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ABSTRACT
IP anycast is a commonly used technique to share the load of a

variety of global services. Since more than one year, leveraging a

lightweight technique for IP anycast detection, enumeration and

geolocation, we perform regular IP monthly censuses. While this

paper provides a brief longitudinal study of the anycast ecosystem,

we make all our datasets (raw measurement from PlanetLab and

RIPE Atlas), results (monthly geolocated anycast replicas for all

IP/24) and code available to the community.

1 INTRODUCTION
IP anycast is an important building block of the current Internet,

primarily used to share load [28] of a variety of global services –

from DNS, to DDoS protection, to CDNs and content distribution,

to even BitTorrent trackers and Internet radios [35].

Knowledge of IP anycast is instrumental not only for character-

ization, troubleshooting and infrastructure mapping [4] but also

for security-related tasks such as censorship detection [55]. Yet,

detailed knowledge and understanding of IP anycast in the scien-

ti�c literature is generally limited to one or few deployments [13–

16, 21, 24, 32, 44, 48, 49, 58, 62]. Fewer studies provide a broad spatial

viewpoint [18, 50] and even fewer a temporal view [61]. The work

focuses on a broad and longitudinal view of anycast evolution, that

to the best of our knowledge has not appeared yet.

This paper is built on our own previous work [18, 20]. Shortly,

[20] introduces a methodology that is able to (i) assert whether an

IP is anycast, (ii) enumerate the replicas and (iii) geolocate them. It

uses a set of latency measurement from a distributed set of vantage

points with known location towards the same IP target. Our previ-

ous work [18] applies this methodology at scale, geolocating all the

replicas for all IPv4 anycast at IP/24 level, through four censuses

that refer to the same snapshot in time (March 2015). In this work,

we extend �ndings in [18] along the temporal dimension, provid-

ing an analysis of monthly snapshots collected over more than a

year-long period. Summarizing our main contributions:

• we conduct monthly anycast censuses at IP/24 level from

distributed PlanetLab nodes, and conduct additional mea-

surement from RIPE Atlas;

• we run our anycast geolocation algorithm [20] to build

snapshots of anycast at IP/24, BGP announcement and AS

levels, that we export as interactive tables and maps;

• based on these monthly censuses, we provide the �rst bird-

eye view of IPv4 anycast both from a spatial and a temporal

viewpoint.

The rest of this paper puts this work in perspective with related

e�ort (Sec.2), then describe our campaign (Sec.3) and comment our

Submitted for peer review,
2017. 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123_4

main �ndings (Sec.4). To empower the community with the current

state of anycast, as well as to enable further studies, we make all

our raw dataset, results and code available at [5].

2 BACKGROUND
Anycast server enumeration and geolocalization is part of a broader

e�ort from the research community to geographically map the

Internet infrastructure and identify the various components of the

physical Internet [25], possibly at scale, that we overview in the

following .

Infrastructuremapping..Techniques that are designed for application-

level anycast are not applicable with IP-level anycast. There are only

a handful techniques exist that allow to detect, enumerate or geolo-

cate IP anycast replicas. Database-based techniques, that are unre-

liable with IP unicast [56], fail by de�nition with IP anycast, since

they report a single geolocation per IP. Further, mapping techniques

that exploit the EDNS-client-subnet (ECS) extension [17, 59] fail

with anycast. Techniques relying on speed-of-light violation from

ICMP measurements and BGP feeds [50] limitedly allow to detect

anycast, but fail to provide replica geolocation. Techniques based

on DNS queries of special class (CHAOS), type (TXT), and name

(host-name.bind or id.server) provide reliable enumeration [31] but

are DNS-speci�c and thus unsuitable to cover all services. While

latency-based IP unicast geolocation [30, 37] is well understood,

triangulation techniques do not apply in case of anycast, so that

to the best of our knowledge, our previous technique [20] is the

�rst and only to provide accurate geolocation of anycast replicas

by only leveraging protocol-agnostic delay information.

While it is outside the scope of this work to recall the technique

in details [20], to make this paper self-contained it is su�cient to

state that the technique builds on inferring IP anycast by detecting

speed-of-light violations via latency measurements: i.e., as packets

travel slower than speed of light, an US and EU host probing the

same target cannot both exhibit excessively low latency (e.g., few

milliseconds) toward the same target, as this would violates physical

laws. While this observation is not new [50], our iGreedy technique

does [20] phrase the problem in terms of �nding the maximum

number of vantage points that are in such violation: by de�nition,

these vantage points all contact a di�erent anycast replica of the

same IP target t . By extension, the location of a vantage point

i that is found violating the speed-of-light constraint assists in

geolocating the replica of t contacted by i: by de�nition, this replica

is contained into a circle centered in the vantage point i and that

stretches by at most the distance that the probe packet can have

traveled during RTTi,t /2. It turns out that, with the goal of attaining

city-level precision, a very simple yet very good criterion is to

choose the position of the most inhabited city as likely location of

the t anycast replica. This follows from the fact that the decision

to add an anycast replica, follows from the goal of ameliorating



performance for a large fraction of users, which live in large cities

(interestingly, this was already used to bias geolocation of unicast
addresses[29]). Overall, the technique has high recall (i.e., over the

75% of replicas are detected) and precise geolocation (i.e., over the

75% matches at city-level, and the average error in the remaining

erroneous case is 384 Km).

Anycast characterisation. Research on anycast has so far preva-

lently focused either on architectural modi�cations [13, 32, 33, 45]

or on the characterization of existing anycast deployments. Overall,

a large fraction of these studies quantify the performance of any-

cast in current IP anycast deployments in terms of metrics such as

proximity [13, 14, 21, 49, 58], a�nity [13–16, 48, 49, 58], availability

[14, 44, 48, 58], and load-balancing [14]. Interestingly, while the

body of historical work targets DNS, more recent work [32, 48]

has tackled investigation of anycast CDN performance (e.g., client-

server a�nity and anycast pre�x availability for the CacheFly CDN).

More recently, [24] investigate DNS root servers, outlining a rule of

thumb to determine the right number of anycast replicas, whereas

[61] investigates a�nity of DNS root servers over a period of two

weeks in two di�erent years. We are not aware of any other stud-

ies presenting a more systematic temporal analysis than [61], and

clearly none targeting a larger spatial set than DNS root servers.

In [18] we leverage measurement infrastructures, namely Planet-

Lab and RIPE Atlas, to perform Internet-scale census of IP anycast,

by actively probing all /24 subnets and geolocating anycast repli-

cas, �nding that only a tiny fraction (0.03%) of IP/24 are anycast –

i.e., it appears that �nding anycast deployments is like a �nding

a needle in the IP haystack. At the same time, by actively probing

these anycast targets, we also unveil that all major Internet players

do use anycast and that a wide variety of services are used. We

instead use a complementary approach in [35], where we passively
inspect the anycast tra�c at one speci�c DSLAM in EU, to assess

their actual usage in real networks (users have a 50% chance to

encounter one anycast instance in their daily activities, that even

include radio streaming session last for hours, as well as BitTorrent

anycast trackers).

However, while [18] and [35] present a very complete and de-

tailed view of the spatial characteristics of anycast deployment, e.g.

their geographical distribution, the services o�ered over anycast

(active inspection) and their usage (passive monitoring), these stud-

ies represent a snapshot at a �xed point in time. This is orthogonal

with respect to the focus of this work, that instead presents a longi-

tudinal study of anycast, based on monthly censuses we run since

December 2015.

Internet Censuses. In the past, several studies focus their atten-

tion on scaling active scanning techniques to provide broad spatial

surveys of the Internet infrastructure. Given the lack of high-rate

scanning tools (such as [27, 47, 51]) at that time, researchers have

studied sample of the Internet-space [42] or have splitted the IPv4

space over multiple vantage points [1, 39, 40] or completed the

scans in an extended period of time. Since 2006, authors [39] mea-

sures periodically the population of visible Internet edge hosts (at

IP/32 level) from eight di�erent vantage points in two di�erent

locations, providing an IPv4 hitlist (one likely alive IP/32 target per

IP/24). In 2008, authors in [22] scanned the Internet to �nd DNS

servers that provide incorrect resolutions. In 2010, the IRLscanner

tool allowed to scan the IP/32 Internet in about 24 hours, and results

from 21 Internet-wide scans using 6 di�erent protocols have then

been presented in [47]. In 2012, the (highly discussed[46]) Carna

Botnet [1] has used 420k insecure embedded devices to build a

distributed port scanner to scan all IPv4 addresses using nmap [53].

In the recent years, the situation has drastically changed with

the advent of new network scanner tools as ZMap [10] and Mass-

can [51], able to achieve scan rates in excess of 10 Mpps, which

let a IP/32 scan complete in less than �ve minutes. This has led

to a huge increase of sporadic and regular scans, including the

malicious ones: as documented in [26], using a network telescope,

authors detected over 10 million scans from about 1.5 million hosts

during January 2014. These are mainly regular scans, with daily [3]

or lower frequency [52, 57]. Despite only a tiny fraction of these

scans target more than 1% of the monitored IPv4 address space, they

generate the majority of the unsolicited tra�c hitting the darknet.

Anycast censuses, such as those we performed in [18], raise the

spatial requirement to another level, since the same target needs to

be actively probes from multiple vantage points: experimentally,

several hundreds vantage points have been shown to provide a good

geographical coverage [20]. As such, to the best of our knowledge

we are not aware of any IPv4 anycast survey with the exception of

[18].

3 MEASUREMENT CAMPAIGN
Platforms. Several measurement platforms[6, 9, 11, 36] exist that

have di�erent characteristics in terms of vantage points cardinality,

AS diversity, geographic coverage and limits, in terms of probing

tra�c or rate[12]. In this paper we make use of two platforms,

namely PlanetLab[6]and RIPE Atlas[9], that we select due to their

complementarity. Speci�cally, PlanetLab does not enforces a spe-

ci�c probing limit, nor implement a credit system: we use it to

perform exhaustive censuses to a large set of targets, that we expect

to be mostly unicast. Conversely, RIPE Atlas has better coverage:

we use it to re�ne the information concerning a speci�c subset of

targets, i.e., those that were found to be anycast with PlanetLab.

Targets. For the selection of the targets, we rely on the USC/LANDER

hitlist [41], providing a list of (likely alive) target IP/32 host per each

/24 pre�x. Every two months the list is updated, and so our target

selection. We only consider hitlist IPs that have been successfully

contacted (i.e., denoted by a positive score [41]), which leaves us

about 6.3 millions potential targets (out of 14.7 millions). We argue

that /24 is a reasonable granularity since (in principle) IP-anycast

is subject to BGP pre�x announcement that should not (but sel-

dom are) more speci�c than /24. Additionally, while in principle we

could use one IP/32 per each announced BGP pre�x, [2] observes

that pre�xes longer than /24 have low visibility: as such, we limit

the granularity to IP/24 level (i.e., one IP/32 per /24) targeting less

than 0.4%of the whole address space.

Vantage points. For the selection of the vantage points (VP), we

proceed following the guidelines in [19]: in PlanetLab, where the

total number of VPs is small, we simply select all the available; in
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Figure 1: Measurement campaign: evolution of number of
PlanetLab and RIPE Atlas VPs

RIPE Atlas, where the number of VPs is large and due due to credits

limit, we carefully select 500 VPs, making sure that each VP is far

from the others by at least 200 km (roughly 2ms).

Fig. 1 shows the evolution of the number of available vantage

points over time. In the PlanetLab case, the number of nodes avail-

able drastically decrease from 300 in March 2015 [18] to roughly

50 in May 2017. In the case of RIPE Atlas, the decrease is due to

the fact that we launched a long-standing periodic measurement in

June 2016 with an initial set of VPs, some of which later become

unavailable. Interestingly, we will see that anycast results appears

to be consistent despite this decrease.

Despite a handful of carefully selected vantage points [34] allow

to correctly detect anycast deployments, it is clear that the shrinking

size of the available PlanetLab VP it is not adequate to thoroughly
enumerate all the locations of an anycast deployment. – for which

RIPE Atlas measurements become necessary as we shall see.

Censuses. Anycast censuses require the same target to be probed

from multiple vantage points: to limit the intrusiveness of our

scans, and since we expect that changes in the anycast deployments

happen at a low pace, we decide to run scans at a monthly frequency.

Our �rst anycast censuses date back to March 2015 [18]. We then

re-engineered our system and started to run monthly censuses

from PlanetLab in December 2015. We kept tuning and improving

system performance and reliability until June 2016, date at which

we additionally started the measurements from RIPE Atlas. We

opted to strip down as much as possible the information collected

per VP, narrowing down to about 30MB per VP on average, so that

the (compressed) raw PlanetLab measurement data hosted at [5] for

all censuses amount to about 60GB. The RIPE Atlas measurement

are publicly accessible via RIPE Atlas (measurement identi�er are

at [5]).

Fig. 2 shows the number of responsive unique IPs discovered

collectively by all PlanetLab VP in each census, and the right y-axis

report this number as the fraction of replies from the contacted

targets. The shadowed part indicates the months where we were

still updating the system. Notably, we slowed down the probe rate

per VP to about 1,000 targets per second to comply with recom-

mendations in [38]. As a bene�cial side e�ect, the packet loss rate

also decreased. We can see that the total number of unique IPs is

always greater than the number observed by a single VP, and that
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Figure 2: Measurement campaign: boxplot of the number of
responsive unique IPs/24 across all PlanetLab VPs.

it �uctuates between the 2, 9 millions of May 2015 and 4, 3 millions

of November 2016 (almost in pair with the expectations of other

work [23, 63]). This number has increased since June 2016 when we

started to regularly update the hitlist [41] (denote with crosses in

the �gure). The �gure also reports the distribution of responsive IPs

per vantage points (boxplots): recall varier widely per census, per

VP, and over time, with some VPs able to collect only few hundred

ICMP replies. Luckily, albeit the number of PlanetLab VP decreases,

the median number of contacted target exceeds 3 millions.

4 RESULTS
This section provides a longitudinal view of anycast evolution. We

report both a broad picture including all deployments (Sec.4.1), as

well as a more detailed view by cherry-picking some representative

ones (Sec.4.2). Without loss of generality, we refer to the last year

worth of censuses collected between May 2016 and May 2017.

4.1 Broad view
Longitudinal view. First, we assess the extent of variability of

anycast deployments. We start by considering an IP/24 granularity,

and depict in Fig. 3 the evolution of the number of IP/24 anycast

deployments, i.e., the number of deployments that have been found

to be anycast by running iGreedy[20] over PlanetLab measurements.

We recall that iGreedy requires to solve a Maximum Independent Set

(MIS) optimization problem for each of the over 4 million responsive

targets every month: the code available on GitHub [7] is able to

complete the analysis of a census in few hours, which returns the set

of geolocated replicas Gt for each responsive IP/24 target t . While

full details of the geolocation for each target and over all months

are available online as a Google-map interface[5], in this paper we

limitedly consider the footprint Gt = |Gt | of the deployment, i.e.,

the number of distinct instances irrespectively of their location.

The �gure shows that in our censuses, the number of anycast

deployments has slightly increased in the last year, peaking in April

2017 at 4729 IP/24 belonging to 1591 routed BGP pre�xes and 413

ASes. In the last six months, the number of anycast deployments

has never dropped below 4500 while in June 2016, when we started

the censuses regularly, we found only 4297 IP/24 (1507 routed BGP

pre�xes and 379 ASes). Compared to our previous results of March

2015 [18], this represents a 2,5-fold increase over a period of 2 years.

This may be due to several reasons: part of the increase is rooted
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.

in anycast adoption over time �rst, and another part is rooted in

system improvements to reduce packet losses at PlanetLab monitors,

which increases the recall. This also means that results in [18] were

fairly conservatively assessing the extent of the anycast Internet.

Fig. 3 additionally encodes, as a heatmap, the estimated geo-

graphical footprintGt , where deployments are ranked from bottom

to top in ascending size (equivalently, darker colors). A few contour

lines indicate the number of cumulative deployments having no

more than 5, 10 or 15 replicas. Interestingly, Fig. 3 shows that, de-

spite a shrinking number of PlanetLab VPs, the number of anycast

IP/24 remains steady over time. Particularly, the number of deploy-

ments having few replicas (e.g., 5 or less) remains �at over time,

hinting to the fact that the geographical coverage of PlanetLab is

still enough to correctly detect most

Yet, as previously observed, the shrinking number of PlanetLab

VPs surely a�ects the completeness of the replica enumeration. We

thus complement PlanetLab censuses with a re�nement campaign

from RIPE Atlas, which is also reported in Fig. 3: during June 2017,

we target all IP/32 that have been found to be anycast in PlanetLab

during the previous year. Out of the overall 5841 IP/24s, approx-

imately 300 were not reachable in June 2017 and 5105 IP/24s are

con�rmed to be still anycast. Particularly, we used 500 RIPE Atlas

VPs, i.e., about one order of magnitude more than PlanetLab, which

ensures a good geographic coverage. Thus, while PlanetLab may

provide a rather conservative lower bound of the actual footprint

for a target t , we expectGRIPE
t > GPL

t . Fig. 3 con�rms these expec-

tations: in several cases, the number of anycast instances discovered

in RIPE Atlas doubles with respect to PlanetLab, and the maximum

number exceeds 49 replicas (18 in PlanetLab). Overall, according

to RIPE Atlas, half of the deployments are in more than 5 di�er-

ent locations, but only few of them have more than 35 locations

(including DNS root servers, Verisign, Microsoft, WoodyNet and

Cloud�are). Consider also that as a consequence of the drop in the

number of PlanetLab VPs in the the last months, the largest foot-

print measurable from PlanetLab drops as well (notice the sharp

increase for deployments with at most 10 replicas). This con�rms

that PlanetLab remains useful for anycast detection, but also that

RIPE Atlas becomes necessary for enumeration and geolocation,
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reinforcing the need for a more systematic coupling of PlanetLab

and RIPE Atlas measurement.

Aggregation level. Clearly, while we operate censuses at IP/24

level, it is then possible to aggregate the information at BGP or

AS level. Denoting with Sx the set of IP/24 included in a BGP-

announced pre�x (or an AS) x , we can de�ne the spatial IP footprint
as Sx = |Sx |. By extension, we can de�ne the BGP-level (AS-level)

geographic footprintGB by considering only the largest IP/24 in the

pre�x GB = maxt ∈SB Gt (or AS GA = maxt ∈SA Gt ). To perform

this aggregation step, for each month in the census, we retrieve the

AS and pre�x information using all the RIPE-RIS and RouteViews

collectors with BGPStream [54], and cross-validate the information

using the TeamCymru IP to ASn service [60].

The di�erent viewpoints are illustrated in Fig.4 that reports for

PlanetLab (top, all months) vs RIPE Atlas (bottom, last month) the

cumulative distribution function of the geographic footprint at

IP/24, BGP-announced pre�x and AS levels. The geographic foot-

print per-IP/24 vs per-BGP/AS varies widely, which is due to the

fact that the spatial distribution is highly skewed, so that ASes

making use of a large number of IP/24 to be over-represented. Par-

ticularly, while more than 50% AS (75% of BGP announced pre�xes)

make use of a single anycast IP/24, about 10% ASes (BGP pre�xes)

hosts more than 10 anycast IP/24, topping to 384 (for 104.16.0.0/12)

and 3016 (for AS13335). Since all three level of aggregation have

relevance to give an unbiased picture of Internet anycast, we make

available monthly snapshots with IP/24, BGP and AS aggregations

as tabular data [5], which is also browsable online with a Slickgrid

interface.

Finally, as a rough measure of persistence of individual anycast

deployments, Fig.5 depicts a breakdown of the number of months

that they are present in our censuses at IP/24, BGP or AS levels.

Notice that over 45% of anycast ASes (60% of anycast IP/24) con-

sistently appear in our measurements for the whole year and 70%

AS (78% IP/24) appear at least 6 months. Only less than 10% deploy-

ments are seen only once.
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4.2 Focused view
Top-10 deployments. We now provide a more detailed view of a

few selected ASes out of the 566 in our censuses. Particularly, Tab. 1

reports detail concerning the top-10 deployments (company name

and type, AS number and the number of BGP pre�xes announced

by that AS), the spatial footprint (i.e, the number SA of IP/24 per

AS and its temporal variability) and the geographical footprint (i.e,

the number GA of distinct replicas and its temporal variability).

To compactly represent the size of a deployment, we report the

maximum number S+A of observed anycast IP/24 over the last year

for that AS, as well as the G+A = maxGRIPE
A (t ) maximum number

of locations observed from RIPE Atlas. Selection in Tab. 1 reports

the top-5 in terms of S+A spatial footprint (top) and the top-5 forG+A
geographic footprint (bottom).

Considering the spatial footprint IP/24, Cloud�are (AS13335) has

a leading role: it is present in all the censuses with over 3 thousands

IP/24 belonging to about 200 announced pre�xes (mainly /20 but

also less speci�c pre�xes, as a /12 or a /17), and we did not observe

signi�cant variation over time. Furthermore, as con�rmed from

RIPE Atlas, the deployment has an heterogeneous geographical

footprint, with some /24 having only 10–15 instances, while in the

majority of the cases the /24 appear at over 40 distinct locations.

Notice that, this would had been unnoticed if we had performed

censuses at a di�erent granularity (i.e., one IP/32 per BGP pre�x

as opposite as to one IP/32 per IP/24 in that pre�x). Few other

companies have over 100 anycast IP/24 pre�xes in our censuses.

For instance, Google (AS15169) had a 3-fold increase in the number

of IPs/24 in the last year, from 130 IPs/24 announced mainly by /16

in June 2016, to 330 IP/24 announced also by 190 new /13 pre�xes

in March 2017. The majority of Google /24 have instances at more

than 30 locations. Opposite behavior are also possible: for instance,

Fastly (AS54113), a Content Delivery Network shrunk its spatial

footprint, the majority of which belong to an IP/16 and regularly

appear in all our censuses. Interestingly, as early depicted in Fig. 3,

the overall aggregate of all anycast deployments (i.e., the number

of anycast /24 in the Internet and their geographical breakdown) is

stable despite the variability of the individual deployments.

The common way to deploy anycast is to announce an IP pre�x

from multiple points using the same AS [43], that we refer to Single

Table 1: Focused view on footprint variability of top-5 spa-
tial (top) and top-5 geographical (bottom) deployments

Deployment footprint: Spatial Geographical

Company AS Type BGP S+A CVS G+A CVG

Cloud�are 13335 CDN 206 3016 0.04 49 0.07

Google 15169 SP 16 524 0.38 30 0.08

A�lias 12041 TLD 218 218 0.15 6 0.10

Fastly 54113 CDN 34 175 0.09 20 0.07

Incapsula 19551 DDoS 146 146 0.23 15 0.17

Cloud�are 13335 CDN 206 3016 0.04 49 0.07

L root 20144 DNS 1 1 0 47 0.13

F root 3557 DNS 2 2 0 40 0.19

Woodynet 42 TLD 132 133 0.02 39 0.12

Verisign 26415 Reg. 2 2 0 36 0.20

Origin AS (SOAS). Another way is to announce the IP pre�x using

multiple ASes, usually referred as Multiple Origin ASes (MOAS)

pre�xes. In our dataset, we identi�ed hundred IPs/24 as MOASes,

that are commonly announced by few siblings, i.e., di�erent ASes

belonging to the same organization that announce the same pre�x.

However we spot cases where the number of ASes is greater than

10: for instance, we �nd that Verisign announces MOASes with

17 di�erent ASes in the range of AS36617-AS36632; similarly, the

Registry and DNS company AusRegistry, announces MOASes with

13 di�erent ASes.

To compactly represent the temporal variability of spatial foot-

print, we use the coe�cient of variation, computed as the ratio of

the standard deviation over the average number of anycast IP/24 per

monthCVS = std(SA (t ))/E[SA (t )], From Tab. 1, we can see that for

deployments that have large spatial footprint (top), the variability

CVS can be important (e.g., Google or Incapsula), hinting to deploy-

ments that have grown (or shrunk) signi�cantly. Conversely, among

deployments with large geographical footprint, several have a very

small spatial footprint (S+A ≥ 2) and exhibit no variation CVS = 0.

Finally, as simple indicator of geographical footprint variability

we compute CVG = std(GPL
A (t ))/E[GPL

A (t )] from PlanetLab mea-

surements. Notably, we expect part of the variability to be due to

measurement imprecision: e.g., shrinking number of VPs, packet

losses and increased delay, can lead to underestimate the number of

distinct locations. Yet, as it can be seen from Tab. 1, we �nd that the

geographical variability is lower than the spatial one: this is reason-

able since, while spatial variability hints to con�guration changes

in software, the geographical one hints to physical deployments of

new hardware.

Temporal variability. We now inspect temporal variability at a

�ner grain. We start by depicting in Fig.6 the temporal evolution

of the spatial footprint, normalized over the maximum observed

for that deployment, i.e., SA (t )/maxtS
+
A (t ). The picture includes

deployments in the anycast top-5 (A�lias, Google) as well as any-

cast deployments of other key Internet players (Microsoft, Akamai,

Net�ix, Windstream). Evolutions represent a sample of what can be

found in our censuses: for instances the two ASes reported in the
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Figure 6: Spatial footprint evolution: Number of IPs/24 for
selected anycast AS deployments (PlanetLab).

picture owned by Akamai (AS21342) and Ne�ix (AS40027) start be-

ing announced as anycast during our observation period and either

systematically (Akamai) or abruptly (Ne�ix) increase the amount

of responsive anycast IP/24 over time. Google (AS15169) and Mi-

crosoft (AS8068) both have a sizeable presence at the beginning

of the observation period, with roughly 50% of the IP/24 already

in use, and roughly double the amount of IP/24 used at the end

of the period in a smooth (Microsoft) or abrupt (Google) fashion.

Finally, close to the beginning of our observation period, Wind-

stream drastically reduces its anycast spatial footprint, keeping just

a single anycasted IP/24. While these observations have anecdotal

value, and cannot explain the reason behind changes in the deploy-

ment, they however con�rm that anycast deployment have a rather

lively temporal evolution, the extent of which is captured by the

coe�cient of variation.

It is intuitive that the number (and location) of vantage points

upper-bounds (and constrains) the number of anycast instances that

can be found. Given the slow but steady decrease of the PlanetLab

VPs, we unfortunately do not deem PlanetLab measurement reliable

in assessing, at a �ne grain, the geographic growth (which can be

underestimated) or shrink (which can be due to VP decrease) of

anycast deployments. We thus decided to regularly monitor anycast

pre�xes using 500 Ripe Atlas VPs. We picked targets from two key

CDN players, namely Cloud�are (8 di�erent IP/20) and Fastly (5

di�erent IP/24). As per Tab. 1, Cloud�are is the top-1 player over

all anycast, and given its sheer footprint, we do not expect it to

further grow: especially, the number of locations it appears already

signi�cantly exceeds (by more than a factor of 4×) the number
1

suggested in [24]. As such, we use Cloud�are as a litmus paper

for our measurement. Our selection of Fastly is then motivated by

the fact that despite it appears in the top-5 and so we expect it to

steadily appear in our measurement, it has 1/10 the spatial footprint

and 1/2 the geographic footprint of Cloud�are: so it not only has

room to grow, but also possibly has the money necessary for the

investment.

In the case of Cloud�are, Fig. 7 shows that, as expected the num-

ber of instances is stable , so that �uctuations are only measurement

1
“After carefully studying four very di�erent anycast deployments, we claim that 12

anycast sites would be enough for good overall latency. Two sites per continent, in well

chosen and well connected locations, can provide good latency to most users.” [24]
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Figure 7: Geographical evolution: Number of locations for
selected deployment (RIPE Atlas)

artifacts. In the case of Fastly, we observed a general growth from

19 locations in June 2016 to 24 in June 2017 (except for a stable

IP/24 with only 7 di�erent locations). For references purposes, 33

locations are mentioned in [8], which corresponds to a 73% recall,

in line with expectations for the iGreedy methodology [19]). La-

tency measurements are shown in the bottom part of the �gure. We

can observe a 10% of latency reduction also for stable deployments

(Fastly-1 and Cloud�are) and it thus to be imputed to other causes

(e.g., increased peering connectivity). At the same time, at least for

Fastly, it appears that increasing the number of instances reduces

the average latency toward our RIPE Atlas probes by an additional

5%, and halves the 95th percentile (from 137ms in June 2016 to 68ms

in June 2017), unlike expectations [24].

5 CONCLUSIONS
Internet anycast is important building block of the current Internet:

the study of deployments and their evolution is useful to enrich our

understanding of Internet operations. In this longitudinal study, we

learn that anycast detection (important for censorship studies[55])

is reliable in spite of varying (and especially diminishing) vantage

points. We additionally see that anycast spatial footprint evolves

signi�cantly for individual deployments, though it remains steady

in the aggregate. PlanetLab censuses can reliably measure this

variability. However, while we gather that anycast geographical
footprint evolves, a more tight coupling with RIPE Atlas would be

needed, due to decreasing PlanetLab VPs, to accurately track the

state of anycast Internet at replica level (e.g., monthly detection

from PlanetLab, followed from a re�nement of geolocation for

detected anycast deployments).

Finally, by closely monitoring a few deployments with RIPE At-

las, we gather that anycast deployment that already have a large

geographical footprint, apparently bene�t (in that their service

latency decreases) from further growing the deployment beyond

sound rules of thumb [24], which requires more systematic inves-

tigation. We believe that making this knowledge, and especially

datasets and tools, available to the scienti�c community contributes

to enrich the Internet map [4] along another dimension.
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