
ICN software tools: survey and cross-comparison

M. Tortellia,∗, D. Rossia, G. Boggiab, L.A. Griecob

aDepartment of Computer Science and Networking, Telecom ParisTech, Paris, France
bDepartment of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy

Abstract

Research interest on Information Centric Networking (ICN) has been sharply
growing. Although new architectures, algorithms, and analytical models have
been proposed, their evaluation remains often isolated and not rigorously veri-
fied by the research community. This paper initially portrays the composition
of open source software tools available for ICN, certifying the predominance of
Content Centric Networking (CCN)/Named Data Networking (NDN) simula-
tors. Then, inspired by similar works related to the P2P field, it surveys related
research papers to qualify the ICN literature produced so far, finding that a
large fraction of contributions either uses custom, proprietary, and unavailable
software, or even plainly fails to mention any information in this regard. By
adopting a rigorous methodology, in the second part of the paper four simu-
lators, namely ndnSIM, ccnSim, CCNPL-Sim, and Icarus, are cross-compared
under several key aspects. Our findings confirm both their accuracy with re-
spect to reference theoretical models in simple settings, and their consistency in
more complex scenario. Additionally, our analysis can both assist researchers in
the choice of the tool that best fits their needs, and provide guidelines to avoid
common pitfalls in the ICN performance evaluation.

Keywords: Information Centric Networks; Content Centric Networks;
Open-Source Software; Prototype; Emulation; Simulation; Performance
Evaluation.

1. Introduction

Information Centric Networking (ICN) is a novel paradigm that encompasses
different architectures with a common concept: data objects become first class
citizens that can be referred directly by their name, instead of being retrieved
through addressable endpoints [1, 2]. Most of the ICN architectures (Sec. 2) can

∗Corresponding author
Email addresses: tortellimichele@gmail.com (M. Tortelli),

dario.rossi@telecom-paristech.fr (D. Rossi), gennaro.boggia@poliba.it (G. Boggia),
alfredo.grieco@poliba.it (L.A. Grieco)

Preprint submitted to Elsevier January 13, 2016

be progressively deployed over the consolidated Internet network infrastructure,
in order to better handle, at an architectural level, current trends like mobility
and content distribution, instead of continuously deploying patches (e.g., mobile
IP [3] and Content Distribution Networks (CDNs)). Deploying a large scale
network with content-awareness at the network layer, like ICN, could introduce
remarkable benefits with respect to the current Internet protocols, like [2, 4]:
(i) better support to mobility; (ii) robustness of content-based schema, which
directly secure transmitted contents, with respect to IP-based ones, which secure
end-hosts; (iii) native multicast and multipath communications.

For the above reasons, ICN attracted considerable attention in the last deca-
de, and the investigation of pros and cons of its principles let a number of pro-
posals emerge, that are surveyed in [1, 2]. These proposals differ from each
other regarding naming schema, routing algorithms, deployment models, and
interoperability between IP-based and name-based solutions. As such, perfor-
mance evaluations of each ICN architecture still remains isolated. Building over
our previous effort [5], this paper makes the first steps in this direction: our
aim is not to compare different ICN proposals at an architectural level (which
is the focus of [1, 2]), but rather to perform a critical overview of available
software tools for performance evaluation (an aspect that is, instead, out of the
scope of [1, 2]). Similarly to [6], that considers the state of Peer-to-Peer (P2P)
simulators, in this work we build a critical census of ICN software, along with
its usage in the literature, and we additionally carry on a scientifically rigorous
cross-comparison aimed at verifying the accuracy, consistency, scalability, and
fidelity of these tools. We believe this contribution to be useful in both provid-
ing the scientific community with solid guidelines for choosing the most suitable
simulator according to the type of investigation that needs to be carried out,
and confirming the scientific soundness of the results that the ICN community
has already published.

In particular, after a background on ICN (Sec. 2), the first contribution of
this paper is to portray the general picture of ICN projects and software tools,
quantifying, also, their usage in the ICN literature (Sec. 3). After, the main
features of all tools are illustrated (Sec. 4). Results of this census show that:

• Overall, the ICN software ecosystem is lively and variegated, with a rich
spectrum of open source software, including prototypes, emulators, simu-
lators and possible bindings between the different categories.

• Generally, however, ICN architectures released mostly prototype imple-
mentations, so that the lack of simpler tools, such as simulators, already
hampers the evaluation of each architecture in isolation.

• Availability of software tools for the CCN/NDN architecture [7], is far
bigger than for other ICN architectures: overall, CCN/NDN software rep-
resents about half of the whole ICN software ecosystem.

• Diversity of software tools for the CCN/NDN architecture is far bigger
than for other ICN architectures: additionally, while all the spectrum of

2

tools is well represented (e.g., simulators, emulators, prototypes, etc.),
about half of the CCN/NDN software tools is constituted by simulators.

• Yet, despite this richness of open-source software, our survey of the ICN lit-
erature reveals that about two thirds of the considered works either claims
to use a custom proprietary tool, or just plainly fails to even mention the
adopted tool, thus precluding any possibility to reproduce or validate the
published results.

Knowledge gathered in the first part lays the ground for comprehensive
cross-comparison of a representative subset of ICN software. We indeed find
that, whereas in the current stage it is impossible, and perhaps meaningless, to
conduct a rigorous cross-comparison in the overall ICN scope, this comparison
becomes resonant and feasible by limiting the focus to CCN/NDN simulators,
i.e., the architecture and software-category pair for which the largest set of tools
is available. We lay out a rigorous methodology (Sec. 5), based on which we
contrast four simulators, namely ndnSIM, ccnSim, CCNPL-Sim, and Icarus1.
Our comparison involves both qualitative and quantitative aspects, such as ac-
curacy (Sec. 6), consistency and scalability (Sec. 7), as well as fidelity (Sec. 8),
that we analyze thoroughly. From our cross-comparison it emerges that:

• The limited set of common features shared among the tested simulators
reflects that each tool is generally conceived for specific aspects (i.e., ar-
chitectural completeness, caching performance, congestion control, and so
on) of the whole architecture.

• Since available tools present different approaches regarding the automatic
configuration and consistency check of the simulated scenario (e.g., dy-
namic vs fixed warmup period), users should put attention in carefully
engineering their scenario in order to attain acceptable levels of accuracy
(e.g., generating a proper number of simulated events, in accordance with
the popularity distribution and the cardinality of the content catalog, al-
lows to drastically reduce estimation errors).

• A similar care is required to ensure fidelity of the results (e.g., simulating
arrival rates that are compatible with available link capacities to avoid
distortions of collected metrics, especially for those simulators that neglect
link capacity, delays, and transmission buffers).

• Results provided by the selected simulators are both accurate with respect
to analytical benchmarks in case of simple scenarios (i.e., single cache), as
well as consistent with each other on more complex scenarios (e.g., large
scale network with routing).

1Despite Icarus is proposed as a simulator for general ICN architectures, it can be easily
adopted to perform CCN/NDN based simulations, as explained in Sec. 5.1.

3

This is comforting in that, despite there is still considerable room for im-
provement in making ICN results more reproducible, the ICN software ecosys-
tem facilitates this progress in yielding consistent results, unlike in related net-
working area (Sec. 9). Hopefully, this work will facilitate even further this
process by guiding newcomers into choosing an existing software tool that best
fits their needs according to technical features and performance characteristics
(as opposed to developing a proprietary and untested tool). Finally, we discuss
community-wide efforts concerning universally accepted benchmarks and guide-
lines (see Sec. 10) that would be desirable to further progress along solid and
paved ICN research roads.

2. Background

This section aims at providing not a thorough survey, but the minimum
amount of information that would make this paper self-contained, along with
useful pointers to extended documents, as published scientific articles [1, 2, 8, 9],
or Internet drafts [10, 11, 12] written and updated by an IRTF research group,
namely Information-Centric Networking Research Group (ICNRG). More at-
tention is dedicated to the CCN/NDN architecture, since it is the focus of our
cross-comparison in Sec. 6, Sec. 7, and Sec. 8.

2.1. ICN at a glance

In ICN, contents are named and addressed independently of their location;
as a consequence, data can be stored and retrieved from everywhere in the
network. Digital cryptographic signatures are carried inside each packet, and
used to directly verify integrity, authenticity, and provenience; that is, security
is implemented at the information level and not around the communication
session [1, 2]. This means that ICN nodes, being aware of the contents that
are forwarded, can play an active role in caching and forwarding decisions, thus
directly satisfying requests at the network layer. Furthermore, requests for the
same contents can be aggregated at intermediate routers along the paths toward
the original content providers, thus transparently building multicast diffusion
trees and unloading popular content providers in case of flash crowds. The
possibility to decouple contents from node locators is, also, beneficial in terms
of mobility; burdensome solutions (i.e., mobile IP [3]), as well as disruptions
generated by handovers, can be, indeed, avoided [13, 14]. These changes are not
only of paramount importance for nowadays’ killer applications (e.g., video [15]),
but are expected to facilitate future services as well (e.g., ICN-based Internet
of Things [16] [17]).

However, it is worth highlighting that, despite the centrality that named
objects have against network locators (i.e., IP addresses) in each communication
primitive, ICN does not completely disrupt the current TCP/IP end-to-end
model [18].

4

2.2. ICN architectures

While seminal works leading to ICN can be traced back to the TRIAD
project [19, 20] and other works [21, 22, 23] which date back to almost twenty
years ago, the architectures that are generally referred to as “Information-
centric” have been mainly proposed in the last decade: Data-Oriented Network
Architecture (DONA) [24], CCN/NDN [7], Publish Subscribe Internet Technol-
ogy (PURSUIT) [25], Network of Information (NetInf) [26] of the Scalable and
Adaptive Internet Solutions (SAIL) project [27], COntent Mediator architec-
ture for content-aware nETworks (COMET) [28], CONVERGENCE [29], and
MobilityFirst [30], eXpressive Internet Architecture (XIA) [31] (considered part
of ICN architectures for its in-network caching feature and for the possibility
to use content names as identifier), and GreenICN [32]. Although they share
the aforementioned principles, they differ in implementation details of some key
aspects, like naming schema, request and data routing, caching and security.

The NDN architecture adopts hierarchical names to uniquely identify pieces
of contents, namely chunks, as opposed to flat-label IDs that are, instead, used
by other architectures, like DONA and MobilityFirst. In PURSUIT, SAIL,
CONVERGENCE, and GreenICN instead, content names, or part of them, can
be either flat or hierarchical. The XIA architecture, in the end, differs from
the previous ones since its addressing scheme is more “flexible” [33]: Directed
Acyclic Graphs (DAGs) can be used to address multiple identifiers (e.g., host,
service, content, network). The type of content name directly influences other
aspects, like routing and security. In fact, in NDN, a route-by-name approach
is adopted, which means that content requests are directly forwarded based on
content names; like NDN, also DONA, COMET, and CONVERGENCE adopt
name-based routing. PURSUIT, SAIL, MobilityFirst, GreenICN, and XIA,
instead, require a two-step resolution phase (i.e. lookup-by-name), in which a
locator, obtained by looking up the name of the requested content, is used to
forward content requests. Furthermore, the namespace structure has an impact
on security aspects; indeed, flat names can by easily self-certifying (e.g., by
hashing all the content fields), while hierarchical names require in-packet meta-
data to testify integrity, authenticity, and provenience of the retrieved content.

In NDN, nodes interact through a receiver-driven communication model by
using only two types of messages: Interest and Data packets. Interest packets
are sent by clients to fetch contents, whereas Data packets are generated only in
response to Interest packets; this one-to-one match makes NDN flow-balanced.
Interest and Data processing in NDN nodes is done by means of three structures:
Content store (CS), Pending Interest Table (PIT), and Forwarding Information
Base (FIB). The CS is a cache memory where forwarded contents can be stored.
The PIT is a table used to keep track of those forwarded Interest packets that
are still unsatisfied. These states left along traversed nodes [34] bring several
benefits: Interest packets for the same content can be aggregated into one PIT
entry, recording only the respective incoming faces. This gives NDN an innate
support for multicast communication. Indeed, generated Data packets can sim-
ply follow back the created paths towards their requesters. Furthermore, PIT

5

entries allow NDN nodes to detect loops and discard the relative Interest pack-
ets. Finally, the FIB is a table where forwarding information about the known
content prefixes are stored; differently from IP, multiple faces can be associated
to a single name, thus simplifying the support for multipath communications.

3. Survey of tools and usage

3.1. ICN software tools

Tab. 1 summarizes the results of the census of ICN open source softwares
considered in this contribution: to the best of the authors’ knowledge, the list
includes all open source software tools.

It is worth to note that, about half of them pertains to different proposals
under the general ICN umbrella (top portion of Tab. 1), whereas the other
half pertains to a specific architecture (i.e., CCN/NDN [7], bottom of Tab. 1).
Interestingly, despite CCN/NDN is among the last proposals in the general ICN
timeline [2], it however attracted, by far, the broadest interest, as also reflected
in the heterogeneity of available tools for its evaluation.

For each software, the table reports the latest release and its date, that
correlates with the development activity (notice that some software reports no
explicit tags for its release date, thus file headers are inspected). Then, the
language used by the core library (correlated with the learning and startup costs)
and the additional languages for accessory software (either bindings of the main
library API for a number of scripting languages, or languages used to develop
the accessory applications) are also reported in the table. Operating systems
supported by each software are reported next, which could represent a potential
barrier to development and deployment. Finally, type of software and state of
support are reported. Legend under Tab. 1 reports, also, the funding authority
and the relative project under which each tool has been released. As a final
remark, the table is voluntarily kept simple to allow to grasp the ICN software
census at a glance. As a result, the table is missing some relevant information
(e.g., the software license, the existence of proper documentation, the number of
active developers, the number of releases, the frequency of commit, the number
of lines of code, and so on), that are either not available across all systems, or
that would anyway quickly become outdated.

From Tab. 1 it appears that, for most ICN proposals, only a single type
of software, and most often a prototype implementation, is available. Ex-
ceptions to the above rule, i.e., where also simulators are available, are rep-
resented by the GreenICN project, the Publish Subscribe Internet Routing
Paradigm (PSIRP)/PURSUIT, and by the CCN/NDN architecture; in par-
ticular, the Icarus simulator is associated with the GreenICN project, while the
ICNsim simulator is available for PURSUIT, along with a couple of prototype
implementations (Blackhawk/Blackadder).

It appears clearly that the only ICN architecture with a complete software
ecosystem is CCN/NDN, where not only prototype implementations exist (i.e.,
CCNx , NFD, CCN-lite, CCN-Joker), but also bindings of these implemen-
tations with known emulators (e.g., MiniNet for CCNx), or simulators (e.g.,

6

Table 1: Taxonomy of ICN open source softwares.

Software$ Latest rel Language Operating
Tool type? Active

ver date
core
(extra)†

system�

O
t
h
e
r
s

Blackadder�1 0.4 04/13
C++, C
(Py,R,J)

L,F P(Click) Yes

ICNsim�2 0.2 04/15 C++, C L S(Omnet++) Yes

openNetInf�3 1.0 10/11 J Portable P,VM No

NetInf (nilib)�3 0.2 10/12 C (all) L P No

GIN�3 1.0 01/13 C (PH) F P No

PeerKit�4 - 12/11 J Portable P No

Conet�4 - 12/12 C L P,T(OFELIA) No

XIA/1 1.2 06/15 C (Py) L,M P,VM(Click),T Yes

MobilityFirst/2 - 12/14 C++ L,A P(Click) Yes

Icarus�5 0.5 05/15 Py L,M S,VM Yes

C
C
N

/
N

D
N

CCNx/3 1.0 07/15 C (J) L P,T(NDN) Yes

NFD/4 0.3 07/15 C++ L,M,F P,T(NDN) Yes
Mini-CCNx - 05/15 C,Py L E,VM(Mininet) Yes
CCN-Joker 2.1 10/13 J L,A E,T No

CCN-Lite 0.3 07/15 C
L,M,A,
RFduino

P,E,
S(Omnet++)

Yes

ns3-DCE
CCNx‡1

4.0 12/13 C (Py) L S(NS3) Yes

CCNPL-Sim‡1 1.0 02/13 C++ L S Yes

NDNsim/4 2.0 01/15 C++(Py) L,M S(NS3) Yes

ccnSim‡1 0.3 10/14 C++ L S(Omnet++) Yes
$Software legend: Symbol=Funding Authority, #=Project

�=FP7: #1=PURSUIT, #2=PAL, #3=SAIL, #4=Convergence, #5=GreenICN
/=NSF: #1=XIA, #2=MobilityFirst, #3=CCNx, #4=NDN
‡=ANR: #1=Connect

†Language legend: Py=Python, J=Java, PH=PHP, R=Ruby, cl=clojure, all=P,J,R,PH,cl
�Operating System legend: L=Linux, M=MacOS, F=FreeBSD, A=Android
?Tool legend: P=Prototype, VM=Virtual Machines, E=Emulator, S=Simulator, T=Testbed.

NS3-DCE for CCNx, Omnet++ for CCN-lite), thus allowing the execution of
the same code in operational networks, controlled testbed, or simulators. Addi-
tionally, more traditional “stand-alone” simulators are available (i.e., ndnSIM,
CCNPL-Sim, ccnSim), each of which focuses on different CCN/NDN aspects,
enhancing the spectrum of tools available for performance evaluation.

Overall, our census indicates that ICN is a lively and healthy domain, with
a number of prototype implementations. Furthermore, APIs for the core ICN
libraries are available in many languages, and often support multiple operating
systems, thus lowering the additional startup cost of approaching unknown ex-
perimental environments. At the same time, with the exception of CCN/NDN,
ICN architectures generally lack of simpler tools, such as simulators, which sim-
plify the performance evaluation of each architecture in isolation.

This paper presents a first attempt to systematically address the above prob-
lems. In particular, one of our main aims is to assess if, and to what extent,
available ICN software tools allow a scientifically sound evaluation: we consider
the CCN/NDN architecture as a reasonable starting point for this task, due
to both its relevance in the ICN domain, and to a larger availability of tools
reflected by our census.

7

ndnSIM: 23%

ccnSim: 9%

CCNPL−Sim: 5%

Icarus: 3%
Custom: 40%

Not Specified: 20%

Figure 1: ICN Simulation tools used in the surveyed papers.

3.2. Software usage in the ICN literature

As a second step of our survey, we take a snapshot of the actual use of the
aforementioned tools in the ICN literature. This kind of investigation has been
inspired by findings outlined in [35, 6], that considers 9 popular P2P simulators
and surveys about 300 papers on P2P topic; the discovery is that only about
20% of papers used one of these 9 popular simulators, whereas the vast major-
ity of papers either claimed to use a custom proprietary simulator, or did not
even made an explicit mention – implying that P2P simulation results were gen-
erally reported in the literature in a fashion that precluded any reproduction,
validation or invalidation of the published results.

Therefore, in similar spirit, we overview papers in the ICN literature2. In
particular, we select 75 papers that specifically employ simulation tools in their
performance evaluation, out of 93 papers that conduct an evaluation of ICN
performance using different tools, like emulators, prototypes, testbed, and so
on. Our selection criterion did not use any filter regarding number of citations
and/or area of interest inside the broad ICN domain. Clearly, with respect
to [35, 6] that overviews P2P research in (or just after) its climax, this work is
still comparatively premature – as research in ICN is, though fast growing, still
younger. Despite the amount of surveyed papers is limited, our picture allows
to gather interesting insights – that are very similar to that in [35, 6].

The pie chart in Fig. 1 reports the results of the survey, where the label Cus-
tom stands for both papers in which the authors claim to use their custom simu-

2Namely, we include the ICN conferences, as well as the following series of ICN workshop
or conferences having an ICN session: ACM SIGCOMM ICN, IEEE INFOCOM NOMEN,
ACM/IEEE NoM, IEEE ICNP, IFIP Networking, IEEE CCNC, CFI and NoF. We also include
IEEE, ACM, and Elsevier Journals.

8

lator, and papers in which generic tools, like Matlab, Omnet++, ns-2, QualNet,
ONE, and BitTorrent are mentioned without any indication about the required
modifications and/or without any reference to the used code. From the picture
it clearly emerges that: (i) there is a variegated set of ICN simulation tools men-
tioned in the surveyed papers, the majority of which are CCN/NDN simulators;
(ii) with the exception of Icarus, the only simulator outside CCN/NDN, i.e., IC-
Nsim, is not mentioned; (ii) the most popular simulator is ndnSIM (23%); (iii)
about 2/3 of presented results are not reproducible, because either the authors
have used a custom simulator (i.e., 40%), or they have not even specified the
tool used for the evaluation part of their proposal (20%).

While these numbers are slightly more encouraging than [6], it is worth
to stress once more that the situation can evolve, and diverge, with, e.g., an
increasing popularity of proprietary tools without any clear indication of their
soundness. Another aim of this paper is thus to suggest good practices to
reinforce the soundness of research results published in the ICN community.
We do so by both proposing rigorous methodologies (e.g., to cross-check results
of a new software against those of already tested tools in order to prove their
validity) as well as means to enforce them. We hope that our contribution
can encourage the ICN research community to take the right countermeasures,
illustrated in Sec. 10, to avoid being stuck in unpleasant scenarios like the one
depicted in [35, 6].

4. Software Description

This section provides a brief description of all the software tools listed in
Tab. 1, Due to the predominance of the CCN/NDN in the ICN software tools
ecosystem, we discuss the former separately from the other architectures.

4.1. ICN software (except CCN/NDN)

The scope of the ICN software can be classified according to the respective
reference project. Excluding CCN/NDN, tools can be connected to either the
PSIRP/PURSUIT or 4WARD/SAIL project suites, to the GreenICN project,
or to one of the CONVERGENCE3, MobilityFirst or XIA projects4.

As previously outlined, most of the software released in the ICN scope are
prototype implementations of a reference ICN architecture; the only two excep-
tions are represented by the ICNsim implementation, carried out in the PAL
project [36], of the architecture proposed in the PSIRP/PURSUIT project suite,

3The knowledgeable reader will notice that though CONVERGENCE builds over CCN, it
also modifies some aspects with respect to its original proposal [7], so that it fits best under
a larger ICN umbrella.

4Projects such as COMET (http://www.comet-project.org) or COAST (http://www.coast-
fp7.eu) are, instead, omitted from the list because, although closely related in scope, no
commitment in releasing their software tools as open source to the scientific community has
been found

9

and by the Icarus simulator, related to the GreenICN project, which is pro-
moted as a Python-based simulator for general ICN architectures. Notice that
it is possible that multiple software implementations of the same architecture
are released by the same (or followup) project, as for the Blackhawk/Blackadder
implementations (PSIRP/PURSUIT project suite), or openNetInf/nilib imple-
mentations (4WARD/SAIL suite). In the following, a brief overview of each
software is provided.

4.1.1. PSIRP/PURSUIT and PAL

This project suite [37, 38] has released two software prototypes. The ear-
liest one, named Blackhawk [39], is implemented in C and it integrates the
publish/subscribe system directly in the FreeBSD kernel. To reduce the du-
ration of the initial learning phase, wrappers for the low level library are pro-
vided in several high-level scripting languages, such as Python and Ruby, that
are obtained through SWIG [40]. Similarly, to lower the start-up cost, ready
to use FreeBSD virtual images, running Blackhawk, are provided for KVM,
VMware or VirtualBox. However, the most recent Blackhawk software was re-
leased on June 2010, and the Blackhawk development has been discontinued.
The PSIRP/PURSUIT development, then, continued in the Blackadder [41]
prototype, which is currently maintained in the context of two new European
projects, that are iP Over IcN the betTer IP (POINT) [42] and RIFE [43]. The
most relevant changes with respect to the previous Blackhawk are: the adoption
of the C++ language on Linux (instead of C and FreeBSD); the implementation
of the entire prototype as a Click [44] modular router component (supporting
both kernel and user mode); the addition of some wrappers (e.g., Java and C),
and applications (VLC-based pub/sub video). An important effect of having
implemented Blackadder as a Click modular router component is that, albeit
the software was primarily meant to be a full-blown prototype, it is possible to
run simulations through NS2/NS3 integrations of the Click module (known as
nsclick/ns-3-click).

However, further effort in the PURSUIT area [45] seems to suggest that
running the prototype code in a simulated environment, by hacking low level
calls of the OS networking stack, lacks of the necessary flexibility and further
burdens the development with respect to simpler abstractions commonly used
in simulations. This motivated the development of ICNsim [46], an Omnet++
based simulator of the PSIRP/PURSUIT architecture. ICNsim is developed in
the context of the PAL project [36], which aims at studying the impact of fu-
ture health-care services on current and future communication infrastructures.
Although ICNsim is able to simulate a fair number of nodes and publisher-
subscriber pairs with all their basic modules, it lacks of a faithful representa-
tion of the whole PURSUIT architecture, being mainly focused on the network
topology management part in order to design and study algorithms for path
computation. Two aspects contribute to the unclear upper-bounds of its scala-
bility: (i) [45] takes into account only relatively simple topologies to showcase
the scalability of ICNsim; (ii) it uses the INET framework for OMNET++,
whose packet-level design introduces additional burden (like message passing

10

between modules), with respect, for example, to a monolithic simulator that
rely on analytical models and/or flow-based design principles [47].

4.1.2. 4WARD/SAIL

This project suite [48, 27] has released three open source implementations
of their NetInf and Global Information Network (GIN) architectures.

openNetInf [49], the oldest between the two implementations concerning
NetInf, is developed using the Java language, thus introducing portability over
several platforms, including Microsoft Windows. The core library has a signif-
icant amount of documentation and it is complemented by plugins for popular
applications, such as Firefox and Thunderbird, which let browse NetInf-enabled
servers and send emails to Information Object (IO) identifiers rather than email
addresses, respectively. As for the Blackhawk prototype, openNetInf is also
available as an Ubuntu-based Linux virtual image for VirtualBox. Interestingly,
open testbed facilities are available, with one publicly accessible node5 running
the openNetInf software (which can lower startup cost for testing purposes).

nilib [50], a C implementation of NetInf (with wrappers in Python, Java,
Ruby and Clojure) has been released next. A notable difference with respect to
openNetInf is the implementation of Named Information (NI) URI schemes, in-
cluding truncated hash suites, and binary vs human-readable name formats. As
the authors explicitly stated, the library has been used in interoperability tests,
though the code can be considered as a work in progress, and the ecosystem
surrounding it is, at time of writing, less mature with respect to the openNetInf
one (e.g., absence of virtual machines or testbeds).

Finally, in the context of the SAIL project, an open source implementation
of the GIN architecture [51] has been released (albeit the relationship with the
NetInf architecture is not fully clarified, it seems that GIN is a more general
architecture in which NetInf could be included). The GIN prototype has been
developed on FreeBSD 8.2, in C and PHP languages (while the demo and eval-
uations employ virtual machines, these are not readily available for download,
and are thus not listed in Tab. 1).

Overall, it can be pointed out that, as the 4WARD/SAIL projects ended,
code maintenance either stopped (as for openNetInf6) or it relies only on the
effort of individual partners, which, consequently, could slow down the progress
of the projects.

4.1.3. CONVERGENCE

This project [52] has released prototype implementations of its architecture,
available in two software packages, namely PEERKIT and CONET (which is de-
veloped in cooperation with the OFELIA (http://www.fp7-ofelia.eu/) project).

5Actually any *.testbed.netinf.org domain name is aliased to the same machine running
multiple NetInf virtual nodes vhosts.eim.uni-paderborn.de

6The mercurial branch has been tagged as v1.0 prePg3 and v2.0 pg3 final on Nov. 4th,
2011.

11

In particular, PEERKIT [53] is a Java middleware extension of the new
MPEG-M standard which supports distributed applications that create, trade
and consume digital objects (the released software includes a simple application
for photo/document sharing).

Network level functionalities are provided by CONET [54], which adopts
both an evolutionary approach, in the sense that name-based communications
are integrated in existing IP networks by using a new header option, and alter-
native lookup methods based on a name-system (instead of a full dissemination
of names via a routing protocol as in CCN). CONET nodes use essentially the
same interface and APIs of CCNx (see Sec. 4.2.1): this allows, on the one hand
the reuse of existing CCNx applications, and, on the other hand, it facilitates
a direct comparison between CCNx and CONET (indeed, a simple testbed sce-
nario for CCNx vs CONET comparison is also provided). It is worth noting
that, while the first version of CONET was based on the CCNx 0.6.2 prototype,
recent releases have been updated to 0.7.1 – yet it remains unclear in which way
and for how long it will follow further updates of the CCNx codebase, whose
latest release is the 1.0.

Additionally, a CONET testbed is available through the OFELIA project,
that aims at providing open experimental facilities to the research commu-
nity. More precisely, as OFELIA focuses on Software Defined Networks (SDNs),
OpenFlow-enabled switches in the testbed can process CONET-compliant traf-
fic (i.e., serving it from local caches) and fallback to standard IPv4 otherwise.

4.1.4. XIA

The XIA project [31] released a prototype for Linux and Mac OS [55], built
over the Click modular router [44]. The prototype includes all architectural
components as well as APIs (in C and Python) along with sample applications
and libraries. As previously noticed for Blackadder, it is possible to run sim-
ulations through the NS2/NS3 integrations for the Click module – though the
same comment also applies here in terms of the learning cost and complexity of
prototype-based simulative approach.

Like the aforementioned projects, XIA released not only the source code to
be built and run on custom systems, but it also provided VMs that can be
used to evaluate the tool in local testbed. Additionally, XIA can be run on the
Global Environment for Network Innovations (GENI) testbed, through which
large scale experiments can be carried out.

4.1.5. MobilityFirst

The MobilityFirst project [30], funded by the NSF’s Future Internet Archi-
tecture (FIA) program, is currently focused on the design and evaluation of en-
hanced network services targeting mobile data and content, Internet-of-Things,
as well as cellular-Internet convergence (i.e., single unified Internet architecture
supporting the needs of cellular systems including both 4G HetNet and 5G). Re-
cently, a prototype code has been released [56] as a collection of independent and
interoperating components implementing the basic features of the MobilityFirst
architecture, such as a Click-based software router, a Global Name Resolution

12

NFD, CCNx

C
o
m

p
le

x
it

y

Realism

ns3 CCNx-DCE

ndnSIM

CCNPL-Sim
ccnSim, Icarus

CCN-Lite

Mini-CCNx

SimulatorEmulatorPrototype

Joker

Figure 2: Realism vs Complexity in CCN/NDN softwares.

Service (GNRS), and a host protocol stack. C/C++ and Java libraries are
available as APIs to interface with the client network stack, as well as tutorials
explaining how to create MobilityFirst experiments on several testbeds, such as
ORBIT and GENI.

4.1.6. GreenICN

The GreenICN project [32], which focuses on the issues of scalability and
energy efficiency in ICN networks, has its own software reference in the Icarus
simulator, available at [57]. Being entirely written in Python, the Icarus simu-
lator, described in [58], can leverage on networking libraries such as NetworkX
and Fast Network Simulation Setup (FNSS). The authors claim that Icarus is
not tied to any specific ICN architecture; indeed, its main target consists in
the study and performance evaluation of networks of caches. It follows that,
its most developed components concern cache replacement/decision policies,
and cache/routing strategies. Icarus makes the choice of scalability, which is
achieved at the expense of fidelity: basic structures are simplified (e.g., name
space, FIB), and network features like link capacities, buffers, etc. are neglected
by default. Additional utilities are provided for modeling the performance of
caches and work with traffic traces, as well as instructions to run Icarus within
a virtual machine.

4.2. CCN/NDN Software

As emerges from Tab. 1, many tools are available for CCN/NDN with a
complementary design, i.e., there are different operational points in the fidelity
vs scalability space, (or, equivalently, in the scalability vs complexity space), de-
picted in Fig. 2. The separation of the CCN project into two different branches
has also contributed to this heterogeneity. Indeed, the initial and unified re-
search efforts boosted by the seminal paper [7], have split into two directions
which differ in both protocol specifications and associated software tools: from
on side there is the CCNx project [59], conducted by the Palo Alto Research

13

Center (PARC), with its CCNx software reference, while, on the other side,
there is the NDN project, conducted by UCLA and other institutions, with
their NDN Forwarding Daemon (NFD) reference codebase.

Trying to shortly describe each CCN/NDN-related software with a single
keyword, we might say that CCNx and NFD aim at deployment, meaning that,
as reference codebases for the CCN/NDN deployment on real networks, they
include the whole set of features provided by the specifications of the relative ar-
chitectures, concerning, e.g., security, fragmentation, encapsulation, and packet
format. CCN-lite and CCN-Joker, instead, aim at simpler emulation, in the
sense that they implement a reduced set of functionalities in order to execute
CCN/NDN code on resource constrained devices. Mini-CCNx, on its side, aims
at flexible emulation, since it still implements a reduced set of features like
CCN-lite, but it exploits all the advantages of Mininet (e.g., Container-Based
Emulation) in order to alleviate the burden of real emulation. NS3 CCNx-DCE
and ndnSIM aim at faithful simulation, in the sense that they adapt the code-
bases of the relative architecture, that are CCNx and NFD, respectively, inside
a simulation environment, like NS3, without penalizing completeness. CCNPL-
Sim, ccnSim and Icarus aim at packet-level simulation, but with a different level
of granularity which reflects the respective goal: indeed, CCNPL-Sim offers a
fine-grained implementation of some aspects, like link capacity and delay, or
packet size, since it is particularly designed for congestion control studies; on
the other hand, ccnSim and Icarus offer a coarse-grained implementation of net-
work dynamics since they aim at providing a scalable tool to study properties
of large-scale network of caches.

Rather, as emerges from their brief description presented in this section,
each of these tool covers (almost) non overlapping portions of the design space
spectrum shown in Fig. 2. To facilitate the exposition, tools are presented
by grouping them into two categories: (i) prototypes and emulators vs (ii)
simulators, briefly described in the following.

4.2.1. Prototypes and Emulators

CCNx. The CCNx prototype [59] is the reference implementation of the CCN
architecture; it is a fully fledged prototype initially supported by US government
funding through the National Science Foundation (NSF); its development is lead
by PARC, with the support of a very broad community. Since the seminal paper
[7], the CCNx project has evolved with new specifications regarding different
aspects of the protocol stack; the most recent ones related to CCNx version 1.0
can be found at [60].

The core of the CCNx prototype is written in C, and it perfectly adheres to
the specifications of the CCN protocol, such as those related to security aspects,
packet format, semantics, fragmentation, Data chunking, and so on. It, also,
includes some applications, developed in Java and C, that natively run over
CCN; examples are a simple text chat tool (that allows users to build simple
applications and/or to manage testbed operations), an audio conferencing tool,
as well as VLC and Wireshark plugins. As CCNx does not provide per se any

14

testing, validation or experimentation capabilities, users have to instrument ad-
hoc local testbeds or use dedicated infrastructures. Hence, two software tools
(discussed next) were developed to facilitate the execution of CCNx emulation
(i.e., Mini-CCNx) and simulation (i.e., ns3 CCNx-DCE), maintaining the same
CCNx codebase. At the time of writing, Mini-CCNx and CCNx-DCE are based
on CCNx version 0.8.2 and 0.6.2, respectively.

As previously stated, the latest open source release of CCNx has been the
0.8.2, whose components where distributed under both the GNU General Pub-
lic License (GPL) and the GNU Lesser General Public License (LGPL) version
2. After that, the development of the CCNx continued, but as a proprietary
software with version 1.0. More specifically, at the time of writing, CCNx 1.0 is
distributed either as a binary package under a PARC license, or with its source
code under two different forms: an evaluation license for educational institu-
tions, which is free, or an evaluation license for commercial institutions, with
an annual subscription that needs to be paid for commercial use. In addition
to the type of license, CCNx 1.0 introduced some changes with respect to its
previous version, such as a richer and organized set of APIs concerning Interest
and Content object handling, key/value store, message queue, etc. It also comes
with results of unit testing which prove its increased simplicity and efficiency
with respect to version 0.8.x.

NFD. The NDN project [61] was, also, initially started through US government
NSF funding as one of the proposals aimed at shaping the Future Internet
Architecture (FIA). Currently, several universities and research laboratories,
under the coordination of the UCLA university, contribute to the definition of
the NDN architecture, as well as to the development of the relative tools.

The NDN project has its own reference codebase in the NFD [62], which
definitively breaks the compatibility with CCNx. The first difference is repre-
sented by the programming language, which for NFD is C++, thus strength-
ening characteristics like extensibility and modularity. In addition, NFD comes
with the GPL 3.0 license, which allows the open source community to freely test
and develop the code.

NFD faithfully reproduces all the features of the NDN protocol, from NDN
Type-Length-Value (TLV) packet format, link layer protocols, main tables, for-
warding and strategy support, routing management, to hash computation rou-
tines, DNS resolver, and so on. Furthermore, it makes use of the ndn-cxx, which
is a C++ library implementing NDN features useful to develop various NDN
applications. As part of the NDN project, APIs, called NDN Common CLient
Libraries (NDN-CCL), are, also, available in C++, Python, JavaScript, and
Java to develop client applications which interact with the NFD.

Mini-CCNx. Built on top of the container-based emulation environment pro-
vided by Mininet-HiFi [63], this tool [64] allows users to instantiate experiments
with hundreds of CCNx nodes that run the official CCNx project code (version
0.8.2). Interestingly, Mini-CCNx allows to automatically instantiate a replica
of the NDN testbed, including the actual topology, annotated links, and name-

15

based prefix configuration – to further bridge the gap between experimental
evaluation in controlled environments vs real networks. Mini-CCNx can be
installed either directly on Linux devices, or on pre-configured VM.

CCN-Joker. CCN-Java Opensource Kit EmulatoR (Joker) [65] is an open source
platform for NDN emulation. It is entirely written in Java (which simplifies the
development workflow) and, as for CCN-lite, only the fundamental features are
implemented (such as Interest/Data handshakes and cache management poli-
cies, the Additive Increase Multiplicative Decrease (AIMD) congestion control
mechanism for NDN, etc.), to make it suitable for devices with low computa-
tional and/or memory capabilities [66].

CCN-lite. The CCN-lite tool [67], instead, aims at reducing development (as
well as experimental) complexity by providing a lightweight prototype imple-
mentation of both CCNx and NDN protocols, tightly integrated with emulation
and simulation environments. CCN-lite codebase, indeed, is made up of about
2000 lines of C code, through which the interoperability between a fully fledged
CCNx forwarder and a CCN-lite node is guaranteed (i.e., it is possible to in-
terface with the NDN testbed.) Interestingly, CCN-lite supports both CCNx
(both the old version 0.8 and the new one 1.0) and NDN protocols; however,
due to its simplicity, only the main components are reproduced, such as ccnb
and TLV encoding variants, basic CCN data structures, longest and exact pre-
fix matching, etc. At the same time, other aspects are not covered, like crypto
functions, exclusion filters, TCP connectivity, SYNC server, and so on.

As a benchmark of interoperability, CCN-lite supports packet fragmenta-
tion and lost packet detection for running the CCNx protocol natively over raw
Ethernet. Additionally, the CCN-lite code is portable, as the same code runs
unchanged in user and kernel space of both x86 and ARM architectures, or on
the Omnet++ simulation platform (using the INET framework). However, in
this latter case, only the very basic structures are provided (i.e., nodes and topol-
ogy initialization, C++ interface to the CCN-lite code), while all the remaining
parts need to be implemented from scratch, like content store management, ap-
plication layer, and so on. The rationale for CCN-lite is surely of great interest
for the research community as it provides a unified platform (albeit simplified)
for testing and experimentation.

4.2.2. Simulators

NS3 CCNx-DCE. Direct Code Execution (DCE) [68] is a NS3 module that pro-
vides facilities to execute, within NS3, existing implementations of user-space
and kernel-space network protocols. For instance, the Quagga routing protocol,
as well as recent versions of the Linux network stack run under DCE; recently,
the support for the CCNx prototype implementation (version 0.6.2) has been
added [69]. This is of great help because NS3 features, like debugging, trou-
bleshooting, and so on, greatly simplify the development of the CCNx prototype
codebase. However, simplicity and scalability are lost with respect to standard
simulators that are described in this section.

16

CCNPL-Sim. Written in C++, this simulator [70] is based on CBCBsim [23],
from which it imports part of the forwarding layer and the Combined Broadcast
and Content-Based routing protocol, while the CCN protocol features have been
developed from scratch. The simulator has been conceived to assess per-hop for-
warding behavior and receiver-based congestion control, where a fine-grained
control over individual packets is imperative to get accurate performance results.
CCNPL-Sim is the only CCN/NDN simulator to offer out of the box implemen-
tations of flow control algorithms, like AIMD, thus representing a natural choice
to avoid the burden of an equivalent implementation from scratch [71, 72]. Nev-
ertheless, differently from other simulator-based tools, such as CCNx-DCE and
ndnSIM (both based on NS3), or from CCN-lite and ccnSim (both based on
Omnet++), CCNPL-Sim has the drawback of using a custom discrete-event
simulator. Hence, apart from small-scale studies focused on congestion con-
trol, other simulators may by preferable to CCNPL-Sim for wider purposes (for
which ndnSIM is a better option) or large scale studies (for which ccnSim is a
better fit).

ndnSIM. This NS3 module [73] is part of the NDN tool set. It allows the
execution of NS3 simulations (see [74] for the description) by faithfully porting
the NFD codebase. In particular, thanks to a recent refactoring of the code,
ndnSIM 2.0 introduces some novelties with respect to its previous version; for
example, it takes NDN primitives directly from the ndn-cxx library, and it
implements forwarding and management operations using the source code of
NFD and the NDN-TLV packet format. At the same time, the integration with
the NS3 simulator allows an easy modification of the core functionalities, such
as the handling of Interest and Data packets, Content Store management, PIT
and FIB lookups, and so on; the respective C++ virtual functions, in fact, can
be easily overridden by user-defined classes.

In addition, being ndnSIM fully compliant with NS3, it can take advantage
from the consolidated modules of NS3, such as its tracing system, as well as its
support for multiple physical layers, allowing the simulation of NDN scenarios
also in wireless environments. Completeness does not come without cost: for
instance, a faithful implementation of structures like PIT, FIB, content names,
packet formats, or security functions with packet-level operations may limit
the scale of the evaluation due to both processing (CPU seconds) and memory
requirements. For example, [75] shows that storing metadata associated to
content chunks translates into cache entries which require roughly 0.8 kBytes of
RAM memory each; a 10 nodes topology with a content store size of 106 elements
would require 8 GB of RAM (only considering the memory requirements of the
content store). Hence, ndnSIM represents a fairly good compromise between
completeness (its main aim) and scalability.

ccnSim. ccnSim is a chunk-level CCN simulator [76], written in C++ under the
Omnet++ framework (and thus possibly inherits INET network models), that
is described and benchmarked in [77]. The main aim of ccnSim is scalability,

17

allowing to address scenarios with very large CCN content stores (up to 106

chunks) and catalog sizes (up to 108 files) on off-the-shelf commodity hardware.
Scalability is achieved with compromise in the fidelity of, for example, the name
space: the memory footprint of individual entries in CCN PIT and Content
Stores is 64 bits long (about 2 orders of magnitude smaller with respect to
ndnSIM). It focuses on the performance of caching decision/replacement policies
and of strategy layer forwarding algorithms: hence, a large number of policies
is implemented (e.g., with respect to ndnSIM) to simplify cross-comparison. At
the same time, ccnSim neglects routing, security (ndnSIM is a better fit) and
congestion control (CCNPL-Sim is a better fit).

5. Comparison methodology

To complement the survey of ICN software tools, as well as their adoption
in the ICN literature, in the reminder of this paper we carry out a compre-
hensive comparison of a relevant set of ICN software. For reasons detailed in
the following, we focus on CCN/NDN simulators, and consider fundamental
aspects, such as accuracy and consistency of generated results, scalability per-
formance, and fidelity with respect to limitations and/or approximations, which
could introduce artifacts in the obtained results.

This section describes the methodology that we employ in the cross-comparison:
we first illustrate and motivate our selection of software tools (Sec. 5.1), after
which we detail steps we undertake to carry out a rigorous investigation of their
accuracy (Sec. 5.2), consistency (Sec. 5.3) and fidelity (Sec. 5.2).

5.1. Software selection

The selection of representative elements to be compared is not straightfor-
ward: indeed, while a too small set of tools is hardly representative of the full
ecosystem, however, a too broad set could be counter-productive (e.g., hard to
decide the focus of comparison, practical limits in managing a large number of
heterogeneous prototypes, etc.)

From the taxonomy presented in Tab. 1, and by the software description
presented in earlier sections, we know that CCN/NDN simulators represent the
largest portion of the available ICN software. Thus, it follows that their cross-
comparison represents a meaningful starting point in the whole picture of ICN
software cross-comparison. It is worth noticing that our aim is not to quali-
tatively order tools by electing the “best ones”, but to check their accuracy,
consistency, and fidelity against baseline scenarios, and to provide a taxonomy
that could highlight the peculiarities of each tool in order to help users choose
the one the better fits their needs. After having routed the comparison towards
CCN/NDN simulation tools, the selection process still remains complex, due to
the different focus of each simulator – which makes the set of features common
to all simulators to be rather limited. In other words, considering all CCN/NDN
simulators would significantly restrict the boundaries of the possible investiga-
tion, as it is difficult to find implementations of the same algorithm –if not for
simple cache replacement and decision policies– across all simulators.

18

Table 2: Main features of selected simulators.

RP� DP† FS? W2 FC� Workload‡ TR4 Main
focus

ndnSIM

RND
FIFO
LRU
LFU

LCE
FIX

SP
BR
FLD
NCC
Manual

- -

Synthetic:
CBR+ZM
Unif+ZM
Exp+ZM
C-Batches
C-Window

A
R

Completeness

ccnSim

RND
FIFO
LRU
LFU

LCE
FIX
LCD
BTW
PC

SP
FLD
NRR
Manual
Random
Parallel

A -

Synthetic:
CBR+ZM
Unif+ZM
Exp+ZM

.ned
files

Scalability

Icarus

RND
FIFO
LRU
LFU

LCE
FIX
LCD
BTW
PC
HR

SP
NRR
HR

F -

Synthetic:
Exp+ZM

Tracedriven:
GlobTraff

Squid
Wikibench

FNSS Scalability

CCNPL
Sim

RND
FIFO
LRU

LCE

SP
Manual
Random
Balance

-

AIMD:
ICP
FIX
or

RAQM

Synthetic:
CBR+ZM
Exp+ZM

.brite
files

Network
congestion

Note: Features in bold are available in all simulators.
�Replacement Policy (RP): RND=random, LRU=Least Recently Used

LFU=Least Frequently Used
†Decision Policy (DP): LCE=Leave Copy Everywhere, FIX=Fixed probability

LCD=Leave Copy Down, BTW=Betweenness Centrality
PC=Probabilistic caching [78], HR=HashRouting [79]

?Forwarding Strategy (FS): SP=ShortestPath, BR=BestRouting, FLD=Flooding
NRR=NearestReplicaRouting [80], NCC=CCNx v0.7.2 strategy
HR-variants=HashRouting [79]

2Warmup (W): A=Adaptive, F=Fixed
�Flow Control (FC): AIMD=Additive Increase Multiplicative Decrease

ICP=Interest Control Protocol, FIX=Fixed
RAQM=Rate-based Active Queue Management

‡Workload: CBR=Constant Bit Rate, Unif=Uniform, Exp=Exponential, ZM=Zipf-Mandelbrot
4Topology Reader (TR): A=Annotated, R=Rocketfuel, FNSS=Fast Network Simulation Setup

Therefore, this paper focuses on a subset of the available simulators tools,
excluding those based on prototype codebase (i.e., NS3 CCNx-DCE and CCN-
lite), that would instead require a significant additional effort to be included
in the comparison (e.g., the implementation of a LRU replacement strategy for
NS3 CCNx-DCE, or the complete development of content store management
and application layer for CCN-lite in its Omnet++ adaptation, to name a few).

Accordingly, four simulators are selected, that are: ndnSIM, ccnSim, CCNPL-
Sim, which explicitly target the NDN architecture, and Icarus, which, despite
being a simulator for general ICN networks, can be fairly adopted to execute
NDN simulations too. Indeed, due to its generality and its main aim of assessing
performance of networks of caches (similar to ccnSim), it makes sense to include
it in the cross-comparison. A detailed description of their features is reported in
Tab. 2, where commonly implemented decision policies and forwarding strate-
gies are reported in bold. In particular, we compared the selected softwares in

19

their latest versions: ndnSIM v2.0, ccnSim v3.0, CCNPL-Sim v1.0, and Icarus
v0.5. Fig.3 represents, as a Sankey diagram, the ICN software tools reported in
Tab. 1, highlighting the four selected simulators.

Blackhawk
Blackadder

XIA
IcarusIcarus

Conet
PeerKit
GIN
NetInf
openNetInf
ICNsim

Si
m

ul
at

io
n

Em
ul

at
io

n

Pr
ot

ot
yp

e

CCN-Lite

ndnSIMndnSIM
CCNPL-SimCCNPL-Sim
ccnSimccnSim

ns3-DCE CCNx

CCN-Joker
Mini-CCNx
NFD
CCNx

im
pl

em
en

ta
tio

n

C
C

N
/N

D
N

IC
N

Figure 3: Sankey diagram of the ICN and CCN/NDN software ecosystems, highlighting sim-
ulators that are cross-compared in this paper.

For the sake of clarity, we define the adopted terminology in the following.
A Configuration (C) identifies a set of algorithms to be used in a CCN/NDN
network (e.g., routing and forwarding strategies, caching decisions and replace-
ment policies), and that are available in one or more Simulators (S). Finally, a
Network scenario (N), instead, denotes the set of exogenous factors (e.g., cat-
alog skewness, workload, network topology, number of simulated events, etc.)
under which the strategy is simulated. Therefore, performance of metric X,
gathered under CCN configuration c, with network scenario n and simulator s,
can be denoted as Xc,n,s.

According to this terminology, notice that while each simulator provides
multiple configurations C (i.e., different combinations of parameters listed in
Tab. 2), there are basically two configurations common to all simulators (namely,
shortest path (SP) routing with LRU replacement and either LCE or FIX cache
decision policies), with the exception of CCNPL-SIM, which does not implement
a FIX cache decision policy. It follows that steps need to be undertaken to ensure
a sound, fair (i.e., apple-to-apple), but also rich comparison, which we describe
next.

20

5.2. Accuracy

Given that a very restricted set of features is shared between the four selected
simulators, as reported in Tab. 2, and that the use of a theoretical model is
advisable as common reference point for the accuracy comparison, a first analysis
is focused on the evaluation of the hit probability in two simple scenarios: single
cache and a tandem network, reported in Fig. 4. Note that the main goal of
this work is not the analysis of caching performance. Yet, testing the accuracy
of the simulators is straightforward in this particular case, due to the presence
of knowingly very accurate analytical models, such as Che’s approximation for
a single cache with Least Recently Used (LRU) replacement policy [81]. Indeed,
with a solid theoretical base it is possible to define specific metrics to (i) quantify
the accuracy of each simulator and to (ii) express guidelines that could emerge
from this cross-comparison. Following the terminology introduced above, the
aim of this phase is to check if pc,n,shit , with s ∈ {ndnSIM, ccnSim,CCNPL −
Sim, Icarus}, is accurate with pc,n,thit , where t denotes the theoretical model.

Client Repo

(a)

Client Repo

(b)

Figure 4: Sample Topologies: (a) Single Cache; (b) Tandem Network.

5.2.1. Reference models

In a single cache scenario with LRU replacement, Che’s approximation [81] is
known to be extremely accurate. Specifically, denoting with M the cardinality
of the catalog, with B the cache size, PHi the hit probability for the content of
rank i, λi = Λpi the mean inter-arrival rate of requests for the content i, and pi
its request probability, TC the characteristic time of the specific cache (i.e., the
maximum time interval between two content requests without a cache miss), it
results that:

PHi = 1− e−λiTC ;

M∑
i=1

(
1− e−λiTC

)
= B. (1)

While Che’s approximation applies to the single cache scenario due to the va-
lidity of the Independent Reference Model (IRM) model, its extension to general
cache networks is more challenging. Focusing on the tandem network considered
in the second scenario of the accuracy comparison, the “classic” approach is to
approximate PH at the second cache by applying the IRM model on a request
arrival process filtered by hits on the first cache, i.e., λi,2 = λi,1

(
1− PHi,1

)
. Yet,

this extension is known to overestimate the cache hits at the second cache; in-
deed, several “refined” models have been proposed so far. In this work, a recent
and accurate proposal [82] is considered, which expresses the hit probability at
the second cache as:

PHi,2 ≈ 1− e−λi,2(TC2
−TC1

), (2)

21

where TC1 and TC2 are the characteristic times of the first and the second cache,
respectively (the reader is referred to [82] for technical details).

5.2.2. Metric definition

Precise metrics need to be defined in order to quantify discrepancies between
simulation and modeling results, simplify the cross-comparison task, and pro-
vide a systematic analysis of the simulation accuracy with respect to important
scenario parameters. Considering a generic content of rank i, integral errors
ξHi on the catalog head (ID∈[1, i]) and ξTi on the catalog tail (ID∈[i,M]) are
defined as:

ξHi =
1

i

i∑
j=1

∣∣∣∣∣PHj − P̃HjPHj

∣∣∣∣∣ (3)

ξTi =
1

M − (i− 1)

M∑
j=i

∣∣∣∣∣PHj − P̃HjPHj

∣∣∣∣∣ (4)

where PHj refers to Che’s approximation, considered as the real value used to

compare the hit probability P̃Hj gathered by the simulators.
Intuitively, the head (tail) error for the i-th object represents the average

error over the whole set of objects that are more (less) popular than the object
having rank i-th. For instance, ξHm represents the average error for the m most
popular objects in the catalog, accounting for a certain percentage of requests.
Respectively, ξTm denotes the integral error for the M −m less popular ones.

5.2.3. Tracing system

To compute the above metrics, we additionally point out that each simulator
provides its own tracing system to collect different metrics (such as hit proba-
bility, hit distance, file download time, network load, etc). These metrics are,
however, logged with different levels of details (e.g., some provide per-content
statistic, while others provide only global measurements; some provide only av-
erages, while others provide also higher moments). Tools differ, also, in their
way of handling the simulation transient period: not all simulators test for
convergence of the metrics under observation, and the implementation anyway
differ when present.

Therefore, to avoid any bias due to the way metrics are computed in each
simulator, we implemented the same logging system on all the simulators, which
traces object-level hit and miss events at every node. We point out that we rely
on our common tracing system only to perform accuracy assessment, whereas
we employ the standard tracing system to perform consistency assessment.

5.3. Consistency and Scalability

If simple scenarios are useful to evaluate accuracy with respect to a known
reference (i.e., theoretic model in our case), they are hardly representative of
the real settings ICN networks are expected to operate in. As a side effect of

22

the consistency comparison, it is also useful to evaluate the scalability of the
simulators in larger scale scenarios. Therefore, we need to widen our focus to
include more complex scenarios, in terms of both networking and algorithmic
features. As a direct proof of the scalability of the tested tools, we monitor two
performance indices, that are execution time, expressed in CPU seconds, and
memory requirements.

As thoroughly discussed in [11], a reference scenario (both topology and
traffic load) that could be used as a ground truth to easily evaluate all the
aspects of the ICN paradigm still lacks. Both topology and traffic load depends
on the type of study that needs to be carried out; for example, a Web-scale
ICN simulation would require a topology of 45k ASes and 200k links, and
a content catalog with cardinality 1012 [11], which would pose serious limits
to the scalability of the adopted tool and to the feasibility of the evaluation on
commodity hardware. As a consequence, we consider a Video On Demand (VoD)
like scenario (i.e., with catalog cardinality of 104 contents [11]) which permits
us to have a fair assessment of the scalability features of the compared tools,
and also to execute the evaluation on the available commodity hardware.

The same scenarios are used for the consistency verification, where we resort
in mutual comparison of the results from the the different simulators gathered
in the same settings. By cross-comparing their results, the aim is to confirm
the consistency, or to identify with more precision the boundaries within which
we can expect simulation results to be in agreement. It is worth clarifying that
we purposely kept out CCNPL-Sim from this more complex comparison (i.e.,
it will be based on a topology with 100 nodes) due to its lack of scalability,
which will be described in the following (it was also necessary to implement
a fixed probabilistic decision policy from scratch, with the risk of introducing
some inefficiency/inconsistency).

As we have previously outlined, the simulators share a limited set of common
features, on which we base our consistency evaluation (albeit they offer a rich set
of features individually). More formally, we compare the performance that the
same CCN configuration c ∈ C, with an identical networking scenario n ∈ N ,
has in different simulators s ∈ S (i.e., s ∈{ndnSIM, ccnSim, Icarus}). That
is, the aim of this section is to compare Xc,n,s, Xc,n,s′ , Xc,n,s′′ for different c.
For details about the comparison of heterogeneous strategies implemented in
different simulators we refer the interested reader to our preliminary work [5].

5.4. Fidelity

The aim of the last step of the comparison is to raise awareness of the need
for a careful design of the scenario, to avoid simulation results to be affected
from artifacts that are due to underlying limitations of the simulator in use.

A very simple, but very telling, example concerns, for instance, the presence
of a complete link model, able to simulate link capacity, delays and transmis-
sion buffers scheduling. Unlike ndnSIM and CCNPL-Sim, where packet-level
fidelity is enabled by default, Icarus and ccnSim simulate links with infinite
capacity by default (albeit capacity limitations can be enforced by standard
modules provided by FNSS and Omnetpp), and they assume to operate at a

23

load below congestion. It follows that, unlike ndnSIM and CCNPL-Sim, Icarus
and ccnSim by default neglect phenomena like congestion and packet losses.
While simulators properly advertise their capabilities, it is possible that scenar-
ios are engineered in such a way that the Icarus and ccnSim tools are used at an
operational point they do not assume (e.g., close to congestion or in overload).

It is thus relevant to consider scenarios where access congestion can lead
to drop of Data and Interest packets (e.g., the single cache case). Clearly,
we expect packet losses to impact simulation dynamics: indeed, the loss of
an Interest packet implicitly changes the object popularity, hence the arrival
process at the cache; the loss of a Data packet, instead, affects LRU decisions.
Both ultimately affect the content hit probability, which can be gauged via the
ξH and ξT metrics.

6. Accuracy comparison

6.1. Evaluation scenarios

The first scenario models a single CCN router directly connected to a repos-
itory. The router receives requests from a set of clients, and forwards them to
the repository in case of a cache miss. The second scenario, instead, comprises
an additional CCN router, thus configuring a tandem cache network. For the
sake of simplicity, we consider, for the time being, Least Recently Used (LRU)
replacement and Leave a Copy Everywhere (LCE) decision policies (so that
contents replicate in every traversed cache).

Given that the relative accuracy of all tools is the main focus, as opposed
to the absolute value of performance indicators, it follows that the precise value
of some parameters (like the content catalog cardinality, M , the cache size to
catalog ratio, C, and the request rate λ), are not of primary importance. A tuple
(namely, M = 104, C = 0.01, and λ = 4 request/s) is, therefore, selected for
both scenarios, which allows to perform a fair cross-comparison of the selected
simulators, at a furthermore manageable scale.

On the other hand, parameters that can significantly influence the dynamics
of the simulated scenarios, as well as the accuracy of the measured metrics, are of
primary importance: in this case, simulations with multiple values are executed.
For instance, the ICN literature, with few exceptions, models content popular-
ity as a Zipf’s probability distribution, that is P (X = i) = i−α/

∑M
j=1 j

−α,
of which three distinct settings (namely, α ∈ {0.8, 1.0, 1.2}) are considered.
Similarly, the number of clients’ requests, R, heavily impacts on the statistical
significance of the collected metrics, of which disparate settings (specifically,
R ∈ {106, 107, 108}) are considered.

6.2. Simulation results

Fig. 5 reports, as an example, results related to the content hit probability
obtained for α = 1 and R = 107, averaging 10 runs for each simulator, for
the single cache (top) and the second cache of the tandem network (bottom).
The correspondent theoretical models are reported as dashed lines and clearly

24

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

Content ID

P
H

 −
 H

it
 P

ro
b

ab
il

it
y

ccnSim

ndnSIM

Icarus

CCNPL−Sim

p50
ID=75

p75
ID=866

p90
ID=3758

ξ
H

0.7%

ξ
H

8.9%

ξ
T

102%

ξ
T

110% ξ
H

38.6%

ξ
T

138%

Che’s Approximation

(a)

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

Content ID

P
H

 −
 H

it
 P

ro
b

ab
il

it
y

ccnSim

ndnSIM

Icarus

p25
ID = 284

p50
ID = 3436

Che’s Approx.
"Refined"

 CCNPL−Sim

Che’s Approx.
"Classic"

(b)

Figure 5: Experimental vs Theoretical Hit Probability in two simple scenarios with M = 104,
α = 1, and R = 107: (a) Single Cache; (b) Second Cache of Tandem Network.

labeled. Each picture further marks the content IDs corresponding to specific
percentiles of the overall requests: e.g., requests for content whose ID∈[1, 75]
(ID∈[1, 3436]) account for 50% of the requests in the single cache (tandem) case.

Observing Fig. 5, the need for defining a compact, yet insightful, metric to
compare the accuracy of the three simulators, clearly emerges. Indeed, it can be
noticed that: (i) curves of the different simulators overlap, so that it is hard to
precisely assess differences between them and/or discern the respective curves;
(ii) simulation results are, as expected, unreliable in gauging rare events: this
appears both as noise towards the tail of the catalog, in both scenarios, as well
as absence of results in the head of the catalog for the second cache (due to the
filtering effect of the first cache).

More precisely, several regions can be identified in the plots, where either

25

modeling results, or simulation results, can be considered as more reliable. In the
single cache scenario, reported in Fig. 5-(a), it emerges that: (i) simulation and
modeling results are in perfect agreement up to the 50th percentile; (ii) variance
in simulation results is tolerable and unbiased (i.e., symmetric noise) up to the
75th percentile; (iii) above the 75th percentile, simulations tend to overestimate
hit probability; this is due to the fact that requests for those contents represent
rare events for the whole simulation, being them equal to Ri = R · pHi, where
pHi is the Zipf’s probability of content i, and Ri the associated number of
requests. This phenomenon is more evident especially for small cache regimes,
since the cache hit is conditionally reported only for contents that were found
in the cache. As the total number of requests R increases, network caches
will converge more and more to a point where only the most popular contents
are cached, thus increasing the proportion between Ri and pMi for unpopular
contents, where pMi is the miss probability for content i. This will result in a
closer estimation of the empirical hit probability with respect to the theoretical
one, as it is confirmed by the sensitivity analysis presented in the next section.

Similarly, in the second cache of the tandem network, reported in Fig. 5-(b),
it appears that: (i) results from modeling capture rare events more accurately,
in both the head and the tail; (ii) the tail significantly shifts due to the filtering
effect contributed by the first cache, so that significant noise and bias affect
simulation results, already between the 25th and 50th percentile of the requests
process, albeit (iii) simplifying assumptions make modeling results less accurate
in the body of requests up to the 25th percentile, which is especially evident for
the classic extension of Che’s approximation, and that is, instead, significantly
corrected (but not entirely eliminated) by its refinement [82].

The defined metrics (Sec. 5.2.2) permit to have quantifiable values that
reflect the aforementioned observations. Fig. 5-(a) reports values of both head
and tail integral errors for some significant percentiles; for instance, ξH866 = 8.9%
represents the average error for the 866 most popular objects in the catalog
accounting for 75% of the requests, while ξT866 = 110% quantifies the average
error for the remaining 25% of requests. As a typical user will both request
popular and unpopular contents, it follows that measured performance could
be, in some cases, significantly distorted.

6.3. Sensitivity analysis

Several simulations are executed, experimenting with different scenarios7,
α, and R values, from which it emerges that the four simulators consistently
report very similar ξH and ξT statistics over all tested scenarios. For the sake
of example, Tab. 3 reports the mean and standard deviation of the head and

7Notice that, since in more complex scenarios (such as the tandem network) simulations are
more reliable than analytical models for some regimes, the ξH and ξT quantify discrepancies
with the refined Che’s approximation, more than simulation errors. Yet, these metrics are
still helpful in quantifying whether these discrepancies are consistent across simulators, which
is among our primary goals.

26

Table 3: Head and Tail Integral Errors (µ ± σ) for selected simulators in the single cache
scenario: M = 104, α =1, R = 107.

p50 p90

ξH [%] ξT [%] ξH [%] ξT [%]

ccnSim 0.7± 0.1 101.5± 1 38.6± 1 138.2± 1
ndnSIM 0.7± 0.1 101.8± 1 38.6± 0 138.6± 1
Icarus 0.7± 0.1 101.4± 1 38.8± 1 138.0± 1
CCNPL-Sim 0.8± 0.1 101.5± 1 39.1± 0 137.8± 1

α=0.8 6± 0.2 60.8± 1 40± 1 88.5± 1
α=1 0.7± 0.1 101.8± 1 38.6± 0 138.6± 1
α=1.2 0.03± 0 141.4± 4 13.3± 0 154.5± 5

R = 106 2.2± 0.3 159± 3 110.6± 1.5 186.3± 4
R = 107 0.7± 0.1 101.8± 1 38.6± 0 138.6± 1
R = 108 0.3± 0 33.2± 0.2 12.3± 0.2 45.3± 0.4

tail errors obtained from the single cache scenario with α = 1 and R = 107, for
a few percentiles.

Since, at least in this scenario, the four simulators yield identical results,
for practical purposes, one of them is selected (namely, ndnSIM) to perform
a sensitivity analysis of the error as a function of the input parameters α and
R. In particular, either (a) the number of requests R = 107 is fixed and the
Zipf’s exponent α ∈ {0.8, 1, 1.2} is varied, or (b) α = 1 is fixed and R ∈
{106, 107, 108} is varied. Results are both tabulated in the bottom part of
Tab. 3, and graphically reported in Fig. 6. Note that in Fig. 6, the bottom
part of the y axes has a different scale with respect to the upper one.

An interesting dual phenomenon emerges: for increasing popularity skew,
fewer more popular objects make the ξH error smaller, at the expense of a
degradation of ξT accuracy for the heavier tail (relative ξH improvement and ξT

degradations are annotated in the picture for the sake of clarity). For example,
the ξH error associated to the 50th percentile is almost equal to zero for alpha =
1.2, whereas the respective ξT is equal to 141%, reflecting the characteristic long
tail of the Zipf’s probability distribution for α > 1. The influence of the tail is
further confirmed by the relative increment of the ξT when increasing α: indeed,
from α = 0.8 to α = 1, the ξT of the 50th percentile increases by 68%, whereas,
from α = 1 to α = 1.2, there is an increment of almost 40%.

Moreover, a clear phenomenon can be observed from Fig. 6-(b): the number
of simulated events has a remarkable impact on the accuracy of the measured
metrics. Indeed, the decrement for both the ξT and the ξH is evident: focusing
on the integral errors associated to the 95th percentile, for example, a reduction
of 52% (17%) and 69% (71%) of the ξH (ξT) can be seen when passing from
R = 106 to R = 107, and from R = 107 to R = 108, respectively.

27

0.8 1 1.2

0.20

0.15

0.1

0.05

0

0.5

1

2

α

 ξ
H

ξ T

p
5
0

p
7
5

p
9
0

p
9
5

+ 68%

+ 40%

(a)

1e6 1e7 1e8
0.4

0.2

0

0.5

1

1.5

2

R − Total Number of Requests

 ξ

H

ξ T

p
5
0

p
7
5

p
9
0

p
9
5

− 17%

− 71%

− 52%

− 69%

(b)

Figure 6: Head and Tail Integral Errors for the single cache scenario: (a) M = 104, R = 107,
and α variable; the relative ξT increments for the 50th percentile of about 68% and 40%,
when shifting from α = 0.8 to α = 1, and then to α = 1.2, respectively, confirm the influence
of the tail. (b) M = 104, α = 1, and R variable; in this case the number of simulated events
is the relevant factor: when passing from R = 106 to R = 107, and from R = 107 to R = 108,
the integral errors associated to the 95th percentile experience a reduction of 52% (17%) and
69% (71%).

28

Our evaluation is not exhaustive enough to provide precise and rigid guide-
lines regarding the number of requests that need to be simulated according to
the considered scenario; what, instead, emerges clearly is the interaction and
influence that both the catalog skew and the number of requests have one the ac-
curacy of the produced results. In the reported case of the single cache scenario,
with a fixed α = 1, simulation results where accurate only for the catalog body
(with a ξH<1%) due to the skew in the object popularity, despite R = 107 cor-
responds to an average of 1000 requests per object. It follows that with skewed
distributions, a total number of simulated events of two orders of magnitude
bigger than the catalog cardinality is considered as a lower bound to obtain
consistent results also for the heavier tail of the catalog. Our hope is that the
presented study can encourage researchers in presenting their results with all
the necessary information needed to evaluated their scientific soundness, like
total number of simulated requests with respect to the catalog cardinality, total
number of simulated runs for each scenario, and so on.

6.4. Summary of findings

The conducted analysis in simple scenarios allows to conclude that (i) CCN-
/NDN simulators yield remarkably consistent results, (ii) accuracy of results
gathered for different skews is highly variable for a fixed request budget, (iii)
increasing the request budget, accuracy in the tail of the catalog is achievable
as well. General guidelines can be tabulated to express simulation parameters
(such as number of requests R) as a function of the scenario (e.g., catalog size
C and skew α), required to bound head ξH and tail ξT errors below some
arbitrary thresholds. Yet, in the process of defining and agreeing on common
scenarios (e.g., which is in progress at IRTF ICNRG [12]), defaults settings
of these crucial parameters (or guidelines for non-default settings) should be
jointly included and considered by the ICN community, as they are of primary
importance for a scientifically sound evaluation.

7. Consistency and scalability comparison

7.1. Evaluation scenarios

We now widen the focus to verify cross-consistency of simulation results
over more complex and larger scale scenarios. Differently from the accuracy
assessment, consistency results are based on the default tracing systems of each
simulator. As previously described (Sec. 5.3), we consider homogeneous sce-
narios, where exactly the same algorithmic configuration C is tested over the
same network scenario N implemented over all simulators, in order to ensure
soundness of our findings.

Specifically, we fix the well known LRU replacement policy in every scenario,
and consider variations of cache admission policy and Interest forwarding strate-
gies. As far as cache admission policies are concerned, we use either (i) Leave
Copy Everywhere (LCE), where copies of retrieved contents are systematically

29

cached in every traversed node along the reverse path, or (ii) FIX [83], where
contents are cached with a fixed probability P .

As far as forwarding strategies are concerned, we use Shortest Path (SP),
where a control plane routing protocol (like Named-data Link State Routing
Protocol (NLSR) [84]) is assumed to proactively disseminate name-level reach-
ability to build FIBs of nodes,

Regarding the networking scenario, a 10x10 grid topology is considered,
where a single repository, randomly placed in each of the 10 simulated runs,
stores the entire catalog of M = 104 contents. 30 clients are randomly placed for
each run; they issue requests for contents characterized by a Zipf’s probability
distribution with exponent α = 1. The considered cache to catalog ratio is
C = 0.005, and the number of simulated events is R = 107. We make all results
shown in this section, that were already previously published in our preliminary
work [5], interactively browsable at [85].

7.2. Homogeneous comparison

As previously stated, we purposely do not consider CCNPL-Sim for its scal-
ability issues (shown in the next section) and for its lack of a fixed probabilistic
cache decision policy, as emerges from Tab. 2. As a consequence, in this phase
two configurations that are commonly implemented in all the three simulators
(i.e., ndnSIM, ccnSim, and Icarus) are selected; in particular, as emerges from
Tab. 2, SP with LCE and LRU (c1), and SP with FIX and LRU (c2) are the
ones implemented in all simulators.

More precisely, in accordance to the terminology defined above, the aim of
this section consists in comparing Xc,n,s, Xc,n,s′ , and Xc,n,s′′ for different c. As
performance metrics, the hit ratio, the hit distance (that relates to the quality
of ICN performance), and the network load (that relates to the cost for ISP, and
is calculated by counting the number of generated Interest and Data packets in
the whole network) are considered.

Results are reported in Fig. 7, where multiple metrics X are reported at the
same time by using a parallel coordinates graph, where each metric is normalized
to its respective observed maximum value (i.e., Xc,n,s/max(Xc,n,s), so that a
hit ratio of 1 does not imply that all contents are cached).

As it can be seen clearly from the picture, two separate families of curves
emerge, which pertain to a different configuration (i.e., c1 vs c2, respectively).
Results in Fig. 7 are expected, since it is known that a probabilistic caching
decision (FIX) performs better than systematically admitting object in the cache
(as in LCE) [82, 86]. As such, the most interesting observation regarding Fig. 7
is that, for any given configuration, curves are very similar, regardless of the
simulator they have been obtained from. Hence, all the simulators provide
very consistent results, despite heterogeneous implementations, codebases, and
tracing systems. It is worth to notice that the little variations among the metrics
gathered from different simulators (i.e., curves in Fig. 7 do not perfectly overlap
each other) are due to the randomness introduced in each simulated run; that is,
each simulator, by means of its random number generators, vary, per each run,

30

Hit Ratio Hit Distance Load
0.2

0.4

0.6

0.8

1

N
o
rm

a
li

z
e
d
 V

a
lu

e

ndnSIM

ccnSim

Icarus

1

SP+FIX+LRU
SP+LCE+LRU

0.2

0.4

0.8

0.6

Figure 7: Homogeneous comparison of the selected simulators through shared configurations,
i.e., c1=SP+LCE+LRU and c2=SP+FIX+LRU, for a grid topology of 100 nodes, α = 1,
R = 107, and C = 0.005.

both the placement of the 30 clients inside the grid, and the request pattern
issued by each client. Therefore, the average of 10 different runs generates
only small variations between the results provided by the compared simulators.
This represents a comforting result, considering the disagreement experienced
in other networking areas [87, 88] (that could be tied to several reasons, such
as bugs in the software implementation, poor entropy of the random number
generator, etc).

7.3. Scalability comparison

Both the naive scenario used for the accuracy comparison, and the more
complex ones of the consistency comparison have been used as a reference to
extract significant performance indexes, like CPU and memory usage. In partic-
ular, mean values and standard deviations, reported in Tab. 4, are obtained for
the single cache scenario and for the grid topology when executing the SP+LCE
configuration. To avoid any bias, all the simulations have been performed using
the same machine (8-core Intel Xeon at 3.6 GHz, equipped with 32 GBytes of
RAM, and with Ubuntu Linux 12.04).

It is worth noticing that the CCNPL-Sim simulator has a different design
with respect to the others; indeed, the simulation consists in two parts: the
first one is the workload (WL) generation, where all the events (like content
publications or content requests) are generated and logged inside a text file;
the second one, instead, is the actual simulation (SIM), where the previously
created workload is taken as an input to execute the simulation and to produce
the desired output.

It follows that two different measures are reported in Tab. 4 for the CCNPL-
Sim, for which scalability problems emerge even for the single cache scenario.
It clearly appears that the limitation of CCNPL-Sim regards the CPU time: it
takes almost 20 minutes only to create a workload file, which has an average size

31

Table 4: CPU and Memory Usage (µ±σ) for two scenarios: Single Cache (M = 104, R = 107,
α = 1, C = 0.01), and Large Scenario (100 nodes, M = 104, R = 107, α =1, C = 0.005).

Single Cache Large Scenario

CPU [s] Mem [MB] CPU [s] Mem [MB]

ccnSim 118± 1 12± 1 489± 41 54± 1
ndnSIM 377± 2 68± 2 2634± 304 68± 3
Icarus 261± 1 51± 1 557± 44 55± 2

CCNPL-Sim
WL 1202± 0.4 10± 1 − −
SIM 686± 94 14± 1 − −

of 710 MBytes. Considering that the scenario is naive, and that this procedure
needs to be executed for each run, it follows that CCNPL-Sim is not suitable for
large scale scenarios, having its focus on packet-level simulations for congestion
control studies.

Tab. 4 reports, also, measures taken from the execution of the large scale
scenario used for the consistency comparison. It clearly shows that scalability is
a strength of ccnSim and Icarus simulators, which present a mean execution time
of 489 and 557 seconds, and a memory usage of 54 and 55 MBytes, respectively.
These results confirm their main focus of assessing performance of different
strategies and algorithms even for large scale network of caches. In the end,
from Tab. 4, it is possible to verify that ndnSIM is conceived for a different
scope with respect to ccnSim and Icarus; indeed, its main aim of completeness
and fidelity with respect to the real NFD protocol and daemon results in more
complex data structures and procedures that slow down its execution time,
which is not comparable with respect to ccnSim and Icarus. Again, our purpose
is not to present an unfair comparison, but to make the reader even more aware
in the selection process of the simulator according to his/her needs (e.g., fair
reproduction of the NDN protocol or large scale performance study of networks
of caches). What is remarkable, however, is that despite its complexity, ndnSIM
2.0 presents a memory usage of only 68 MBytes, which is very close to the one
of ccnSim and Icarus.

7.4. Summary of findings

The investigation carried out in this section shows simulation results gath-
ered from homogeneous CCN/NDN configurations to be in agreement across
different simulators. In other words, we conclude that available open source
CCN/NDN simulators yield comparable results on different, but accurate, im-
plementations of the same configuration, and that scenarios are thus well cali-
brated across simulators.

Finally, we find that fairly large scale simulations are possible on off-the-
shelf hardware, although the specific statistics concerning execution time and
memory requirement are clearly tied to the level of abstraction of the simulation.

32

8. Fidelity

8.1. Evaluation scenarios

As simulation models differ in their respective levels of abstraction, it is
important to assess whether a wrong design of the simulated scenario could
lead to distorted results. An obvious, but telling, example concerns link capac-
ities: while simulators, like ndnSIM and CCNPL-Sim, trade scalability off for
fidelity by considering an accurate link model by default (including link capac-
ity, delays and transmission buffers), others, like Icarus and ccnSim, make the
opposite choice to ameliorate scalability at the expense of fidelity by assuming
ideal link models by default (with infinite capacity), and expect users to ex-
plicitly include additional network-related components via NetworkX/FNSS or
Omnetpp/INET, respectively. While this latter choice is openly advertised, the
risk is that careless use of such tools in operational regimes they are not expected
to run, could lead to wrong or distorted estimation of network performance.

For the sake of illustration, we consider a single cache scenario, in which
the request arrival rate is dimensioned so that the respective data arrival rate
can significantly exceed the link capacity: the main purpose is, indeed, not the
realism of the scenario, as the workload rather represents a stress test. Clearly,
while the capacity parameter is taken into account in ndnSIM (or CCNPL-Sim),
it is ignored in ccnSim (or Icarus). Due to the same operational choices made
by ccnSim and Icarus from one side, and from ndnSIM and CCNPL-Sim of
the other side, only ccnSim is considered for the comparison against ndnSIM in
this section.

Fixing α = 1 and R = 107 (that yield accurate results as reported in
Sec. 6.3), link capacity is set to Bw = 1Mbps, link delay to d = 10ms, while
two sizes of the link buffer B ∈ {5, 20} packets are considered to possibly ex-
pose different loss patterns. Requests follow a Poisson process with average
inter-arrival time λ ∈ [25, 180] Interest/s, that, considering an average data size
of L = 1kB, corresponds to a link load ρ = λ · L/Bw varying in the range
ρ ∈ [0.2, 1.4]. For each value of buffer size B and λ, mean values are reported
in Fig. 8, along with their 95% confidence intervals, by averaging ten different
simulation runs. Furthermore, retransmissions are disabled in ndnSIM.

8.2. Simulation results

For each load ρ and buffer size B, the number of dropped Data and Interest
packets is reported in Fig. 8-(a), while the ξH for the 50th percentile is reported
in Fig. 8-(b) to assess the corresponding discrepancies with respect to Che’s
approximation in the lossless case. Observe that, for load ρ < 1, losses due to
transient congestion phenomena imply no noticeable impact on the accuracy,
validating the choice made by ccnSim and Icarus of preferring scalability in
this operational regime. Conversely, for ρ > 1 (which can happen because of
an incorrect dimensioning of the network, for example), non-trivial phenomena
arise, with furthermore opposite effects depending on the buffer size parameter,
that are captured by ndnSIM, while silently ignored by ccnSim.

33

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1,5

3

ρ − Link Load

D
ro

p
p

ed
 D

at
a

P
ac

k
et

s
[%

]

0

0,025

0.05

D
ro

p
p

ed
 I

n
te

re
st

 P
ac

k
et

s
[%

]

ndnSIM − Data − B=5

ndnSIM − Data − B=20

ndnSIM − Interest − B=20

ndnSIM − Interest − B=5

ccnSim

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4

5

10

15

20

ρ − Link Load

ξH
 −

 H
ea

d
 I

n
te

g
ra

l
E

rr
o

r
[0

/ 0
0
]

p50 − Tx Buff = 5

p50 − Tx Buff = 20

p50 − ccnSim

Lost Packets:
DI = 6198
DD = 615500

Lost Packets:
DI = 15842
DD = 298660

(b)

Figure 8: Single Cache scenario - link with Bw = 1Mbps and d = 10ms, B = 5, 20: (a)
Dropped Data and Interest packets; (b) ξH for the 50th percentile.

Aside the underlying reasons of the observed dynamics8, what is worth to re-
mark here is that, with complex scenarios and larger topologies, a wrong design
of the network scenario could produce significant distortions in the evaluation
of the system performance (e.g., considering the hit ratio).

While in the current state of affairs the burden of carefully engineering the
simulation scenario to avoid inconsistent results is left to users (e.g., as ccnSim
and Icarus results should be corrected by scaling down request arrival rate),
a better practice would be to automate and generalize consistency check, to
minimize sources of human errors in the scenario design, that possibly lead to

8Specifically, when the buffer is small and the load high, losses of Data and Interest packets
are uncorrelated, so that while Data loss impact LRU timers, Interest loss is independently
distributed over all contents, which has not impact on the content popularity. Large buffers,
instead, correlate losses, and more prominent Interest losses significantly affect the arrival
process, which explains larger discrepancies with respect to Che’s approximation.

34

inference of wrong conclusions. For this specific example, ccnSim and Icarus
could detect inconsistence, without incurring in the scalability penalty of fully
simulating link capacities, by evaluating the data load over arbitrary windows
of time, and comparing it against the configured user capacity (e.g., as done by
Mini-HiFi[89], that checks incoherence from measures of expected delays).

8.3. Summary of findings

Our findings in this section are twofold. On the one hand, we confirm that
simplified simulation assumptions are not to be neglected, as they may hide
effects with significant impact – which validates the choice of ndnSIM to main-
tain fidelity at the expense of scalability, as this reduces the risk of careless
evaluation. On the other hand, we find that in an operational regime lower
than (even close to) congestion, losses due to transient congestion phenomena
imply no noticeable impact on the accuracy – which validates the choice made
by ccnSim and Icarus of preferring scalability in this operational regime.

Overall, we see each of the above tools has its own merit (e.g., scalability
over large-scale scenario vs fidelity of fine-grained events), and we believe the
ICN community can benefit from better exposing when to use which.

9. Related work

Related research closest to this manuscript is represented by works sharing
the same methodology and spirit. A list of the most relevant cross comparison
of software tools, and especially simulators, that are used for the performance
evaluation in the networking community is shown in Tab. 5.

Table 5: Related work summary.

Ref Year Domain #Sim. Focus
[90] 2003 TCP 3 Scalability
[87] 2006 TCP 2 Accuracy
[91] 2009 TCP 6 Scalability
[92] 2008 WSN 4 User experience
[93] 2010 WSN 14 Scalability
[88] 2011 WSN 4 Accuracy
[35] 2007 P2P 9 Survey
[6] 2013 P2P 9 Survey

In the TCP/IP domain, [91] (and [90]), in particular, implement a grid
(dumbell) topology and test 6 (3) simulators, with a special focus on scalability.
In [91], to test the consistency of all the implementations, the authors firstly
run simulations by varying the drop probabilities and the network size, and
monitoring the end-to-end packet loss; then, after having verified that the results
are comparable with each other, they run experiments to test the performance of
the five simulators in terms of simulation runtime and memory usage. For each

35

set of experiment they vary both the drop probability and the network size. The
conducted study is useful to highlight the strengths of each simulator according
to the priorities of the users (i.e., scalability, simulation runtime, ease of use). In
[90], instead, results concerning the execution speed, the TCP RTT value, and
the memory usage against the number of parallel connections are shown; due
to the significant differences between the examined simulators, the authors put
accent on the importance of understanding peculiarities and limitations of each
simulator before effectively running large scale and computational demanding
simulations. Fewer work instead tackle the challenge of comparing accuracy, as
for instance [87] that thoroughly compares ns2 and NSC TCP implementations
against real-world networking stacks (FreeBSD, OpenBSD and Linux). Thanks
to efforts such as [87], the networking community is able to perform simulation
of TCP/IP networks, knowing the expected level of fidelity.

For what concerns wireless sensor networks, authors in [92] consider four
simulators, and compare them according to the amount of effort needed for
installation, familiarization, implementation of a specific protocol, and visual-
ization – though no actual comparison of simulation results is attempted. In
[93], an extensive survey and taxonomy of fourteen simulators is carried on,
after which a quantitative comparison limited to simple scalability test is per-
formed over three of the surveyed simulators, monitoring the computational
time and the memory consumption – confirming a tradeoff between scalability
and fidelity. Consistency and accuracy is the focus of [88], that employs four
WSN simulators and tunes several simulation models (like radio propagation,
noise, and energy consumption) calibrated according to a set of experiments on
MICAz sensor nodes in indoor and outdoor environments. Authors attempt at
performing the same simulations (homogeneous comparison in our terminology)
over the four simulators, obtaining inconsistent results concerning the energy
consumption and the packet delivery probability – a rather undesirable situa-
tion, opposite to what happens in CCN/NDN networks as we have seen in terms
of consistency of simulation results.

In the P2P context, authors in [35] present a taxonomy of 9 P2P simulators
(according to certain criteria, like simulation architecture, usability, scalabil-
ity, statistics and underlying network simulation), and surveys over 280 P2P
papers. They discover that 62% of them claimed to use a custom proprietary
simulator instead of an open source one, with simulation results generally re-
ported in the literature in a fashion that precludes any reproduction. In 2013 a
journal extension [6] of the original 2007 editorial note [35] appeared, allowing
to take several interesting lessons of the evolutions in the P2P domain. Specifi-
cally, quoting [6] while “it was hoped that the findings of the survey would lead
to closer collaboration between the designers of P2P simulators and academics
conducting P2P research. A survey of papers that cites this work shows that
the opposite has occurred and that there has been further fragmentation in the
domain of P2P simulators”. Casting the lesson of P2P domain to ICN, we see
that while the ICN situation is currently rather favorable, with a rich ecosystem
of consistent tools covering different aspects, there is a risk that a proliferation
of custom, proprietary and non validated simulators will dramatically make the

36

picture worse in few years.

10. Discussion and conclusions

This paper first overviews the ICN software ecosystem, finding that despite a
number of software tools are available (i) for most architectures only prototypes
are available, (ii) about half of the ICN software has been developed around
the CCN/NDN architecture, that thus exhibits a larger diversity in terms of
prototypes, emulators and (especially) simulators.

The focus is then narrowed down to the largest class of ICN software, namely
conducting a rigorous cross-comparison of four CCN/NDN simulators, that we
contrast in terms of accuracy, consistency, scalability and fidelity. From the
analysis it emerges that, (i) provided simulation scenarios are properly dimen-
sioned, CCN/NDN simulators are able to produce accurate results. What is
even more important is that (ii) the examined CCN/NDN simulators yield co-
herent results even in complex scenarios, which is a rather positive finding.
Finally (iii) scalability results exhibit the expected tradeoff between fidelity of
the implementation vs memory/computational complexity of the execution, and
(iv) fidelity analysis can hopefully guide the community in selecting the right
tool, each of which has been found to have merit on its own, for evaluation of
different aspects (or specific conditions).

While this paper does provide a useful snapshot of ICN software, it is clearly
a starting point more than the end of a journey: indeed, not only the snapshot
is incomplete, but it would also need to be regularly updated to reflect the ICN
ecosystem evolution. Albeit our comparison methodology is general, and our
comparison thorough, it appears clearly, from Fig. 3, that the work that remains
to be done is far larger than what has been achieved so far to complete the
comparison within and across categories (e.g., all simulators of an architecture,
w.r.t. simulator vs emulator vs prototype of the same architecture and so on).

Henceforth, by raising awareness in the ICN community, our hope is that fur-
ther effort in widely adopting good practices can not only broaden the knowledge
brought by our investigation, but also contribute to avoid pitfalls experienced
in other research domains [6]. Possible directions can be identified in:

• fidelity assessment of simulators vs emulators vs prototypes;

• implementation of some reference scenarios, beyond naive ones, in all tools
in order to facilitate result comparison;

• making source code available for verifiability, and performing a cross-
calibration on baseline scenarios for any new tool;

Clearly, we do not expect the community to align to the point of having a
single, common, reference ICN software evaluation suite9. At the same time,

9Quoting again lesson learned from the P2P community [6], “In hindsight, it was somewhat
naive of us to assume that the P2P academic community would pool their efforts into the
design and use of a single P2P simulator”.

37

we believe that some of these practices are simple enough to be worth sharing
(and enforcing) to attain the goal of repeatability and verifiability.

As a final word, we believe that enforcement of these good practices should
be done at multiple levels, like at IRTF research group ICNRG with Inter-
net drafts [10, 11, 12], or at academic venues through “challenges” promoting
cross-comparison (e.g., Special Interest Groups (SIG) of the Association for
Computing Machinery (ACM) do organize both long-standing challenges10, as
well as more temporally scoped contests11) in areas other than networking.

Acknowledgements

This work has been carried out at LINCS http://www.lincs.fr.
We want to thank the Editor in Chief, the Area Editor, and all the Review-

ers, whose guidance through all the steps of the reviewing process helped us
improving this work.

References

[1] B. Ahlgren et al., A survey of information-centric networking, Communi-
cations Magazine, IEEE 50 (7) (2012) 26 –36.

[2] G. Xylomenos et al., A survey of information-centric networking research,
Communication Surveys and Tutorials, IEEE 16 (2) (2014) 1024–1049.

[3] C. Perkins, IP Mobility Support for IPv4, Internet Standard (Aug. 2002).
URL https://tools.ietf.org/html/rfc3344

[4] N. B. Melazzi, L. Chiariglione, The Potential of Information Centric Net-
working in Two Illustrative Use Scenarios: Mobile Video Delivery and Net-
work Management in Disaster Situations, IEEE COMSOC MMTC E-Letter
8 (4) (2013) 25–28.

[5] M. Tortelli, D. Rossi, G. Boggia, L. Grieco, Pedestrian Crossing: The
Long and Winding Road toward Fair Cross-comparison of ICN Quality,
in: Proc. of International Workshop on Quality, Reliability, and Security
in Information-Centric Networking, Q-ICN, Rhodes, Greece, 2014.

[6] A. Basu et al., The state of peer-to-peer network simulators, ACM Comput.
Surv. 45 (4) (2013) 46:1–46:25.

[7] V. Jacobson et al., Networking Named Content, in: Proc. of ACM
CoNEXT, 2009.

10Such as the Sort Benchmark in the SIGMOD community (http://sortbenchmark.
org/) or the SIGKDD (http://www.kdd.org/kddcup/index.php) and SIGSPATIAL (http:
//sigspatial2014.sigspatial.org/sigspatial-cup) cups

11Such as SIGGRAPH contest for International Collegiate Virtual Reality Contest (IVRC),
Immersive Realities and Augmented/Virtual Reality held in recent years

38

[8] M. Bari, S. Chowdhury, R. Ahmed, R. Boutaba, B. Mathieu, A survey
of naming and routing in information-centric networks, Communications
Magazine, IEEE 50 (12) (2012) 44–53.

[9] G. Carofiglio et al., From content delivery today to information centric
networking, Comput. Netw. 57 (16) (2013) 3116–3127.

[10] D. Kutscher et al., ICN Research Challenges, Internet Draft - https://

tools.ietf.org/html/draft-irtf-icnrg-challenges-02 (Sep. 2015).

[11] K. Pentikousis et al., Information-centric networking: Evaluation
methodology, Internet Draft - https://tools.ietf.org/html/

draft-irtf-icnrg-evaluation-methodology-01 (Jul. 2015).

[12] K. Pentikousis et al., Information-centric Networking: Baseline
Scenarios, Internet Draft - https://datatracker.ietf.org/doc/

draft-irtf-icnrg-scenarios/ (Mar. 2015).

[13] G. Tyson et al., A survey of mobility in information-centric networks: Chal-
lenges and research directions, in: Proc. of the ACM NoM Workshop, 2012.

[14] R. Ravindran, S. Lo, Z. Xinwen, W. Guoqiang, Supporting seamless mo-
bility in named data networking, in: IEEE ICC, 2012.

[15] G. Piro, L. A. Grieco, G. Boggia, P. Chatzimisios, Information-centric
networking and multimedia services: present and future challenges, ETT,
Transactions on Emerging Telecommunications Technologies, 25 (5) (2014)
392–406.

[16] L. Grieco et al., Iot-aided robotics applications: Technological implications,
target domains and open issues, Elsevier Computer Communications 54
(2014) 32 – 47.

[17] L. Grieco, M. Alaya, T. Monteil, K. Drira, Architecting Information Centric
ETSI-M2M systems, in: Proc. of IEEE PerCom, 2014.

[18] L. Zhang et al., Named Data Networking, ACM SIGCOMM Computer
Communication Review (CCR) 44 (3) (2014) 66–73.

[19] M. Gritter, D. Cheriton, An architecture for content routing support in the
internet, in: Proc. of USITS Conference, 2001.

[20] Online website, http://gregorio.stanford.edu/triad/ (2001).

[21] A. Carzaniga, A. Wolf, Content-based networking: A new communication
infrastructure, in: Proc. of IMWS NSF Workshop, 2001.

[22] I. Stoica et al., Internet indirection infrastructure, in: In Proceedings of
ACM SIGCOMM, 2002.

39

[23] A. Carzaniga, M. Rutherford, A. Wolf, A routing scheme for content-based
networking, in: Proc of IEEE INFOCOM, 2004.

[24] T. Koponen et al., A data-oriented (and beyond) network architecture,
SIGCOMM Comput. Commun. Rev. 37 (4) (2007) 181–192.

[25] N. Fotiou, P. Nikander, D. Trossen, G. Polyzos, Developing Information
Networking Further: From PSIRP to PURSUIT, Broadband Communica-
tions, Networks, and Systems 66 (2012) 1–13.

[26] C. Dannewitz et al., Network of information (netinf) - an information-
centric networking architecture, Comput. Commun. 36 (7) (2013) 721–735.

[27] Online website, http://www.sail-project.eu/ (2010).

[28] G. Garcia et al., COMET: Content mediator architecture for content-aware
networks, in: Future Network Mobile Summit (FutureNetw), 2011.

[29] A. Detti, N. B. Melazzi, S. Salsano, M. Pomposini, CONET: A Content
Centric Inter-networking Architecture, in: Proc of the ACM SIGCOMM
ICN Workshop, 2011.

[30] I. Seskar, K. Nagaraja, S. Nelson, D. Raychaudhuri, Mobilityfirst future
internet architecture project, in: Proc of the 7th Asian Internet Engineering
Conference (AINTEC), 2011.

[31] D. Han et al., XIA: Efficient Support for Evolvable Internetworking, in:
Proc. of USENIX NSDI, 2012.

[32] Online website, http://www.greenicn.org/ (2013).

[33] D. Naylor et al., XIA: architecting a more trustworthy and evolvable inter-
net, SIGCOMM Comput. Commun. Rev. 44 (3) (2014) 50–57.

[34] C. Yi, A. Afanasyev, L. Wang, B. Zhang, L. Zhang, Adaptive forwarding in
named data networking, SIGCOMM Comput. Commun. Rev. 42 (3) (2012)
62–67.

[35] S. Naicken et al., The state of peer-to-peer simulators and simulations,
SIGCOMM Comput. Commun. Rev. 37 (2) (2007) 95–98.

[36] Online website, http://palproject.org.uk (2009).

[37] Online website, http://www.psirp.org/ (2011).

[38] Online website, http://www.fp7-pursuit.eu/ (2013).

[39] Online website, http://users.piuha.net/blackhawk/0.3/ (2010).

[40] Simplified Wrapper and Interface Generator (SWIG) online website, http:
//swig.org/ (1996).

40

[41] Online website, https://github.com/fp7-pursuit/blackadder (2013).

[42] D. Trossen et al., IP over ICN - The better IP?, in: Proc. of EuCNC, 2015.

[43] Online website, http://rife-project.eu (2015).

[44] Online website, http://www.read.cs.ucla.edu/click/ (2009).

[45] N. Vastardis, A. Bontozoglou, K. Yang, M. Reed, Simulation Tools En-
abling Research on Information-centric Networks, in: IEEE ICC 2012
Workshop on the Network of the Future (FutureNet V), 2012.

[46] Online website, http://privatewww.essex.ac.uk/~nvasta/ICNSim.htm

(2014).

[47] H. Casanova et al., Versatile, scalable, and accurate simulation of dis-
tributed applications and platforms, Journal of Parallel and Distributed
Computing 74 (10) (2014) 2899 – 2917.

[48] Online website, http://www.4ward-project.eu/ (2008).

[49] Online website, http://code.google.com/p/opennetinf/ (2012).

[50] Online website, http://sourceforge.net/projects/netinf/files/

nilib/ (2012).

[51] Online website, http://gin.ngnet.it/ (2012).

[52] Online website, http://www.ict-convergence.eu/ (2011).

[53] Online website, http://www.ict-convergence.eu/demodownloads

(2011).

[54] Online website, http://netgroup.uniroma2.it/CONET/ (2012).

[55] Online website, https://github.com/XIA-Project/xia-core/wiki

(2015).

[56] Online website, http://mobilityfirst.orbit-lab.org/wiki/Proto

(2014).

[57] Online website, http://icarus-sim.github.io (2015).

[58] L. Saino, I. Psaras, G. Pavlou, Icarus: a Caching Simulator for Information
Centric Networking (ICN), in: Proc. of ICST Valuetools, 2014.

[59] Online website, http://www.ccnx.org (2015).

[60] Online website, http://www.ccnx.org/specifications/ (2015).

[61] Online website, http://www.named-data.net/ (2015).

[62] Online website, http://named-data.net/doc/NFD (2015).

41

[63] C. Cabral, C. Rothenberg, M. Magalhes, Reproducible network experi-
ments using container-based emulation, in: Proc. of IEEE ISCC, 2014.

[64] Online website, https://github.com/carlosmscabral/mn-ccnx/wiki

(2014).

[65] Online website, http://telematics.poliba.it/index.php/en/

ccn-joker (2012).

[66] I. Cianci, L. Grieco, G. Boggia, CCN - Java Opensource Kit EmulatoR for
Wireless Ad Hoc Networks, in: Proc. of 7th ACM Int. Conf. on Future
Internet Technologies(CFI), 2012.

[67] Online website, http://www.ccn-lite.net (2015).

[68] H. Tazaki et al., Direct Code Execution: Revisiting Library OS Architec-
ture for Reproducible Network Experiments, in: Proc. of ACM CoNEXT,
2013.

[69] Online website, http://www-sop.inria.fr/members/Frederic.Urbani/
ns3dceccnx/getting-started.html (2012).

[70] Online website, http://systemx.enst.fr/ccnpl-sim (2014).

[71] G. Carofiglio, M. Gallo, L. Muscariello, Joint hop-by-hop and receiver-
driven interest control protocol for content-centric networks, in: Proc. of
ACM SIGCOMM ICN Workshop, 2012.

[72] G. Carofiglio, M. Gallo, L. Muscariello, ICP: Design and evaluation of an
interest control protocol for content-centric networking, in: Proc. of IEEE
INFOCOM NOMEN Workshop, Orlando, Florida, 2012.

[73] Online website, http://ndnsim.net (2015).

[74] A. Afanasyev, I. Moiseenko, L. Zhang, ndnSIM 2.0: A new version of the
NDN simulator for NS-3, in: Tech. Rep. NDN-0028, 2015.
URL http://named-data.net/techreport/ndn-0028-1-ndnsim-v2.

pdf

[75] A. Afanasyev, I. Moiseenko, L. Zhang, ndnSIM: A ns-3 Based NDN Simu-
lator, in: CCNxCon’12, Sophia Antipolis, France, 2012.

[76] Online website, http://www.enst.fr/~drossi/ccnSim (2015).

[77] G. Rossini, D. Rossi, ccnSim: a highly scalable CCN simulator, in: Proc.
of IEEE ICC, 2013.

[78] I. Psaras, W. Chai, G. Pavlou, Probabilistic in-network caching for
information-centric networks, in: Proc. of ACM ICN Workshop, 2012.

[79] L. Saino, I. Psaras, G. Pavlou, Hash-routing schemes for information centric
networking, in: Proc. of ACM ICN Workshop, 2013.

42

[80] S. Fayazbakhsh et al., Less Pain, Most of the Gain: Incrementally Deploy-
able ICN, in: Proc. of ACM SIGCOMM, 2013.

[81] H. Che, Z. Wang, Y. Tung, Analysis and design of hierarchical web caching
systems, in: Proc of IEEE INFOCOM, 2001.

[82] V. Martina, M. Garetto, E. Leonardi, A unified approach to the perfor-
mance analysis of caching systems, in: Proc. of IEEE Infocom, 2014.

[83] S. Arianfar, P. Nikander, Packet-level Caching for Information-centric Net-
working, in: Proc. of ACM SIGCOMM, ReArch Workshop, 2010.

[84] A. Hoque et al., NLSR: Named-data Link State Routing Protocol, in: Proc.
of ACM SIGCOMM ICN Workshop, 2013.

[85] M. Tortelli, D. Rossi, G. Boggia, L. A. Grieco, Ccn simulators: Analysis
and cross-comparison, http://perso.telecom-paristech.fr/~drossi/

index.php?n=Software.ICN14Demo (2014).

[86] G. Rossini, D. Rossi, Evaluating CCN Multi-path Interest Forwarding
Strategies, Comput. Commun. 36 (7) (2013) 771–778.

[87] S. Jansen, A. McGregor, Performance, validation and testing with the
network simulation cradle, in: IEEE MASCOTS, 2006, pp. 355–362.
doi:10.1109/MASCOTS.2006.40.

[88] A. Stetsko, M. Stehlik, V. Matyas, Calibrating And Comparing Simulators
for Wireless Sensor Networks, in: Proc. of IEEE MASS, 2011.

[89] N. Handigol et al., Reproducible network experiments using container-
based emulation, in: Proc. of ACM CoNEXT, 2012.

[90] D. Nicol, Scalability of Network Simulators Revisited, in: Proc. of the
CNDS Conference, 2003.

[91] E. Weingartner, H. vom Lehn, K. Wehrle, A performance comparison of
recent network simulators, in: Proc. of IEEE ICC, 2009.

[92] J. Lessmann et al., Comparative study of wireless network simulators, in:
Proc. of IEEE ICN, 2008.

[93] H. Sundani et al., Wireless sensor network simulators a survey and com-
parison, Int. Journal of Computer Networks 2 (5) (2010) 249–265.

43

