
Design and Analysis of an Improved
BitMessage Anti-spam Mechanism

Alexander Schaub∗
∗École Polytechnique, 91128 Palaiseau, France

alexander.schaub+INF570@polytechnique.edu

Dario Rossi∗†
†Telecom ParisTech, 75013 Paris, France

dario.rossi@enst.fr

Abstract—The BitMessage protocol offers privacy to its anony-
mous users. It is a completely decentralized messaging system,
enabling users to exchange messages preventing accidental eaves-
dropping – a nice features in the Post-Snowden Internet Era. Not
only messages are sent to every node on the network (making
it impossible to understand the intended recipient), but their
content is encrypted with the intended recipient public key (so
that s/he only can decipher it). As these two properties combined
might facilitate spamming, a proof-of-work (PoW) mechanism has
been designed to mitigate this threat: only messages exhibiting
properties of the PoW are forwarded on the network: since PoW
is based on computationally heavy cryptographic functions, this
slows down the rate at which spammers can introduce unsolicited
messages in the network on the one hand, but also makes it
harder to send legitimate messages for regular users on the
other hand. In this paper, we (i) carry on an analysis of the
current PoW mechanism, (ii) propose a very simple, yet very
effective, generalization of the formula that decouples spammers
vs legitimate users penalty showing that (iii) at the optimum,
our proposal halves the harm spammers can do, avoiding by
definition any impact for legitimate users.

I. INTRODUCTION

The use of cryptography to protect private communication
can be traced back to ancient Egypt [12]. Yet, it is not
until the Internet era that protecting information and private
communications has become harder, but for the very same
reason even more vital. Recent news under the spotlight have
indeed shown that privacy is not the norm, with a consequent
uprise of HTTP over TLS communication. Yet, HTTPS is only
securing the communication channel with some provider (e.g.,
Google, Facebook, etc.), which ultimately requires trust and
does not prevent (even if the provider is loyal to user privacy)
accidental leakage of information toward third parties.

For personal communication, peer-to-peer (P2P) has a long
history of successful applications enforcing anonymity and
preserving communication privacy, of which the best known
examples are respectively Freenet [9] (often traced among the
first P2P systems, providing anonymous filesharing), Skype [1]
(among the most successful P2P applications ever, provid-
ing private VoIP/video/chat communications) and TOR [11]
(providing a service-independent multi-hop encrypted VPN).
Jointly achieving anonymity and privacy is knowingly hard.
For instance, it has been shown that significant leaks can be
exploited so that Skype users can be traced, geographically
located, and even tied to ongoing BitTorrent downloads with
very minimally intrusive techniques[15], which then could
lead to deanonymization with usual techniques (see [10] and
references therein). Conversely, TOR is harder to setup for

(any) user with respect to installing applications such as Skype,
and not only TOR exploits have been known since quite a
while, but new leakage are still found nowadays [2].

A very recent addition to the P2P application spectrum is
represented by BitMessage [17], that combines both anonymity
and privacy on the same communication-oriented service. In
BitMessage, anonymity is achieved by flooding private but
encrypted information at large (or over all) the network, so that
is very hard (or impossible) to identifying the communication
parties. Privacy is instead achieved since only the intended
recipient can decipher the message, which has been encrypted
with her public key. Yet, since nodes in the BitMessage
network receives many (or all) messages, they need to verify
if they are intended recipient at any new message reception:
to reduce the risk of message pollution and DDoS, a Proof-
or-Work (PoW) mechanism à la BitCoin is used, which slows
down the rate of successful attacks.

While BitMessage fills an important yet missing gap in
the P2P application spectrum, a thorough investigation of the
BitMessage spam prevention mechanism is missing so far.
Moreover, the formula defining the minimum PoW in BitMes-
sage has been changed recently, and without any technically
sound analysis backing this change. In this paper, we focus on
the trade-off of having a PoW that can successfully protect the
system from attacks, while at the same time being low enough
to allow legitimate users to send messages without incurring
an exaggerate penalty. With this respect, our contributions in
this paper can be summarized as:

• we are the first to propose a scientifically sound and
comprehensive study of the BitMessage PoW;

• we propose and evaluate a simple yet effective gener-
alization of the current PoW, that we optimally tune;

• we show that our proposal can halve the attacker
impact w.r.t. to the current implementation.

The remainder of this paper first introduces BitMessage
and PoW (Sec.II), then introduces our proposal contrasting
to the current one (Sec.III) and carrying on some numerical
investigation (Sec.IV), before illustrating open points and
summarizing our finding (Sec.V).

II. A CRASH COURSE ON THE BITMESSAGE PROTOCOL

The BitMessage protocol has first been proposed by
Jonathan Warren [17]. Its aim is to replace e-mail/text mes-
sages, while providing as much security as PGP without having

Algorithm 1 Compute PoW
1: H0 ← hash(message) . BitMessage uses SHA512
2: nonce← 0
3: pow ← H0 & (264 − 1) . First 8 bytes of H0

4: while pow > target do
5: nonce← nonce+ 1
6: H ← hash(hash(nonce+H0))
7: pow ← H & (264 − 1) . First 8 bytes of H

return nonce

to rely on third-party authorities. In this section we introduce
the protocol (Sec.II-A), with special emphasis on the PoW
mechanism (Sec.II-B), surveying the current implementation
as well as alternative proposals under discussion (Sec.II-C).

A. A secure and decentralized messaging protocol

For lack of space, in this paper we can only provide a
terse introduction to the BitMessage protocol, and we refer the
reader to [17] for a longer description. Briefly, BitMessage is
a P2P protocol, where each peer is assigned a ' 34 character
long address. This address contains a pair of Elliptic Curve
Cryptography (ECC) keys and is used to sign and encrypt user
messages. When Alice wants to send a message to Bob, she
uses Bob’s public key, comprised in its address, to encrypt
the message. This operation preserves privacy, as only Bob is
able to decipher the message, as he is the only one possessing
the corresponding private key. In order to enforce anonymity,
all messages are in fact sent to every other node in the
network. To avoid known scalability pitfalls [16], the network
is split up into several streams, so that the intended message
recipient should be listening to the same stream the sender is
in. Therefore, any malicious BitMessage node overhearing a
message is neither able to pinpoint the communication entities
(as any peer in the stream can be the intended recipient), nor
to decipher its content (as the peer private key is needed for
decryption). Similarly, one can not spy on Bob acquaintances
by simply monitoring the ingoing and outgoing encrypted
messages: some were meant for him, some are just relayed.
Moreover, since the BitMessage address generation is done
independently for each client, there is no need for any central
entity, which makes this system highly resilient.

We point out that whereas BitCoin has attracted significant
attention from several research communities, the BitMessage
protocol has instead limitedly attracted attention of the security
community, and especially for what concerns the anonymity
and privacy aspects [7, 8, 13], but has otherwise been mostly
ignored by both the peer-to-peer as well as the networking
community at large.

B. The Proof-of-Work (PoW) mechanism

Since every message is to be shared by every node on the
same stream, this protocol may be prone to abusive flooding
and/or spamming: BitMessage copes with this problem by
employing a Proof-of-Work (PoW) mechanism.

The high-level idea behind PoW is to slow down any
potential abuse: in order to have the right to send a message,
every user is required to perform a certain amount of work,
i.e., applying cryptographic functions, on the message content.

Algorithm 2 Verify PoW
1: H0 ← hash(message)
2: pow ← hash(hash(nonce+H0))
3: if pow ≤ target then

return True
4: else

return False

Specifically, the algorithm described in Algorithm 1, consists
in a partial collision on a message. In order to verify the
PoW, any node receiving the message has merely to hash the
whole message once, and perform one subsequent (double-)
hash using the given nonce: if the value of the hash is small
enough (i.e., the verified value starts with a number of zeros),
then the message is valid and is either read (if the node is the
intended recipient) or relayed (otherwise). Instead, a message
exhibiting insufficient PoW will not be relayed by the nodes
in the network, limiting the flood.

The target value depends on the length of the message
payload as well as the Time To Live (TTL), which is the time
the message is kept in the network. The current version of the
protocol uses the following formula:

target =
264

C (|message|+ C ′)
(
1 + TTL

216

) (1)

where |message| represents the length of the message, C and
C ′ are some constants to respectively impose a minimum PoW
on short messages, and to modulate the mean number of tries
to perform (the current BitMessage implementation sets C =
1000 and C ′ = 1000). Since pow in Algorithm 1 is an 8
byte integer taking values in [0, 264 − 1], and since pow is
uniformly distributed in this interval due to the properties of
cryptographic hash functions such as SHA512, the average
duration of a Proof-or-Work E[TPoW] is:

E[TPoW] =
1

hashRate
C (|message|+ C ′)

(
1 +

TTL

216

)
(2)

where hashRate is the number of SHA512 operations that
the user can perform in a second. Clearly, (2) holds for both
legitimate users and spammers.

C. PoW alternatives

Today’s most popular PoW mechanism is the so-called
hashcash [6] algorithm, used for instance by BitCoin, that can
also be used by e-mail services which want to avoid spam: in
order to send an e-mail, the sender has to find some nonce
so that the hash of the e-mail content and the nonce starts
with a determined number of zeros. This algorithm is similar
to the one used by BitMessage: specifically, only the way
to determine by how many zeros the hash should start with
changes. For hashcash, it is decided by the server for all the
messages it accepts to relay, while for BitMessage it mostly
depends on the length of the message that is to be sent and its
lifetime in the network (i.e. its TTL).

It has to be pointed out that an analysis [14] of the eco-
nomics of spamming assert that PoW methods are inefficient
so as to avoid spam: authors in [14] estimate that the PoW
that makes sending spam so hard to become uneconomic,

also makes it impractical for normal users to send legitimate
messages. At the same time, this analysis dates back of over
a decade [14], so it would need to be at least quantitatively
updated. In the meanwhile, BitMessage is used by both legiti-
mate users as well as spammers [5], so that an improved PoW
would certainly be beneficial to the former.

Yet, because of the differences in hardware capabilities,
between, for example, a smartphone and a desktop PC, the
BitMessage PoW mechanism is unfair towards users with less
powerful hardware. One possibility to overcome this problem
would be to force users to wait a certain time between
two messages, i.e., to impose a maximum rate for sending
messages. However, it seems complicated to enforce this policy
as the sender of the messages is encrypted and therefore only
known to the recipient, so that intermediate nodes are unable
to detect any malicious user. This solution has been actively
discussed on the BitMessage forum [3], and could be used as
a complementary solution to the PoW.

Yet, as it appears from discussion in the forum, alternative
suggestions are still based on heuristics that, albeit intuitively
sound, are subject to yet other trade-offs that have not been
fully elucidated either. As mentioned earlier, it is not clear that
a hard limit on the rate at which the messages are sent, can be
enforced at all. Also, choosing a value for the maximal rate is
a non-trivial task, as shown by [14]. The PoW method has the
benefit that it allows to enforce a message rate limitation in a
decentralized fashion. The main drawback is the fact that this
limitation depends on the hardware capabilities of the users,
which seems unfair. However, as we will show, a careful design
of the PoW formula can help to reduce the risk of malicious
exploitation of the network.

III. POW DESIGN

To quantify the resilience of the system and analyze the
current PoW formula, we first define a realistic scenario with
three different kinds of users, subject to distinct behaviors and
constraints (Sec.III-A). We then observe that, to let the PoW
trade-off be more adverse to malicious users, it is desirable to
break the TTL linearity in (1), and propose a generalized PoW
model, of which the current one is a special case (Sec.III-B).

A. Modeling legitimate and malicious users

We consider the three types of users, whose main character-
istic are summarized in Tab I. Namely, Desktop users employ
BitMessage to safely send email-like messages on a desktop
or laptop PC. They have a medium computing power, and are
not that much concerned about storage space. However, they
may not be on-line all day long, but are supposed to read their
messages at least once a day. Mobile users employ BitMessage
to safely send SMS-like messages. They have much more
limited computing power, storage space and bandwidth, but are
connected to the Internet almost all the time (therefore, TTL
can be shorter as the recipient is also supposed to be on-line
all the time). Finally, Spammers attempt to render BitMessage
unusable by maximizing the annoyance of their actions, but
have otherwise no preferred TTL or message length. They are
supposed to have more computing power than desktop users,
can be on-line 24/7 hours a day, and are not bandwidth limited.

TABLE I. BITMESSAGE LEGITIMATE AND SPAM USERS SCENARIO

PC user Mobile user Spam bot
hashRate ' 5 MH/s ' 0.5 MH/s ' 30 MH/s

Aim Send e-mails Send short
text messages

Maximize
annoyance

TTL 1 day 4 hours n.a.

We use hash rates for BitCoin as a proxy for BitMessage
rates, as the rates for SHA256 (used by BitCoin) and SHA512
(BitMessage) double hashes should be similar. Two points are
worth making. First, albeit current implementation are limited
to running software on the CPU, we assume that the PoW
algorithm is able to uses the computational capabilities of
the Graphic Processing Unit (GPUs), which is advantageous
for spammers. Second, we also assume that while it is easy
to find specialized FPGA and even ASIC to mine BitCoins
(at rates exceeding 10GH/s) there will be no incentive nor
market to sell BitMessage “spam bot” (and it would be too
hard for spammers to divert a BitCoin mining rim into a
BitMessage spam bot, since the hash functions that are used
are not the same). Thus, we model spammers hash rates as
being higher, though not incommensurately higher, than that
of regular users. These assumptions have been validated by
the harvesting attack, led by Robert White [5]. He achieved
a typical hash rate of 5 Mh/s using an optimized CPU-only
C implementation (which should be available to any regular
user), and 25 Mh/s using a GPU implementation (that could
be used by spammers). The code is freely available on the
Internet [4].

While legitimate users have a typical access time and
message lengths (that we consider of an SMS or 500 bytes in-
cluding protocol overhead for mobile users, and email of 5000
bytes average size for PC users) spammers aim at maximizing
the annoyance of their actions, but have otherwise no preferred
TTL or message length. With this perspective, two metrics are
worth considering: the (i) number of persistent spam messages
on the stream and the (ii) overall spam memory footprint.
Indeed, since each received message has to be hashed (in order
to verify the PoW), and decrypted (to check if we are the
recipient), the number of messages received correlates to the
CPU pollution (of legitimate users) and to battery depletion (of
mobile users). Additionally, the size of the waste can be critical
for mobile users with limited storage capabilities, or with a
bandwidth cap – though in reason of current smartphones
specs, battery is likely a harsher constraint.

B. Design of an Improved PoW

A rationale spammer would thus focus on maximizing the
number of persistent spam messages. To examine this objec-
tive, let A′ = C (|message|+ C ′)/hashRate and B′ = 216,
so that we can rewrite (1) as:

E[TPoW] = A′
(
1 +

TTL
B′

)
(3)

From (4) it is easy to gather that PoW duration grows linearly
with TTL: if the objective of the spammer is to maximize the
number of messages kept in the system, he will try to maximize
f(x) = TTL/E[TPoW], which is the number of messages sent
before the first one expires. To make the PoW more resilient

Fig. 1. Number of messages, e-mail sending time and SMS sending time as
a function of α

to attacks, we propose to break the linearity in TTL by raising
TTLα to an exponent α > 1 in (4).

E[TPoW] = A′
[
1 +

(
TTL
B′

)α]
(4)

By doing so, the function the spammer needs to maximize
would become:

f(x) =
1

A

x

1 + xα
, A = A′/B′, x = TTL/B′ (5)

that degenerates in the current PoW for α=1 (another knob that
can be used to make PoW more difficult is the normalization
factor B′ = 216, which could be reduced to make PoW harder
for everybody, depending on the target TTL). The maximum
of this function can be found using basic algebra as:

xmax =
1

(α− 1)
1
α

if α > 1 (6)

The TTL which will be chosen by the spammer will be
quantized to seconds (as TTL is an integer value), however
the quantization effects have a negligible impact on the total
number of messages and we neglect it in the following. Notice
also that the computational power of the spammer (is included
in A′), does not affect the maximum (6).

IV. NUMERICAL RESULTS

We now optimize, for the scenario under consideration,
our generalized formula (6) to maximize resilience against
spammers without hurting legitimate users, showing numerical
results contrasting it with the current PoW. We elucidate the
PoW trade-off by expressing legitimate user performance in
terms of the time needed by PC users to send a single email-
like message1, and attackers performance in terms of the
number of persistent spam messages.

A. Results at a glance

In particular, we use the values of the PoW con-
stants B′=216, C=1000, C ′=1000 as those are the cur-
rent default values for BitMessage, and assume attackers to
send 200-bytes messages which yields to A′ = C(200 +
C ′)/hashRate=1, 200, 000/hashRate. We gather results in
Fig. 1 using discrete optimization, but we point out that results

1Note that the time needed to send a short-lived SMS decreases when α
increases, as long as the TTL of the SMS is below B′ = 216s ' 18h

Fig. 2. Logarithmic derivative of the number of permanent messages and
email-sending time as a function of α

are very close to those obtained directly using (6) which is thus
a good approximation. The picture clearly shows that when
α ∈ [1, 2) the PoW becomes increasingly difficult, which in
turn (drastically) decreases the number of permanent messages
in the stream at a price of a (slight) increases the time needed
to send an email-like message for legitimate users. Conversely,
for α≥2 both the e-mail sending time as well as the maximum
number of possible permanent messages increase (hence, α
should be always strictly smaller than α<2).

B. Optimizing the proposed PoW

The question is now to determine which α value (i) best
counters the spammer’s possibility to harm the system, while
(ii) allowing legit users to unperturbedly send messages at the
same time. We notice that the current formula (4) allows to
linearly increase the difficulty for both spammers and legit
users: for example, changing A to Ã>A, then the number
of permanent messages decreases by A/Ã and the email-
sending time increases by Ã/A. Therefore, our formulation
makes sense only for those α for which the email-sending
time increases slower than the permanent number of messages
increases. More formally, let’s denote by n(α) the number of
permanent messages for a given value of α, and m(α) the
corresponding mail sending time. Increasing α by some small
value ε > 0 makes sense only if:

m(α+ ε)

m(α)
≤ n(α)

n(α+ ε)
(7)

which is equivalent to

m(α+ ε)−m(α)

εm(α)
≤ n(α)− n(α+ ε)

εn(α+ ε)
(8)

which yields the following condition, as ε→ 0 :

m′(α)

m(α)
≤ −n

′(α)

n(α)
(9)

where m′(α) denotes the derivate of function m. In other
words, increasing α is advantageous as long as the logarithmic
derivative of m is smaller or equal than the absolute value
of the logarithmic derivative of n: the optimal value of α is
precisely the one of which the equality holds. For the scenario
under consideration, Fig. 2 shows that absolute values of the
logarithmic derivatives intercept for α ∈ [1.6, 1.7], and more

precisely at α = 1.64 (according to a gradient method with a
precision ε = 0.01) which is thus our optimal value.

Having determined the optimal α value, we can assess the
improvement over the current PoW. Since the legacy formula
involves two constants that can be chosen in order make the
PoW harder by a constant factor, we can compare the formulas
with respect to a fixed email-sending time, or a fixed number
of permanent messages. As this doesn’t matter much, we will
compare them with a fixed email sending time of one second.
As shown in Tab. II, the number of permanent spam messages
are roughly halved by simply letting α = 1.64 compared to
the default α = 1.

C. Impact of network delay

We have so far neglected the impact of network delay.
However, if there is a constant delay for sending each message,
the optimal choice of the TTL changes (and depends on the
actual hash rates, unlike in our analysis), and the effect of
varying α also changes. The considered formulas are not linear
anymore, but it is still possible to compute the constants
that will yield an e-mail sending time of one second, and
therefore the improvement ratios for different values of α.
Table V shows the effect of an additional fixed delay for
each message – cumulatively accounting for network effects,
the encryption process, etc – and the effect of choosing a
different α. While, for example, a 100ms delay penalty may
seem excessive, the spammer itself would probably attempt
at disguising his/her actions by e.g., tunneling over the TOR
network, which induces a higher latency. In Table V, we show
the improvement factor over α = 1 for two values of α:
α = 1.64 which is the optimal value of α if we suppose there
is no delay, and the optimal value once the delay is taken into
account In short, if there is a constant delay for each message
(which seems natural), then there is even a stronger incentive
at choosing α > 1, and the longer the delay, the greater the
effect of α > 1. Also, choosing α = 1.64 (as in the case with
no latency) will always result in a significant improvement
over the legacy formula.

V. CONCLUSIONS

In this paper we study the Proof-of-Work (PoW) used
by BitMessage to fight the spam, we generalize the current
formula and provide optimal values that could halve the
spammer impact with no noticeable impact for legitimate users.
In particular, PoW should avoid malicious users to flood the
network while allowing legit users to exploit the BitMessage
protocol without penalty at the same time. We argue that the
current BitMessage PoW formula has not been thoroughly
analyzed: our analysis in this paper shows that a minimal
modification to the current PoW can have large impact against
spam at no additional cost for legitimate users.

This work is of course preliminary and can be extended
along a number of relevant directions, the first of which is
to assess the impact of variable delay, which requires com-
plementary techniques to ours. For instance, (i) measuring the
propagation delay of the messages in the BitMessage network
could be useful to choose the best TTL for mobile users; (ii)
simulation can help investigating the effect of stochastically

TABLE II. COMPARISON OF LEGACY VS IMPROVED POW

α = 1 α = 1.64
A’× hashRate (millions) 1.20 0.43 1.20 0.39

Sending time (s) 2.78 1 3.08 1
Permanent messages (millions) 1.60 4.56 0.84 2.59

TABLE III. IMPROVEMENT RATIO FOR DIFFERENT VALUES OF α AND
DELAY (∆)

∆ = 0 ∆ = 0.01 ∆ = 0.05 ∆ = 0.1
Value of α 1.64 1.64 2.04 1.64 3.55 1.64 5.33

Improvement ratio 1.71 2.11 2.19 2.94 4.02 3.43 6.16

variable delay, and finally (iii) a proof-of-concept implemen-
tation might be needed in order to verify to what extent the
assumptions we have made in this paper hold in the real world.

We point out that our contributions are far from being an
academic exercise. For instance, during the 2013 BitMessage
harvesting-attack [5], attackers spent 3h to generate messages
whose transmission clogged the BitMessage for about 18h:
we plan to contact the BitMessage community to propose this
simple and technically sound drop-in proposal.

REMERCIEMENTS

Result in this paper have been obtained during a
IN570 course project at Ecole Polytechnique. http://www.

enseignement.polytechnique.fr/informatique/INF570/

REFERENCES

[1] https://www.skype.com.
[2] https://trac.torproject.org/projects/tor/wiki/doc/TorifyHOWTO.
[3] https://bitmessage.org/forum/index.php/topic,2979.0.html.
[4] https://github.com/grant-olson/bitmessage-powfaster.
[5] The confessions of robert white. https://bitmessage.org/forum/index.

php?topic=2975.0.
[6] A. Back. Hashcash – a denial of service counter-measure. Technical

report, 2002.
[7] D. Bradbury. Can we make email secure? Elsevier Network Security,

2014(3):13–16, 2014.
[8] S. Chagani and A. Doll. Dead man’s switch: Disseminating secrets in

the face of a determined adversary.
[9] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed

anonymous information storage and retrieval system. In Designing
Privacy Enhancing Technologies, pages 46–66. Springer, 2001.

[10] X. Ding, L. Zhang, Z. Wan, and M. Gu. A brief survey on de-
anonymization attacks in online social networks. In IEEE CASoN, Sept
2010.

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. Technical report, DTIC Document, 2004.

[12] D. Kahn. The codebreakers: The comprehensive history of secret
communication from ancient times to the Internet. Simon and Schuster,
1996.

[13] A. Kovacs, I. Karakatsanis, and D. Svetinovic. Argumentation-based
security requirements analysis: Bitmessage case study. In IEEE Inter-
national Conference on Internet of Things (iThings), 2014.

[14] B. Laurie and R. Clayton. “proof-of-work” proves not to work. In
Workshop on Economics and Information, Security, 2004.

[15] S. Le Blond, C. Zhang, A. Legout, K. Ross, and W. Dabbous. I know
where you are and what you are sharing: exploiting P2P communica-
tions to invade users’ privacy. In ACM SIGCOMM IMC, 2011.

[16] J. Ritter. Why gnutella can’t scale. no, really, 2001.
[17] J. Warren. Bitmessage: A peer-to-peer message authentication and

delivery system. https://bitmessage.org/bitmessage.pdf.

http://www.enseignement.polytechnique.fr/informatique/INF570/
http://www.enseignement.polytechnique.fr/informatique/INF570/
https://www.skype.com
https://trac.torproject.org/projects/tor/wiki/doc/TorifyHOWTO
https://bitmessage.org/forum/index.php/topic,2979.0.html
https://github.com/grant-olson/bitmessage-powfaster
https://bitmessage.org/forum/index.php?topic=2975.0
https://bitmessage.org/forum/index.php?topic=2975.0
https://bitmessage.org/bitmessage.pdf

	Introduction
	A Crash Course on the BitMessage Protocol
	A secure and decentralized messaging protocol
	The Proof-of-Work (PoW) mechanism
	PoW alternatives

	PoW Design
	Modeling legitimate and malicious users
	Design of an Improved PoW

	Numerical Results
	Results at a glance
	Optimizing the proposed PoW
	Impact of network delay

	Conclusions
	References

