii), consider further that,

due to additional processing, queuing and transmission delays, the

propagation latency measurements are a�ected by noise
1
, which

can hinder the ability of the algorithm to �nd non-overlapping

disks. For instance, two ICMP noisy latency measurements that hit

separate DNS root replicas in neighboring cities will possibly yield

to overlapping disks, whereas two DNS CHAOS queries destined

to the same replicas would very likely bring di�erent DNS CHAOS

information. It follows that results will be conservative by design

in the assessment of the anycast geographic footprint. At the same

time, the technique o�ers high precision (i.e., allow city-level geolo-

cation) and accurate geolocation (i.e., over 75% geolocations match

at city-level, and the average error in the remaining erroneous case

is 384 Km [26]). Finally, despite results depend on the coverage of

the measurement infrastructure, and the selection of its vantage

1
Over 90% of the measurements maps to disks that exceed 1000 Km in radius[26]

points (which we discuss further in Sec.3), we expect the detected

replicas to be accurately located.

Anycast characterisation. Research on anycast has so far preva-

lently focused on either architectural modi�cations [19, 38, 39, 50]

or on the characterization of existing anycast deployments. Overall,

a large fraction of these studies quantify the performance of any-

cast in current IP anycast deployments in terms of metrics such as

proximity [19, 20, 27, 54, 62], a�nity [19–22, 53, 54, 62], availability

[20, 49, 53, 62], and load-balancing [20]. Interestingly, while the

body of historical work targets DNS, more recent works [38, 53]

have tackled investigation of anycast CDN performance (e.g., client-

server a�nity and anycast pre�x availability for the CacheFly CDN).

More recently, [30] investigates DNS root servers, outlining a rule of

thumb to determine the right number of anycast replicas, whereas

[64] investigates a�nity of DNS root servers over a period of two

weeks in two di�erent years. We are not aware of any other stud-

ies presenting a more systematic temporal analysis than [64], and

clearly none targeting a larger spatial set than DNS root servers.

In [24] we leverage measurement infrastructures, namely Planet-

Lab and RIPE Atlas, to perform Internet-scale census of IP anycast,

by actively probing all /24 subnets and geolocating anycast replicas,

�nding that only a tiny fraction (0.03%) of IP/24 are anycast – i.e.,

it appears that �nding anycast deployments is like �nding a needle

in the IP haystack. At the same time, by actively probing these

anycast targets, we also unveil that several major Internet players

do use anycast and that a wide variety of services are used. We

instead use a complementary approach in [41], where we passively
inspect the anycast tra�c at one speci�c DSLAM in EU, to assess

anycast actual usage in real networks: we �nd that users have a

50% chance to encounter anycast instances in their daily activities –

including even radio streaming sessions that last for hours, as well

as anycasted BitTorrent trackers.

However, while [24] and [41] present a very complete and de-

tailed view of the spatial characteristics of anycast deployment,

e.g. their geographical distribution, the services o�ered over any-

cast (active inspection) and their usage (passive monitoring), these

studies represent a snapshot at a �xed point in time. As such, they

are orthogonal with respect to the focus of this work, that instead

presents a longitudinal study of anycast, based on monthly censuses

we run since December 2015.

Internet Censuses. In the past, several studies focused their at-

tention on scaling active scanning techniques to provide broad

spatial surveys of the Internet infrastructure [3, 45–47]. Given the

initial lack
2

of high-rate scanning tools, researchers have studied

sample of the Internet-space [47] or have splitted the IPv4 space

over multiple vantage points [3, 45, 46] or completed the scans in

an extended period of time. Since 2006, authors of [45] measure

periodically the population of visible Internet edge hosts (at IP/32

level) from eight di�erent vantage points in two di�erent locations,

providing an IPv4 hitlist (one likely alive IP/32 target per IP/24),

that we leverage in our work. In 2008, authors in [28] scanned the

Internet to �nd DNS servers that provide incorrect resolutions. In

2010, the IRLscanner tool allowed to scan the IP/32 Internet in about

2
Recently �lled up by tools such as IRLscanner [52], Zmap[17, 33] or Masscan[7].
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24 hours, and results from 21 Internet-wide scans using 6 di�erent

protocols have then been presented in [52]. In 2012, the (highly

discussed[51]) Carna Botnet [3] has used 420k insecure embedded

devices to build a distributed port scanner to scan all IPv4 addresses

using nmap [8].

In the recent years, the situation has drastically changed with

the advent of new network scanner tools as ZMap [17, 33] and

Masscan [7], able to achieve scan rates in excess of 10 Mpps, which

let a IP/32 census complete in less than �ve minutes. This has led to

a huge increase of sporadic and regular scans, including malicious

ones: as documented in [32], using a network telescope, authors

detected over 10 million scans from about 1.5 million hosts dur-

ing January 2014. These are mainly regular scans, with daily [9] or

lower frequencies [57, 61]. Despite only a tiny fraction of these scans

target more than 1% of the monitored IPv4 address space, they gen-

erate the majority of the unsolicited tra�c hitting the darknet[32].

Anycast censuses, such as those we performed in [24], raise the

spatial requirement to another level, since the same target needs

to be actively probed from multiple (speci�cally, hundreds [26])

vantage points. As such, to the best of our knowledge, we are not

aware of any IPv4 anycast census studies except [24].

3 MEASUREMENT CAMPAIGN
Targets. For the selection of the targets, we rely on the USC/LANDER

hitlist [1], providing a list of (likely alive) target IP/32 host per each

/24 pre�x. Every two months the list is updated, and so our target

selection. We only consider hitlist IPs that have been successfully

contacted (i.e., denoted by a positive score [1]), which leaves us

about 6.3 millions potential targets (out of 14.7 millions).

We argue that /24 is a reasonable granularity since (in princi-

ple) IP-anycast is subject to BGP pre�x announcement that should

not (but seldom are) more speci�c than /24. Additionally, while in

principle we could use one IP/32 per each announced BGP pre�x,

[5] observes that pre�xes longer than /24 have low visibility: as

such, we limit the granularity to IP/24 level (i.e., one IP/32 per /24)

targeting less than 0.4% of the whole address space in our scans.

Platforms. Several measurement platforms [10–12, 42] exist, they

have di�erent characteristics in terms of vantage points cardinality,

Autonomous System (AS) diversity, geographic coverage and limits,

in terms of probing tra�c or rate [18]. We want to stress that di�er-

ences in the results of the anycast geolocation process may be tied

to the platform characteristics itself. For instance, notice that Plan-

etLab servers are generally hosted in Universities, whereas RIPE

Atlas deployment is more widespread o�ering a better coverage

at AS-level: some anycast replicas have an AS-local visibility and

therefore happens to be observable only provided that the mea-

surement infrastructure has a vantage point in that AS. Remind

that anycast detection is a problem with a binary outcome, which is

easier to solve than the full enumeration and geolocation problems:

in particular, a hundred vantage points allow to detect over 90% of

anycast deployments comprising just two replicas [40].

As such, in this paper we make use of two platforms, namely

PlanetLab [12] and RIPE Atlas [10], that we select due to their

complementarity. Speci�cally, PlanetLab does not enforce a speci�c

probing limit, nor implement a credit system: we use it to perform

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

20
15

-12

20
16

-02

20
16

-04

20
16

-06

20
16

-08

20
16

-10

20
16

-12

20
17

-02

20
17

-04

V
an

ta
ge

 P
oi

nt
s

RIPE Atlas
PlanetLab

PlanetLab VPs
March 2015 [308]

Figure 1: Measurement campaign: evolution of number of
PlanetLab and RIPE Atlas VPs

exhaustive censuses to a large set of targets, that we expect to be

mostly unicast. Conversely, RIPE Atlas has better coverage: we use

it to re�ne the geolocation information concerning a speci�c subset

of targets, i.e., those that were found to be anycast with PlanetLab.

Vantage points (VP). We perform VP selection following the

guidelines in [26]: in PlanetLab, where the total number of VPs

is small (and decreasing), we simply select all the available ones;

in RIPE Atlas, where the number of VPs is large and due to cred-

its limit, we carefully select 500 VPs, making sure that each VP

is far from the others by at least 200 km (roughly 2ms). Similar

results can be obtained by clustering VP together geographically

and performing a strati�ed selection in each cluster [40].

Notice also that the selection of a limited number of VPs is neces-

sary to limit the measurement stress on the infrastructure, so that an

anycast IP/24 census generate roughly the same amount of probes

than a full IP/32 census. Clearly, increasing the cardinality and di-

versity of the VP set, as well as performing multiple measurements

to reduce the lantency noise (i.e., using the minimum over multi-

ple samples) would otherwise yield more complete and accurate

results [26]. We point out that these supplementary measurements

could be performed after the anycast detection step, signi�cantly

limiting the subset of IP/24 requiring additional probing.

Fig. 1 shows the evolution of the number of available vantage

points during our campaign. In the PlanetLab case, the number of

nodes available drastically decrease from 300 in March 2015 [24] to

roughly 50 in May 2017. In the case of RIPE Atlas, the decrease is due

to the fact that we launched a long-standing periodic measurement

in June 2016 with an initial set of VPs, some of which later become

unavailable. Interestingly, we will see that anycast results appears

to be consistent despite this decrease. As early stated, despite a

handful of carefully selected vantage points [40] allow to correctly
detect anycast deployments, it is clear that the shrinking size of the

available PlanetLab VP it is not adequate to thoroughly enumerate
all the locations of an anycast deployment – for which RIPE Atlas

measurements become necessary as we shall see.

Censuses. Anycast censuses require the same target to be probed

from multiple vantage points: to limit the intrusiveness of our

scans, and since we expect that changes in the anycast deployments

happen at a low pace, we decide to run scans at a monthly frequency.
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Figure 2: Measurement campaign: box plot of the number of
responsive unique IPs/24 across all PlanetLab VPs.

Our �rst anycast census dates back to March 2015 [24]. We then

re-engineered our system and started to run monthly censuses

from PlanetLab in December 2015. We kept tuning and improving

system performance and reliability until June 2016, date at which

we additionally started the measurements from RIPE Atlas. We

opted to strip down as much as possible the information collected

per VP, narrowing down to about 30MB per VP on average, so that

the (compressed) raw PlanetLab measurement data hosted at [6]

amount to about 60GB per year worth of censuses. The RIPE Atlas

measurement are publicly accessible via RIPE Atlas (measurement

identi�ers are at [6]).

Fig. 2 shows the number of unique IPs that responded to at least

one of our PlanetLab VPs in each census, and the right y-axis reports

this number as the fraction of replies from the contacted targets.

The shadowed part indicates the months where we were still up-

dating the system. Notably, we slowed down the probe rate per VP

to about 1,000 targets per second to comply with recommendations

in [44], noticing a decrease in the packet loss rate as a bene�cial

side e�ect. We can see that the total number of unique IPs is always

greater than the number observed by a single VP, and that it �uctu-

ates between 2,9 millions (May 2015) and 4,3 millions (Nov 2016)

coherently with [29, 66]. This number has increased since June 2016

when we started to regularly update the hitlist [1] (denoted with

crosses). However, notice that even with fresh hitlists not all targets

are responsive, which correlates with the availability score of the

targets: particularly, the average score for responsive targets (89)

is higher than the score of non-responsive ones (40). The �gure

also reports the distribution of responsive IPs per vantage points

(box plots): the recall varies widely per census, per VP, and over

time, with some VPs able to collect only few hundred ICMP replies.

Luckily, albeit the number of PlanetLab VPs decreases, the median

number of contacted targets consistently exceeds 3 millions.

4 RESULTS
This section provides a longitudinal view of anycast evolution. We

report both a broad picture including all deployments (Sec.4.1), as

well as a more detailed view by cherry-picking some representative

ones (Sec.4.2). Without loss of generality, we refer to the last (at

time of writing) year worth of censuses, collected between May

2016 and May 2017.

 0

 1000

 2000

 3000

 4000

 5000

 6000

2016-06
2016-08

2016-10
2016-12

2017-02
2017-04

PlanetLab

N
um

be
r 

of
 a

ny
ca

st
 IP

s/
24

5

10

15

 

 

 

 

 

 

 

2017-06

   Ripe

 5
 10
 20
 30
 40

 50

Figure 3: Broad longitudinal viewof anycast evolution:Num-
ber of IP/24 anycast deployments (y-axis) and breakdown of
their geographical footprint (heatmap and contour lines) in
PlanetLab (left, over the last year) vs RIPE Atlas (right, last
month).

4.1 Broad view
Longitudinal view. First, we assess the extent of variability of

anycast deployments. We start by considering an IP/24 granularity,

and depict in Fig. 3 the evolution of the number of IP/24 anycast

deployments, i.e., the number of deployments that have been found

to be anycast by running iGreedy[26] over PlanetLab measurements.

We recall that iGreedy requires to solve a Maximum Independent Set

(MIS) optimization problem for each of the over 4 million responsive

targets every month: the code available on GitHub [13] is able to

complete the analysis of a census in few hours, which returns the set

of geolocated replicas Gt for each responsive IP/24 target t . While

full details of the geolocation for each target and over all months

are available online as a Google-map interface[6], in this paper we

limitedly consider the footprint Gt = |Gt | of the deployment, i.e.,

the number of distinct instances irrespectively of their location.

The �gure shows that in our censuses, the number of anycast de-

ployments has slightly (+10%) increased in the last year, peaking in

April 2017 at 4729 IP/24 belonging to 1591 routed BGP pre�xes and

413 ASes. In the last six months, the number of anycast deployments

has never dropped below 4500 while in June 2016, when we started

the censuses regularly, we found only 4297 IP/24, 1507 BGP pre�xes

and 379 ASes. Compared to our previous results of March 2015 [24],

this represents a 2,5-fold increase in detected anycast instances over

a period of 2 years. This may be due to several reasons: part of it is

rooted in increased anycast adoption over time, whereas another

part is rooted in system improvements to reduce packet losses at

PlanetLab monitors (during the gray-shaded beta-testing period),

which increases the recall. This also means that results in [24] were

fairly conservatively assessing the extent of the anycast Internet.

Fig. 3 additionally encodes, as a heatmap, the estimated geo-

graphical footprintGt , where deployments are ranked from bottom

to top in ascending size (equivalently, darker colors). A few contour

lines indicate the cumulative number of deployments having no

more than 5, 10 or 15 replicas. Interestingly, Fig. 3 shows that, de-

spite a shrinking number of PlanetLab VPs, the number of anycast

IP/24 remains steady over time. Particularly, the number of deploy-

ments having few replicas (e.g., 5 or less) remains �at over time,
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hinting to the fact that the geographical coverage of PlanetLab is

still enough to correctly detect most anycast deployments.

Yet, as previously observed, the shrinking number of PlanetLab

VPs surely a�ects the completeness of the replica enumeration. We

thus complement PlanetLab censuses with a re�nement campaign

from RIPE Atlas, which is also reported in Fig. 3: during June 2017,

we target all IP/32 that have been found to be anycast in PlanetLab

during the previous year. Out of the overall 5841 IP/24s, approx-

imately 300 were not reachable in June 2017 and 5105 IP/24s are

con�rmed to be still anycast. Particularly, we used 500 RIPE At-

las VPs, i.e., about one order of magnitude more than PlanetLab,

which ensures a good geographic coverage (although, admittedly,

the results could be re�ned further by increasing the VP set and

the number of latency samples per VP). Thus, while PlanetLab may

provide a rather conservative lower bound of the actual footprint

for a target t , we expectGRIPE
t > GPL

t . Fig. 3 con�rms these expec-

tations: in several cases, the number of anycast instances discovered

in RIPE Atlas doubles with respect to PlanetLab, and the maximum

number exceeds 49 replicas (18 in PlanetLab). Overall, according

to RIPE Atlas, half of the deployments are in more than 5 di�erent

locations, but only few of them have more than 35 locations (in-

cluding DNS root servers, Verisign, Microsoft, WoodyNet Packet

Clearing House (PCH) and Cloud�are). Consider also that as a con-

sequence of the drop in the number of PlanetLab VPs in the the

last months, the largest footprint measurable from PlanetLab drops

as well (notice the sharp increase for deployments with at most 10

replicas). This con�rms that PlanetLab remains useful for anycast

detection, but also that RIPE Atlas becomes necessary for enumera-

tion and geolocation, reinforcing the need for a more systematic

coupling of complementary measurement infrastructures such as

PlanetLab and RIPE Atlas.

Aggregation level. Clearly, while we operate censuses at IP/24

level, it is then possible to aggregate the information at BGP or

AS level. Denoting with Sx the set of IP/24 included in a BGP-

announced pre�x (or an AS) x , we can de�ne the spatial IP footprint
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as Sx = |Sx |. By extension, we can de�ne the BGP-level (AS-level)

geographic footprint GB (GA) by considering only the largest IP/24

in the pre�x GB = maxt ∈SB Gt (GA = maxt ∈SA Gt ). To perform

this aggregation step, for each month in the census dataset, we

retrieve the AS and pre�x information using all the RIPE-RIS and

RouteViews collectors with BGPStream [58], and cross-validate the

information using the TeamCymru IP to ASn service [2].

The di�erent viewpoints are illustrated in Fig.4 that reports for

PlanetLab (top, all months) vs RIPE Atlas (bottom, last month) the

cumulative distribution function of the geographic footprint at

IP/24, BGP-announced pre�x and AS levels. The geographic foot-

print per-IP/24 vs per-BGP/AS varies widely, which is due to the

fact that the spatial distribution is highly skewed, so that ASes

making use of a large number of IP/24 are over-represented. Partic-

ularly, while more than 50% of the ASes (75% of BGP announced

pre�xes) make use of a single anycast IP/24, about the 10% of the

ASes (BGP pre�xes) hosts more than 10 anycast IP/24, topping to

384 (for 104.16.0.0/12) and 3016 (for AS13335). Since all three level of

aggregation have relevance to give an unbiased picture of Internet

anycast, we make available monthly snapshots with IP/24, BGP and

AS aggregations as tabular data [6], which is also browsable online.

Finally, as a rough measure of persistence of individual anycast

deployments, Fig.5 depicts a breakdown of the number of months

that these catchments are present in our censuses at IP/24, BGP

or AS levels. Notice that over 45% of anycast ASes (60% of anycast

IP/24) consistently appear in our measurements for the whole year

and 70% ASes (78% IP/24) appear at least 6 months. Only less than

10% deployments are seen only once.

4.2 Focused view
Top-10 deployments. We now provide a more detailed view of a

few selected ASes out of the 566 in our censuses. Particularly, Tab. 1

reports detail concerning the top-10 deployments (company name

and type, AS number and the number of BGP pre�xes announced

by that AS), the spatial footprint (i.e, the number SA of IP/24 per

AS and its temporal variability) and the geographical footprint (i.e,

the number GA of distinct replicas and its temporal variability).

To compactly represent the size of a deployment, we report the

maximum number S+A of observed anycast IP/24 over the last year
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Table 1: Focused view: Footprint variability of top-5 spatial
(top) and top-5 geographical (bottom) deployments.

Deployment footprint: Spatial Geographical

Company AS Type BGP S+A CVS G+A CVG

Cloud�are 13335 CDN 206 3016 0.04 49 0.07

Google 15169 SP 16 524 0.38 30 0.08

A�lias 12041 TLD 218 218 0.15 6 0.10

Fastly 54113 CDN 34 175 0.09 20 0.07

Incapsula 19551 DDoS 146 146 0.23 15 0.17

Cloud�are 13335 CDN 206 3016 0.04 49 0.07

L root 20144 DNS 1 1 0 47 0.13

F root 3557 DNS 2 2 0 40 0.19

Woodynet 42 TLD 132 133 0.02 39 0.12

Verisign 26415 Reg. 2 2 0 36 0.20

for that AS, as well as the G+A = maxGRIPE
A (t ) maximum number

of locations observed from RIPE Atlas (recall that the number of

locations is lower bound of the actual number of anycast replicas

due to additive noise in the propagation latency measurements).

The selection in Tab. 1 reports the top-5 in terms of S+A spatial

footprint (top) and the top-5 for G+A geographic footprint (bottom).

Considering the spatial footprint IP/24, Cloud�are (AS13335) has

a leading role: it is present in all the censuses with over 3 thousands

IP/24 belonging to about 200 announced pre�xes (mainly /20 but

also less speci�c pre�xes, as a /12 or a /17), and we did not observe

signi�cant variation over time. Furthermore, as con�rmed from

RIPE Atlas, the deployment has an heterogeneous geographical

footprint, with some /24 having only 10–15 instances, while in the

majority of the cases the /24 appear at over 40 distinct locations

(119 according to [14]). Notice that, this would had been unnoticed

if we had performed censuses at a di�erent granularity (i.e., one

IP/32 per BGP pre�x as opposite as to one IP/32 per IP/24 in that

pre�x). Few other companies have over 100 anycast IP/24 pre�xes

in our censuses. For instance, Google (AS15169) exhibits a 3-fold

increase in the number of IPs/24 in the last year (from 130 IPs/24

announced mainly by /16 in June 2016, to 330 IP/24 announced also

by 190 new /13 pre�xes in March 2017), the majority of which have

instances at more than 30 locations. Opposite behaviors are also

possible: for instance, the Fastly CDN (AS54113), shrunk its spatial

footprint, the majority of which belong to an IP/16 and regularly

appear in all our censuses. Interestingly, as early depicted in Fig. 3,

the overall aggregate of all anycast deployments (i.e., the number

of anycast /24 in the Internet and their geographical breakdown) is

stable despite the variability of the individual deployments.

The common way to deploy anycast is to announce an IP pre�x

from multiple points using the same AS [48], that we refer to Single

Origin AS (SOAS). Another way is to announce the IP pre�x using

multiple ASes, usually referred as Multiple Origin ASes (MOAS)

pre�xes. In our dataset, we identi�ed hundred IPs/24 as MOASes,

that are commonly announced by few siblings, i.e., di�erent ASes

belonging to the same organization that announce the same pre�x.

However we spot cases where the number of ASes is greater than

10: for instance, we �nd that Verisign announces MOASes with

17 di�erent ASes in the range of AS36617-AS36632; similarly, the
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Figure 6: Spatial footprint evolution: Number of IPs/24 for
selected anycast AS deployments (PlanetLab).

Registry and DNS company AusRegistry, announces MOASes with

13 di�erent ASes.

To compactly represent the spatial footprint evolution over time,

we use the coe�cient of variation, computed as the ratio of the

standard deviation over the average number of anycast IP/24 per

monthCVS = std(SA (t ))/E[SA (t )], From Tab. 1, we can see that for

deployments that have large spatial footprint (top), the variability

CVS can be important (e.g., Google or Incapsula), hinting to deploy-

ments that have grown (or shrunk) signi�cantly. Conversely, among

deployments with large geographical footprint, several have a very

small spatial footprint (S+A ≥ 2) and exhibit no variation CVS = 0.

Finally, as simple indicator of geographical footprint variability

we compute CVG = std(GPL
A (t ))/E[GPL

A (t )] from PlanetLab mea-

surements. Notably, we expect part of the variability to be due to

measurement imprecision: e.g., shrinking number of VPs, packet

losses and increased delay, can lead to underestimate the number

of distinct locations. Yet, as it can be seen from Tab. 1, we �nd that

the geographical variability is lower than the spatial one: this is

reasonable since, while spatial variability hints to con�guration

changes in software, the geographical one possibly hints to physical

deployments of new hardware.

Temporal variability. We now inspect temporal variability at a

�ner grain. We start by depicting in Fig.6 the temporal evolution

of the spatial footprint, normalized over the maximum observed

for that deployment (i.e., SA (t )/maxtS
+
A (t )) for catchments in the

top-5 (A�lias, Google) as well as for other key Internet players

(Microsoft, Akamai, Net�ix, Windstream). Evolutions represent a

sample of what can be found in our censuses: for instances the

two ASes reported in the picture owned by Akamai (AS21342)

and Ne�ix (AS40027) start being announced as anycast during our

observation period and either systematically (Akamai) or abruptly

(Ne�ix) increase the amount of responsive anycast IP/24 over time.

Google (AS15169) and Microsoft (AS8068) both have a sizeable

presence at the beginning of the observation period, with roughly

50% of the IP/24 already in use, and roughly double the amount

of IP/24 used at the end of the period in a smooth (Microsoft)

or abrupt (Google) fashion. Finally, close to the beginning of our

observation period, Windstream drastically reduces its anycast

spatial footprint, keeping just a single anycasted IP/24. While these
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Figure 7: Geographical evolution of selected anycast deploy-
ments: Number of locations (top) and delay toward the repli-
cas (bottom) measured from RIPE Atlas.

observations have anecdotal value, and cannot explain the reason

behind changes in the deployment, they however con�rm that

anycast deployments have a rather lively temporal evolution, the

extent of which is captured by the coe�cient of variation. It is

worth recalling that individual deployment exhibit wide variations,

however the aggregate remains quite stable over time (recall Fig.3).

It is intuitive that the number (and location) of vantage points

upper-bounds (and constrains) the number of anycast instances that

can be found. Given the slow but steady decrease of the PlanetLab

VPs, we unfortunately do not deem PlanetLab measurement reliable

in assessing, at a �ne grain, the geographic growth (which can be

underestimated) or reduction (which can be due to VP decrease) of

anycast deployments. We thus decided to regularly monitor anycast

pre�xes using 500 Ripe Atlas VPs. We picked targets from two key

CDN players, namely Cloud�are (8 di�erent IP/20) and Fastly (5

di�erent IP/24). As per Tab. 1, Cloud�are is the top-1 player over

all anycast, and given its sheer footprint, we expect it to grow at

a slower rate with respect to other deployments: especially, the

number of locations appears to already signi�cantly exceed the

one
3

suggested in [30]. As such, we use Cloud�are as a litmus paper

for our measurement. Our selection of Fastly is then motivated by

the fact that despite it appears in the top-5 and so we expect it to

steadily appear in our measurement, it has 1/10 the spatial footprint

and 1/2 the geographic footprint of Cloud�are: so it not only has

room to grow, but also possibly has the money necessary for the

investment.

Fig. 7 comprises three lines: for Cloud�are, we report the average

over all IP/20, whereas for Fastly we cherry pick 2 out of the 5

IP/24 we monitored, that are representative of the typical (Fastly-1)

and smaller-than-typical Fastly deployment (Fastly-2). In the case

of Cloud�are the �gure shows that, as expected, the number of

instances is stable (i.e., the growth rate is slow with respect to our

observation window), so that �uctuations are only measurement

artifacts. Whereas the Fastly-1 IP/24 remains stable IP/24 with

3
In particular [30] states that “After carefully studying four very di�erent anycast

deployments, we claim that 12 anycast sites would be enough for good overall latency.

Two sites per continent, in well chosen and well connected locations, can provide good

latency to most users.”. The Cloud�are catchment exceeds this suggestion by approxi-

matively 5× in our measurement, and by nearly an order of magnitude according to to

the Cloud�are blog[14, 15] that reports 119 nodes at times of writing.

only 7 di�erent locations, in the case of the Fastly-2 IP/24, we

observe a growth from 19 locations in June 2016 to 24 in June

2017. For reference purposes, 33 locations are mentioned in [16]:

this corresponds to a 73% recall, in line with expectations for the

iGreedy methodology [26]. Latency measurements are shown in

the bottom part of the �gure. We can observe a 10% of latency

reduction also for stable deployments (Fastly-1 and Cloud�are)

and it thus to be imputed to other causes (e.g., increased peering

connectivity). At the same time, at least for Fastly, it appears that

increasing the number of instances reduces the average latency

toward our RIPE Atlas probes by an additional 5%, and halves the

95th percentile (from 137ms in June 2016 to 68ms in June 2017),

unlike expectations [30]. A signi�cant take-away from Fig. 7 is

that the advantage to increase the catchment size appears to have

diminishing returns: in other words, the (delay) gain from Fastly-1

to Fastly-2 is signi�cant, whereas the (delay) gain to expand further

to reach the size of Cloud�are deployment is modest. Clearly, the

fact that L and F DNS root servers and Cloud�are [15] deployments

signi�cantly exceed 100 distinct locations, implies that one size

may not �t all for anycast deployments – and that further research

is needed to provide a more accurate answer so as to what should

be a reasonable size for anycast catchments.

5 CONCLUSIONS
Internet anycast is an important building block of the current In-

ternet: the study of deployments and their evolution is useful to

enrich our understanding of Internet operations. In this longitudi-

nal study, we learn that anycast detection (important for censorship

studies[59]) is reliable in spite of varying (and especially dimin-

ishing) vantage points. We additionally see that anycast spatial
footprint (i.e., the number of anycast /24 per AS) evolves signi�-

cantly for individual deployments, though it remains steady in the

aggregate. PlanetLab censuses can reliably measure this variability.

However, while we gather that anycast geographical footprint
evolves, we also acknowledge that to accurately track the state of

anycast Internet at replica level a large set of vantage points are

needed. In this case, due to decreasing PlanetLab VPs, a more tight

coupling with RIPE Atlas would be needed (e.g., monthly detection

from PlanetLab, followed from a re�nement of geolocation for

detected anycast deployments).

Finally, by closely monitoring a few deployments with RIPE

Atlas, we gather that even anycast deployments that already have a

large geographical footprint, apparently bene�t (in that their service

latency decreases, though with diminishing returns) from further

growing the deployment beyond sound rules of thumb [30], which

requires more systematic investigation. In particular, IP anycast is

an appealing way to implement, at relatively low cost, an e�ective

replication scheme for a variety of services [41], as the paths leading

to anycasted replicas are (with few exceptions) signi�cantly stable

over time [64]. Given anycast importance, a broad and systematic

analysis of the current catchments is hopefully helpful to update

and distill deployment guidelines along the lines of [15, 30, 56].

Alongside sharing the knowledge gathered in this study, we

especially believe that by making our datasets and tools available [6]

to the scienti�c community, we can contribute to enrich the Internet

map along the anycast dimension.
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